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SUMMARY 

Production models have proven for long to be very useful assessment tools. But two main problems make difficult 
their use for investigating the status of tropical tuna stocks. The first problem is the calculation of the effective 
fishing effort. Indeed, many different fleets with heterogeneous and changing catchabilities are often exploiting 
the same population. Consequently, scientists in charge of tropical tunas stock assessment are seldom in a 
position to estimate accurately a standardized effective fishing effort (e.g. an effort proportional to the fishing 
mortality) which is targeting the considered stock. The other important problem concerning the use of production 
models for tropical tunas stock assessment is the fluctuation of the overall size of the exploited area. Indeed, for 
tuna fisheries, the estimated production curve and its associated MSY are closely linked to the exploited surface 
and the stock biomass located in the fished area interacts more or less strongly with a “cryptic” part of the 
population located outside the fishing area.  

In this paper, our goal is to address both categories of problems by formulating different multi-fleet non 
equilibrium production models incorporating or not the fished surface. A maximum likelihood approach is 
provided to estimate the models parameters in a bayesian context. Once parameters have been estimated, the 
model can be used to estimate the overall effective effort and the stock status. The comparison of different 
formulations of the model may help to better understand the fishery dynamics. 

 

INTRODUCTION 

Production models have long proven to be very useful 
assessment tools because of their flexibility and low data 
requirements, but two main problems make their use difficult 
for investigating the status of tropical tuna stocks: 

• The first is the calculation of the effective fishing effort. 
Often, many different fleets (mainly baitboats, longliners 
and purse seiners) with heterogeneous and changing 
catching power (in general showing an increasing 
efficiency) are exploiting the same population. For many of 
these fisheries, the tuna stock considered is a secondary 
or by-catch species whose targeting depends on the 
relative prices and on the availability of other targeted 
species. Consequently, scientists in charge of tropical 
tuna stock assessment are seldom in a position to estimate 
accurately a standardized effective fishing effort (e.g. an 
effort proportional to the fishing mortality) targeting the 
considered stock. 

• The other is the fluctuation of the overall size of the 
exploited area. It is well known in tuna fisheries that the 
estimated production curve and its associated MSY are 
closely linked to the exploited area (Fonteneau, 1988). 
Tuna populations are not homogeneous and there is 
probably not total mixing between different regions 
(Hilborn and Sibert, 1988). The stock biomass located in 
the fished area therefore interacts more or less strongly 
with a “cryptic” part of the population located outside the 
fishing area. To override this problem, different 
production models incorporating the exploited surface 
have been proposed (Laloë, 1989, Die et al., 1990). Such 
models, which incorporate the fishery area must be used 
and adapted to fisheries where it is clear that the evolution 
of total catches is highly correlated with the evolution of 
the surface fished (Figure 1). 

In this paper, our goal is to address both categories of 
problems by formulating different multi-fleet non equilibrium 
production models that incorporate or not the area fished. A 
maximum likelihood approach is used to estimate the models 
parameters in a Bayesian context. Once parameters have been 
estimated, the model can be used to estimate the overall 
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effective effort and the stock status. The comparison of 
different formulations of the model may help to better 
understand the fishery dynamics. 
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Figure 1 : Skipjack catches versus area fished in the Atlantic 

Ocean (Fonteneau pers. com.). 

MATERIAL AND METHODS 

Data requirements 

The model presented here requires catches and nominal 
fishing efforts for each fleet present in the fishery considered. 
It is not necessary to standardise effort as the standardization 
is fully integrated in the model formulation. Also needed is 
the overall area fished by the fishery which will be used to 
define the stock frontiers. 

The “reference model” 

All the models used here are based on the classic Pella and 
Tomlinson (1969) generalized production model which links 
the stock biomass B with the fishing mortality F by the mean 
of an ordinary differential equation continuous in time: 
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Where Bt is the biomass at time t; Ft, the instantaneous 
fishing mortality rate; K, the carrying capacity of the stock; r, 
the per capita intrinsic growth rate of the population and m, 
the shape parameter (the model becomes a simple Schaffer 
model when m=2). 

To introduce catches and effort for multiple fleets into the 
model, the fishing mortality Ft is expressed as the sum of each 
fleet’s instantaneous fishing mortality: 
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Where n, is the total number of fleets; qi, the catchability 
coefficient for fleet i at time t and fi,t, is the measured fishing 
effort for fleet i at time t. 

The model incorporating the area fished  

Equation (2) corresponds to our “reference model” which 
does not take into account the variation of exploited area. To 
include it into the model, different assumptions can be made 
concerning its effects (see for instance Laloë, 1989 and Die et 
al., 1990). In the following paragraph, an original approach is 
retained for comparison with the reference model. It assumes 
a partial mixing of the stock/population system but it only 
deals with the dynamics of a single stock1 compared with 
Laloë’s model (1989) which consider the whole population 
dynamics or Die et al. (1990) model which explicitly considers 
the dynamics of the two fractions (available and non available 
to fishing) of the population. 

How to represent fluctuations of stock size related with 
fluctuations of the area fished  

In this model, the exploited stock is considered as being 
isolated from the rest of the population but related to the size 
of the exploited area. Hence, we suppose that the per capita 
growth rate of the population r is independent of the 
exploited area but that the carrying capacity K and the 
biomass accessible to the fishery depend on it. The 
catchability q is considered to be inversely proportional to 
the area fished (Paloheimo and Dickie, 1964)2. Given these 
hypotheses, two extreme cases can be distinguished: 

• If there is absolutely no mixing of fish between the 
exploited stock and the rest of the population at the time 
scale relevant for its dynamics (according to MacCall 
(1990) terminology, the population is very viscous): the 
stock is only a fraction of the population determined by 
the ratio of the fished surface to the population. Then, we 
can write the stock carrying capacity as a function of the 
whole population carrying capacity: 

K
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Where Sf,t, is the area fished; S, the area of the whole 
population; Kf,t, the carrying capacity of the fished stock and 
K, the carrying capacity of the whole population. 

• Conversely, if the population mixing is total at the time 
scale considered (according with MacCall (1990) 
terminology, the population is very fluid): the stock and 

                                                                 
1 According with Laurec and Le Guen (1981), we define the 
stock as the exploited fraction of the population. 
2 Catchability is generally considered to be linked to the 
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the population can be combined. Then, the relations (3) 
becomes: 

KK tf =,   (4) 

As reality is necessarily somewhere in the range defined by 
these two extreme cases, we use the following formulation 
where ?  is a parameter characterizing the level of mixing of 
the stock/population system: 
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Then, rewriting the equation (2) considering that an increase 
of the area fished corresponds with an increase Ψ of the 
stock biomass proportional to the virgin population biomass 
density (this is equivalent to saying that the unfished 
population is always in an equilibrium state), and assuming 
that, due to partial mixing between the stock and the 
population, a quantity U from the virgin part of the population 
plays a role in the stock dynamics but remains unavailable for 
fishing (Figure 2)3, we obtain model (6). 

fished surface Sf ,t

stock

cryptic fraction of the stock
unavailable for fishing U t

population cryptic biomass

population

Figure 1 : conceptual structure of the model showing the differences 
between the stock, the population and the fraction U. 
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3 It is equivalent to state that there is two different 
characteristic time scales for the processes related to fishing 
and for the processes related to the stock dynamics: 
processes related to fishing are assumed to occur much faster 
than the mixing which influence the stock dynamics. 

Where Bt, is the stock biomass at time t; Ct, the 
instantaneous catches at time t; S, the total surface of the 
population; Sf,t, the surface fished at time t; ? a parameter 
characterizing the population mixing at the time scale relevant 
for population dynamics; Ψ, the stock biomass variation due 
to the variation of the fished area and U, the fraction of the 
population unavailable for fishing but involved in the sock 
dynamics because of mixing. 

When there is no mixing between the stock and the 
population (β=1), the quantity U is null. On the contrary, 
where there is a total mixing (β=0), the stock and population 
are confounded at the level of the dynamics. When there is 
no variations of the fished area, ΨB,t=0 and dUt/dt=0. Then, 
model (6) reduces to a modified version of equation (3) where 
the carrying capacity K and the catchability q depend on the 
area fished and a fraction of the stock potentially remains 
unavailable for fishing: 
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For their visual interest, the equilibrium curves 
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 are presented in Figure 1 for different 

values of the area fished in the case where there is no mixing 
(β=1). 
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Figure 1 : Equilibrium model for m=1,3 and β=1. Ten different 
values of the surface ratio S

S tf ,  ranging from 0.1 to 1 are 
presented. 
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Fitting and comparing the different models in a Bayesian 
context 

To take into account potential fluctuations of the carrying 
capacity due to environmental fluctuations or to 
modifications of the fishery configuration, the parameter K is 
assumed to be dependent on time and to vary according to 
external factors. At the same time, the local catchability by the 
fleet is supposed to vary each year. In this case, the 
production models as formulated previously are clearly 
overparameterized and need to be statistically structured (i.e. 
their total number of degrees of freedom must be reduced) 
with prior hypothesis on parameter distribution identifiable. 

• Concerning the carrying capacity, we assumed that the 
parameters log(Kt) have the structure of a random walk 
which is the simplest type of time series to allow a 
parameter to vary slowly over time (Fournier, 1996). For 
that purpose, we assume that : 

( )ϑ
ϑ σϑ ,0~.1 NeKK j

jj =+   (7) 

o Concerning the catchability coefficient, the fishing 
mortality error structure is assumed to be lognormal. 
Then, the fishing mortality of fleet i in year j is written 
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normally distributed random variables with mean 0. To 
take into account potential fluctuations of fishing power 
for each fleet, two different methods are used and 
compared. The first one follows the same principle as that 
used for the carrying capacity and gives a random walk 
structure to the catchability time series for each fleet: 
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1998). The second mean assumes a deterministic 
structure of the catchability time series with a constant 
rate of increase (or decrease) γi for each fleet i in year j: 
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To estimate the parameters in a Bayesian context, we used the 
method of the maximum of posterior distribution (Bard, 1974) 
by maximizing the sum of the log-likelihood of the data plus 
the log of the prior density function. Then, given the data, the 
Bayesian posterior distribution for the model parameters has 6 
components (one for the log-likelihood of the catch by fleet 
estimates, one for the log-likelihood of the total catch 
estimates, one for the log of the prior distribution for the 
carrying capacity variability, one the log of the prior 
distribution for the effort-fishing mortality relationship, one 
for the catchability variability and one for prior assumption on 
the parameter m and β values) and is proportional to the 
quantity L: 
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Where k , is the fleet number; n, the total number of time 

period; Ĉ , the observed catches; C, the predicted catches; i 
and j, the subscripts for fleets and years and pθ, pη, pε, pβ, pm, 
weights. 

This function assumes that the log of the predicted catches 
are the expected values of a random variable with a normal 
distribution. The prior distribution for the ηi is assumed to be 
a robustified normal distribution which increases the 
probability of unlikely events relative to a standard normal 
distribution (Fournier et al., 1998)4. Important additional 
information is provided through the use of the weight p which 
fix the strength of the Bayesian constraints. The parameters 
of the model are estimated by finding the values of the 
parameters which minimize the opposite of the equation (8). 
This minimization was performed with a quasi-Newton 
numerical function minimizer using exact derivatives with 
respect to the model parameters with the AD model builder 
software (ADMB  1993-1996 by Otter Research Ltd). ADMB 
calculates the exact derivatives with a technique named 
automatic differentiation (Griewank and Corliss, 1991) and 
also provides the variance of the parameter estimates by 
computing the Hessian matrix, H, the elements of which are: 
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Where θi and θj are any two model parameters. 

The covariance matrix of the model parameters is estimated by 
computing the inverse of the Hessian (9) at the minimum. 

Following Fournier et al. (1998), it is possible to use Posterior 
Bayes Factors (PBF) to compare the different models used 
from a statistical point of view. The asymptotic form of PBF is 
a weighted version of likelihood ratio. 

CONCLUSION 

Facing the problematic lack of data to assess tuna stocks in 
the Indian Ocean, there is a need for developing new 

statistical approaches explicitly dealing with uncertainties. 
Two alternative and complementary ways mu st be explored. 
The first, which is developed here, concerns the use of global 
production models and their adaptation to particularities of 
tropical tunas. The second, more complex but potentially more 
powerful, concerns the development of new analytical 
spatialized models sufficiently structured to represent 
correctly the very complex dynamics of the tuna populations 
and to allow their quantitative assessment. This latest 
solution will be the object of future research to be operational 
in the near future. 

“The addition of 0.01 improves the robustness of the 
estimator by reducing the influence of observations that are 
more than about three standard deviations from the mean” 
(Fournier et al., 1990). 
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