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ABSTRACT 

The model PROCEAN (PROduction Catch-Effort Analysis) is a bayesian statistical catch/effort analysis 
framework based on a generalized production model. The use of such a production model could be usefull in IOTC 
where reliable size data are missing for stock assessment. 

The aim of this paper is to present the PROCEAN model. PROCEAN is a multi-fleet non equilibrium generalized 
production model which includes process error for both catchability time series and carrying capacity of the 
stock. PROCEAN assumes that fluctuations of the stock surface may only have consequences on fleets catchability 
and on the stock carrying capacity. 

Our objective is not to propose a very realistic representation of the fishery. We propose a tool to extract the 
maximum amount of information from the data set by structuring it given a simple and well established theoretical 
model. Then, modeling is used here as a mean to explore data sets according to various hypothesis. 

 

INTRODUCTION 

For their flexibility, production models have proven for long 
to be very interesting tools for tuna stock assessment. But 
two main problems make difficult their use for investigating 
the status of the stock:  

The first problem is the calculation of the effective fishing 
effort targeting a given stock. Indeed, many different fleets 
with heterogeneous and changing catchabilities (in general 
showing an increas ing efficiency) are often exploiting the 
same population. Consequently, scientists in charge of tuna 
stock assessment are rarely in a position to estimate 
explicitely the effective fishing effort (e.g. an effort 
proportional to the fishing mortality). 

The other important problem concerning the use of 
production models for tuna stock assessment is the 
fluctuation of the overall size of the exploited area. Indeed, it 
is well known for tuna fisheries that the estimated production 
curve and its associated MSY are closely linked to the 
exploited surface (Fonteneau and Marcille, 1988). To overide 
this problem, different production models incorporating the 
exploited surface have been proposed (Laloë, 1989 ; Die et 
al., 1990 ; Maury, 2000). 

In this paper, we present the PROCEAN (PRoduction Catch / 
Effort ANalysis) modeling framework which adress both 
categories of problems in a bayesian context. PROCEAN is a 

multi-fleet non equilibrium generalized production model 
which includes process error for both catchability time series 
and carrying capacity of the stock. PROCEAN assumes that 
fluctuations of the stock surface may only have 
consequences on fleets catchability and on the stock 
carrying capacity. 

Our objective is not to propose a very realistic 
representation of the fishery. We propose a tool to extract 
the maximum amount of information from the data set by 
structuring it given a simple and well established theoretical 
model. Then, modeling is used here as a mean to explore data 
sets according to various hypothesis. 

THE BASIC MODEL 

The PROCEAN model is based on the classic Pella and 
Tomlinson (1969) generalized production model which links 
the stock biomass B to the fishing mortality F by the mean of 
an ordinary differential equation continuous in time: 
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With Bt, the biomass at time t; Ft, the instantaneous fishing 
mortality rate; K, the carrying capacity of the stock; r, the per 
capita intrinsic growth rate of the population and m, the 
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shape parameter (the model becomes a simple Schaefer 
model when m=2). 

To introduce catches and effort for multiple fleets into the 
model, the fishing mortality Ft is expressed as the sum of 
each fleet’s instantaneous fishing mortality: 
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With n-1, the total number of fleets for which fishing effort is 
available; q i, t, the catchability coefficient for fleet i at time t, 
fi,t the mesured nominal fishing effort for fleet i at time t and 
Ci,t, the catches for fleet i at time t. Cn,t represents the catches 
for all the fleets non documented in term of effort. 

The biomass equation (equation 2) is an ordinary differential 
equation. It is integrated using a first order in time semi-
implicit numerical approximation to have a better numerical 
stability than with a fully explicit scheme. This provides a 
time serie of predicted catches given a set of parameters 
(including biomass at time 0) : 
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A STATISTICAL STRUCTURE FOR THE KEY 
PARAMETERS 

To take into account potential fluctuations of the carrying 
capacity due to environmental fluctuations or to 
modifications of the fishery configuration such as stock 
surface (process errors), the parameter K is assumed to be 
dependent of time. We assume that the parameters log(Kt)  
has the structure of a random walk which allows to model 
slow variations over time (Fournier, 1996) : 
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The local catchability by fleet is also supposed to vary 
slowly each year to take into account potential fluctuations 
of fishing power for each fleet (process errors). We assume a 
random walk structure to the catchability time series for each 
fleet (Fournier et al., 1998): 
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To address high-frequency variability of the catchability 
coefficient, a lognormal process-error structure is assumed 
for the fishing mortality. Then, the fishing mortality of fleet k 
at time t is written Concerning the catchability coefficient, 
the fishing mortality error structure is assumed to be 
lognormal. Then, the fishing mortality of fleet i in year t is 
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normally distributed random variables with mean 0. 

FITTING THE MODEL IN A BAYESIAN CONTEXT 

To estimate the parameters in a bayesian context, we use the 
method of the maximum of posterior distribution (Bard, 1974) 
by maximizing the sum of the log-likelihood of the data plus 
the log of the prior density function. Then, given the data, 
the bayesian posterior distribution function for the model 
parameters has 4 components (one for the likelihood of the 
catch by fleet estimates LC, one for the process errors for the 
carrying capacity  LK, one for the process errors concerning 
the effort-fishing mortality relationship Lq, and one for prior 
assumptions on the parameters r, m, and Β0). 

Then, the posterior distribution is equal to L : 

priorqKC LLLLL ×××=  

Catch component 

We assume that the log of the predicted catches are the 
expected values of a random variable with a normal 
distribution: 
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With Ĉ , the observed catches and C, the predicted catches. 

Carrying capacity process error component 

This component corresponds to the log-normal structured 
random walks for carrying capacity over time: 
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Catchability process error component 

This component combines the log-normal structured random 
walks for fishing power trends for each fleets and the 
effort/fishing mortality process error which has a robustified 
normal structure. This robustified normal distribution 
assumes a probability p for unlikely events (events which are 
more than e times the variance from the mean) and 1-p for the 
standard normal distribution (Fournier et al., 1996) 
(Fig.1):
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Fig. 1 : the robust distribution function used is a combination of a 

flat and a normal distribution function. Here, e=3 and p=0.1. 

Priors and penalties  

Informative priors can be added to the likelihood to take into 
account potential external informations concerning the 
parameters r, m and B0. In the present version of the 
software, these three parameters are assumed to follow either 
a normal distribution, either a lognormal distribution either a 
beta distribution. 

Estimating at the same time the variances for observation 
and process errors often lead to very unstable behaviors of 
the estimation process. In PROCEAN, only the standard 
errors σC for the catches by fleet observation errors and the 
standard errors for the carrying capacity process errors σθ 
can be estimated simultaneously. The standard errors for the 
catchability process errors, σε and ση are considered to be 
proportional to  σC with fixed proportionality coefficients p : 
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Thus, important additional information is provided through 
the use of the coefficients p which fix the strength of the 
constraints on the catchabilities variability. 

The parameters of the model are estimated by finding the 
values of the parameters which minimize the opposite of 
log(L) . This minimization is performed with a quasi-Newton 
numerical function minimizer using exact derivatives with 
respect to the model parameters with the AD model builder 
software (ADMB  1993-1996 by Otter Research Ltd). 
ADMB calculates the exact derivatives with a technique 
named automatic differentiation (Griewank and Corliss, 1991) 
and provides the variance of the parameter estimates by 
computing the Hessian matrix, H, the elements of which are: 
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Where θi and θj  are any two model parameters. Covariance 
matrix of the model parameters are estimated by computing 
the inverse of the hessian at the minimum. 

CONCLUSION 

The statistical structure of the model enables to compare 
different levels of statistical complexity. The simplest model 
should be first fitted to the data. Then, more and more 
complexity can be progressively added and tested. 

Concerning the determination of priors, McAllister et al. 
(2000) proposes a method for estimating priors on r and m 
parameters based on life history traits. This method could be 
profitably used for tropical tunas keeping in mind that priors 
on parameters distribution may have important 
consequences on the estimated values of the parameters 
(McAllister and Kirkwood, 1998). This should be carefully 
studied and can be estimated by comparing prior distribution 
with posteriors empirical distributions of the parameters 
(McAllister and Ianelli, 1997; Punt and Hilborn, 1997). 

Preliminary trials seems to indicate that the absolute values 
of the estimated parameters are sensitive to the priors used 
but the value of the MSY and the trends obtained for the 
carrying capacity, the fishing mortality and the catchability 
by fleet seems to be robust. If confirmed with simulation 
trials, this could indicate that the method proposed is 
adapted to study the catchability evolution by fleet due to 
technical progress or to changes in fishing strategy and 
tactics such as changes in targeting practices. 

Finally, it should be kept in mind that the use of such a 
multifleet model depends on the catches and effort time 
series availability and is based on an adhoc fishing fleet 
stratification (gears and periods) which has to be determined. 
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