

IOTC-2015-WPB13-28 Last updated: 4 August 2015

STOCK ASSESSMENT OF INDO-PACIFIC SAILFISH IN THE INDIAN OCEAN

PREPARED BY: IOTC SECRETARIAT¹, 4 AUGUST 2015

Abstract

A catch-based stock reduction analysis method was used for an Indo-Pacific sailfish stock assessment. The method is based on a classical biomass dynamics model, requires only catch history but not fishing effort or CPUE. A known population growth rate would improve the assessment result. For this study, it is assumed that the two species examined (IP sailfish and swordfish as a comparison), belong to a single Indian Ocean-wide stock and the population size in 1950 is the virgin biomass, equal to their carrying capacities. We use recently updated catch data in the analysis. For sailfish the geometric mean virgin biomass was about 104 to 320 thousand tonnes, and the intrinsic population growth rate is about 0.588 (0.26-1.33 95% CI). The entire stock can support a MSY of nearly 23.9 thousand tonnes. Catch levels in recent year may have been too high, and likely overfishing is occurring on the stock.

Introduction

In standard stock assessments conducted in the Indian Ocean, an index of abundance is essential to capture trends in biomass over time. However for black marlin and Indo-Pacific sailfish in the Indian Ocean no such indices are available. Methods developed by CSIRO (draft report "Quantitatively defining biological and economic reference points in data poor fisheries" by Zhou et. al. 2013) highlights some methods developed for data poor fisheries using data rich fisheries as a testing platform. The primary method that is of use there is a technique called Stock reduction Analysis (Zhou et. al. 2012, Walters et. al. 2006, Martell and Froese 2012, Kimura and Tagart 1982) making assumptions about initial state of the Biomass, assumptions of what the biomass is at the middle of the time series, and what the biomass depletion levels range for the last year. The technique builds on simple surplus production models (i.e. Shaefer, 1954), that use removal data and some estimate of carrying capacity and k. Ideally, these models should have some measure of the changes in abundance over time, but as shown in Martell and Froese (2012), and Walters et. al. 2006, a narrow range of r-K parameter can be obtained through simulation techniques that maintain the population, so that it neither collapses or exceeds the carrying capacity, K. This is the primary basis of the method developed and used here.

Indo-Pacific Sailfish (SFA: Istiophorus platypterus)

Basic biology

The species is oceanic and epipelagic species usually found above the thermocline. This is mostly distributed in waters close to coasts and islands (Frimodt1995, Nakamura 1985). These fish most likely school by size, and undergo spawning migrations in the Pacific (Nakamura 1985). The species feeds mainly on fishes, crustaceans and cephalopods. The distribution is primarily in the tropical waters of the Indian and Pacific oceans and the species is differentiated from the Atlantic sailfish populations (www.fishbase.net).

¹ Dr Rishi Sharma (<u>rs@iotc.org</u>); IOTC Secretariat (<u>secretariat@iotc.org</u>) PO Box 1011, IOTC Secretariat, Victoria, Seychelles

Catch data for the species show increasing trends in catches, in much the same manner as other billfish species. The most recent information considered by the IOTC Scientifc Committee for this species may be found in the IOTC Executive Summary, available from the IOTC website: <u>http://iotc.org/science/status-summary-species-tuna-and-tuna-species-under-iotc-mandate-well-other-species-impacted-iotc</u>

yr	BUM	BLM	MLS *	SWO	SFA*
1950	1	49	1	43	336
1951	6	48	6	41	317
1952	396	179	85	44	359
1953	1268	535	274	65	428
1954	3009	876	819	212	577
1955	3510	985	867	271	804
1956	4945	1484	1922	594	1009
1957	3778	1683	1900	414	787
1958	4175	1569	1908	617	697
1959	4506	1558	2575	622	1014
1960	3887	1737	2338	715	1305
1961	3436	1768	2691	920	1257
1962	3302	1903	2024	1081	1180
1963	2198	1318	1884	983	1054
1964	3467	1613	2137	1204	1047
1965	3721	1394	3583	1306	1048
1966	3558	1307	4302	1379	1226
1967	4083	1506	4571	1817	1346
1968	3661	2162	3429	1775	1389
1969	3276	2094	4210	2019	1119
1970	3892	2416	3912	2631	1026
1971	3094	1718	2334	2166	1206
1972	3038	1303	2169	2060	1003
1973	1919	812	1636	1646	860
1974	2238	1391	4290	1948	1166
1975	2780	1253	2606	2258	1470
1976	1802	665	3063	1980	1656
1977	1964	662	4240	1890	1700
1978	3413	790	6415	2393	1706
1979	4085	748	4181	2588	1717
1980	3792	1350	5626	2672	2475
1981	3366	1105	5600	2689	1966
1982	3427	2163	2819	3908	4325
1983	4775	2410	3530	4026	3048
1984	4925	2188	3706	3946	3204
1985	5276	2094	4299	4997	3202
1986	5647	2233	8730	5846	3572
1987	6902	2475	6952	7147	3658
1988	5072	2310	5446	9189	4938
1989	6027	2343	5335	8249	4985

Table 1. Catch data on blue marlin (BUM), black marlin (BLM), striped marlin (MLS), Swordfish (SWO)and Indo-Pacific sailfish (SFA) from 1950-2013 (source IOTC Database)

1990	5116	2254	2697	8560	4974
1991	5441	2471	4121	9457	5120
1992	7811	3669	3375	15859	7480
1993	8682	4077	8457	26125	8370
1994	8590	5951	6029	27593	10629
1995	8363	5059	6755	32201	12077
1996	9892	5924	6527	36363	13358
1997	11404	6859	5331	36067	14062
1998	11929	5608	5609	38464	11486
1999	10765	6172	4709	36361	12155
2000	10395	8012	4454	35726	15055
2001	7428	7600	3640	32701	14544
2002	8694	6986	3577	33599	13929
2003	10175	8914	3572	38377	16626
2004	11395	12887	4684	40463	20009
2005	11045	10782	4112	35807	16070
2006	9591	11273	3991	33408	17302
2007	7865	9407	2999	30750	19715
2008	7888	10504	2713	25177	20990
2009	7964	10996	2389	24952	25155
2010	7657	9420	2707	24446	27887
2011	9029	10766	3154	21728	29522
2012	14327	11392	5934	26386	27398
2013	11838	11443	4825	28934	29657

* Only datasets updated since 2014

Methods

We use a newly developed stock assessment method in this paper. The method is based on catch data and does not require fishing effort or CPUE data. The method involves several steps. It applies a simple population dynamics model, starts with wide prior ranges for the key parameters, and includes the available catch data in the model. Then the model systematically searches through possible parameter spaces and retains feasible parameter values. Mathematically and biologically unfeasible values are excluded from the large pool of data. We progressively derive basic parameters, and carry out stochastic simulations using these base parameters to get biomass trajectories and additional parameters. Finally, we project to future biomass to explore alternative harvest policies.

We use following Graham-Shaefer surplus production model (Shaefer 1954):

$$B_{t+1} = B_t + rB_t \left(1 - \frac{B_t}{B_0}\right) - C_t \tag{1}$$

Where B_t is biomass in time step t, r is the population growth rate, B_0 is the virgin biomass equal to carrying capacity K, and C is the known catch.

This simple model has two unknown parameters, r and K. We set reasonably wide prior range, for example, K between C_{max} and 500 * C_{max} . We used the approach proposed in Martell and Froese (2012) for "resiliency" estimates that tied to the productivity parameter r (low resiliency levels indicated r between 0.05-0.5,

medium resiliency indicated a r between 0.2-1, and high between 0.5-1.5). These were compared to values obtained in the literature and alternative methods.

We run model (1) to find all mathematically feasible *r* values by searching through wide range of Ks for all depletion levels. If the feasible choice of r and k chosen meets the intermediate (0.1 and 1 level of depletion in 1980), and last point depletion levels (the range specified was 0.3-0.7 level of depletion for these billfish stocks) it is kept. The summary of all runs which meet these criteria are then used, and geometric mean values are reported to be the better representation of yield targets (Martell and Froese 2012). Biological parameters, including K, r, MSY, are derived from the retained pool of [r, K] values. The geometric mean values of these are then used to assess the stock dynamics over time and reported using a phase plot.

Results

Indo-Pacific sailfish

Indo-Pacific sailfish also show increasing catch trends in recent years. The stock is in healthy status though recent catch trends may indicate that the stock may be *subject to overfishing* (Figure 1, Table 1). Stock trajectories show how the stocks are experiencing excess fishing pressure in recent years (Figure 2), and further catches at this level may cause the stocks to deplete to levels that indicate it is *overfished*.

Figure 1. Stock trajectories of Sailfish and estimates of r and K that meet this criteria

Parameter	Lower 95% CI	Geometric Mean	Upper 95% CI
r	0.265	0.59	1.33
Κ	89413	162,298	294595
MSY	16182	23,857	35172
B _{MSY}	54,741	92,814	139,837
B ₂₀₁₃ /B _{MSY} *	0.89	1.14	1.39
F2013/FMSY *	0.64	1.08	1.66

Table 1. Key parameters associated with the stock reduction analysis for Indo-Pacific sailfish

*Arithmetic Mean not Geometric Mean

Figure 2. Phase plot of S_{MSY} and F_{MSY} trajectory for Indo-Pacific sailfish with contours showing the uncertainty

Discussion

While these analyses are by no means conclusive, they still match the trends on stock trajectories and reference points that maybe useful for management (Figure 4 comparison of the SRA approach phase plot with the draft SS-III assessment, Sharma and Herrera 2014). A simple approach like this was compared to the complex programs for swordfish and gave very similar trajectories (left panel SRA approach vs. right panel SRA based approach). In terms of target yield levels, a range of 15.5 to 40K t using the age structured modelling approach developed by Sharma and Herrera (2014). This approach which is a whole lot simpler, recommends target yield estimate of 25K t with a 95% confidence interval of 15K-41K t (Figure 3).

As such, the range of derived management parameters such as optimal yield are in the ballpark and as such could be used for management.

Figure 3. Stock trajectories of swordfish and estimates of r and K that meet this criteria

Figure 4. Comparisons of SRA approach on swordfish data using SRA (left panel) vs SS-III (right panel, based on Japanese CPUE only).

Thus, while being conservative in nature, this approach could provide some guideline for yield/bycatch levels in these fisheries. Based, on these simplistic models the following could be recommended as target yield levels on the Indo-Pacific sailfish species analysed that *yield should not exceed 24k t*.

References

- Frimodt, C., 1995. Multilingual illustrated guide to the world's commercial warmwater fish. Fishing News Books, Osney Mead, Oxford, England. 215 p.
- Hilborn, R., and Walters, C. 1992. Quantitative fisheries stock assessment: choice, dynamics and uncertainty. Chapman & Hall, Inc., New York.
- Jensen, A.L. 1996. Beverton and Holt life history invariants result from optimal tradeoff of reproduction and survival. Can. J. fish. Aquat. Sci. 53, 820-822.
- Kimura, D.K., and Tagart, J.V. 1982. Stock reduction analysis, another solution to the catch equations. Can. J. Fish. Aquat. Sci. **39**: 1467–1472.
- Martell, S. and Froese, R. 2012. A simple method for estimating MSY from catch and resilience. Fish and Fisheries. doi: 10.1111/j.1467-2979.2012.00485.x
- Nakamura, I., 1985. FAO species catalogue. Vol. 5. Billfishes of the world. An annotated and illustrated catalogue of marlins, sailfishes, spearfishes and swordfishes known to date. FAO Fish. Synop. 125(5):65p. Rome: FAO.
- Walters, C. Martell, S., and Korman, J. 2006. A stochastic approach to stock reduction analysis. Can. J. Fish. Aquat. Sci. 63: 212-223.
- Schaefer, M.B. 1954. Some aspects of the dynamics of populations important to the management of commercial marine fisheries. Bulletin, Inter-American Tropical Tuna Commission 1:27-56.
- Sharma, R. 2013. Stock assessment of three Billfish species in Indian Ocean, Blue, Black and Striped Marlin using stock reduction methods. IOTC-2013-WPB11-28_Rev1.
- Zhou, S., Yin, S., Thorson, J.T., Smith, A.D.M., Fuller, M. 2012. Linking fishing mortality reference points to life history traits: an empirical study. Canadian Journal of Fisheries and Aquatic Science, 69: 1292–1301.
- Zhou, S., Pascoe, S., Dowling, N., Haddon, M., Klaer, N., Larcombe, J., Smith, A.D.M., Thebaud, O., and Vieira, S. 2013. Quantitatively defining biological and economic reference points in data poor and data limited fisheries. Final Report on FRDC Project 2010/044. Canberra, Australia.