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Introduction 

Neritic tuna species have substantial commercial and food security value to Indian Ocean 

coastal states, as well as the Distant Water Fishing Nations operating in the IOTC area of 

competence. However, compared with more economically valuable species, biology and 

population dynamics are less studied for neritic tunas. Data limitation has promoted adoption 

of data-poor stock assessment approaches for these species in the recent years (IOTC 

Secretariat, 2015a, 2016a).The goal of IOTC is to collect more data and move to full stock 

assessment in the near future. Both data-poor and full assessment require basic life history 

parameters, including growth information.  

Estimates of growth for neritic tuna species in the Indian Ocean are highly variable, 
based on a number of independent studies that have taken place in particular regions 
for particular time periods (IOTC Secretariat, 2015b, 2015c, 2016b, 2016c).  This may be 

due to the presence of subpopulations of the stocks with different growth rates and maximum 

sizes or may be due to differences based on the sampling methods such as the size selectivity 

of different gear types. The large differences may have also resulted from different analytical 

methods. The majority of studies have used ELEFAN (IOTC Secretariat, 2015b, 2015c, 
2016b, 2016c) which was developed for closed populations (Pauly, 1987), where modal 

progression can provide better estimates of growth, and so may not provide good estimates of 

growth for migratory species. There is likely to be migration of fish across the entire area and 

so isolated studies using these techniques may not be appropriate for coastal tuna populations. 

Therefore, the IOTC Working Party on Neritic Tuna requested a meta-analysis take place 

which collates the local area studies to get an overview of parameters related to growth in the 

Indian Ocean.  

Classical meta-analyse involves analysing the results from many studies. An important 

limitation of this type of meta-analysis is that its summary results can only be as good as the 

data from the original studies, and so is dependent on the validity of these studies. As 

discussed above, there is a concern regarding the methodologies and assumptions in the 

original studies. Consequently, a completely new approach is used here to tackle the issue by 

analysing all of the available data that has been provided to the IOTC under a hierarchical 

Bayesian framework. Although this requires much more effort and time, such a consistent 

meta-analysis should yield more reliable and credible results than summarizing the existing 

studies that use limited data in isolation.   

The IOTC maintains a length-frequency database for six neritic tuna species. The database 

covers samples taken between 1983 and 2014 from 10 countries (fleets) using a range of 

fishing gears. The sample size at each {species, fleet, year, month, grid, gear} stratum ranged 

from 1 to over 56,000 fish. This large database is valuable for deriving growth parameters. 

However, it also presents several major challenges: 
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1. Samples were taken sporadically over time and space and the sample size varied 

enormously between strata; 

2. The range of fish size is narrow in each stratum, resulting in few identifiable age 

classes; 

3. There is a lack of knowledge about the number of age classes; 

4. There is a lack of clear length-modal progression within a region, perhaps due to fish 

migration; 

5. There is limited information from other methods such as tagging and aging studies.  

To tackle these difficulties, a Bayesian meta-analysis approach is developed to 

simultaneously model multiple datasets from a wide range of space over a long time period. It 

is assumed the as an identical species, fish at different strata share some similar life history 

traits but may vary subtly across spatial and temporal dimensions. Two growth models are 

examined: the classic von Bertalanffy model and the re-parameterized Schnute-Fournier 

model (Schnute and Fournier, 1980). The analysis is carried out in R language (R Core Team, 

2017) and WinBUGS/OpenBUGS/JAGS (Lunn et al., 2000; Plummer, 2003). 

 

Material methods 

Data 

The IOTC maintains a length-frequency database for six neritic tuna species. The database 

includes fleet (country), year, month, grid (area fished), gear, total number of fish measured, 

and length-frequency at 1-cm interval. It covers samples taken between 1983 and 2014 from 

10 regions (fleets) using various (total of 15) gear-types (Tables 1-4). The sample size at each 

{species, fleet, year, month, grid, gear} stratum ranged from 1 to over 56,000 fish. For a 

single species, it is likely that fish within different strata share some similar life history traits 

but vary subtly across wide spatial and temporal dimensions. To model their growth at 

varying scales, we define fish captured in each stratum as a unique population for the purpose 

of some parameters of the growth model (e.g., age and size).  

Growth model 

Several alternative growth models have been used for tuna studies. However, the von 

Bertalanffy (vB) growth model is most widely adopted for tunas (Kolody et al., 2016) and is 

used in this study, 

 )(exp(1 0ttKLLt          (1) 

where L∞ is the infinite length, Lt is the length at age t, K is the vB growth parameter, and t0 is 

estimated theoretical age when size is zero. This model requires aging information, which is 

often difficult and costly to obtain. Alternatively, growth is estimated using length frequency 

data, where the first length mode is typically assumed to be one year-old fish. Schnute and 

Fournier (1980) re-parameterize this model as  
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This equation (referred to as Schnute and Fournier or SF model here) considers the length 

data at hand, where Lmin and Lmax are the mean length of the first and last age-classes in the 

data, k = exp(-K) Ford growth parameter, A is the number of age-classes in the length 

frequency dataset, and i is the mean length of fish at ith age-class. Note that the first age-

class is not necessary one year-old.   

Modelling approaches 1: a 2-step method 

The model 

The classic methods of estimating growth from size frequency data involve two independent 

steps (Gulland and Rosenberg, 1992; Pauly, 1987). First, the mode of each annual cohort is 

identified from length or weight frequency distribution. Second, growth parameters are 

estimated from the cohort modes.  

The challenge in modelling neritic tuna length data is that very few modes (typically 1 to 3, 

see below) can be identified from each dataset (population). Estimating three parameters, 

either K, L∞, t0 in vB model or k, Lmin and Lmax in SF model from essentially 1 to 3 data points 

is extremely difficult. We overcome this challenge through a meta-analysis that uses multiple 

datasets and a hierarchical model structure. We assume that for species with a wide 

geographic distribution, biological characteristics, including growth, may vary somewhat 

from region to region. However, while there may be some regional variation in biological 

characteristics, this will be limited for any one given species which will also share a number 

of attributes so it is assumed that all fish share a common underlying distribution across 

regions within the whole ocean.  

Identifying modes 

Growth models based on length frequency data typically require knowledge of the number of 

age groups in the length data (Fournier et al., 1990; Schnute and Fournier, 1980). To 

determine the number of age-classes we assume: (1) length frequency of each age-class 

follows a normal distribution; (2) length increment from one age to the next is greater than a 

minimum amount defined by the vB model. We apply function normalmixEM in the R 

package mixtools (R Core Team, 2017) to the length frequency data. Because including more 

age-classes tends to improve model fitting, we accept a model with one more age-class only 

when it is significantly better than the model with one age-class less. This Step-1 provides the 

best number of age-classes in each population which is used as part of the 2-step method as 

well as in the following integrated method. It also produces mean lengths and variance at 

modes to be used in Step-2 but does not infer the actual age or size increment.   

Bayesian hierarchical modelling 

Natural size variability between individuals of the same age-class is an important feature and 

generally age-specific, i.e., variance is smaller in younger year-classes than in older year-

classes. To capture this variability and transfer it from step-1 to step-2 we introduce a latent 

length: 

),(~ ,,,,,,,,,,,,

M
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where M

tgmyfL ,,,,
is the mean length of an age-class and subscript f is fleet (or region), y is year, 

m is month, g is grid, and t is age-class (mode in the length frequency data). M

tgmyf ,,,, is the 

standard deviation associated with the mean length. 

There is an additional difficulty that the actual age associated with each mode is unknown. 

For example, fish belong to the first mode may not be exactly age 1 (e.g., 0.7 or 1.3 years 

old) or can even be much older than age 1 (e.g., 2.3 or 3.4 year-old). We overcome these 

difficulties by using a modified vB model (1) 

 ))(exp(1 ,0,,,,,,,,, ftgmyfff

M

tgmyf tttKLL  
, t = 1, 2, …nage  (3) 

Because the first mode identified in each dataset is not necessary one year-olds and the age of 

the modes may differ between populations, the model attempts to estimate a “true age” at 

finer scale than an integer age: 

ttf,y,m,g,t = af,y,m,g + t – 1 + t.  

Here an additional parameter af,y,m,g is the age of fish belonging to the first mode in that 

unique population and t is a small random number that allows each age to diverge from 

exactly integer age. This model assumes that fish capture by the same fleet (country) share a 

same growth model described by three parameters L∞,f, Kf, t0,f. For each population the length-

at-age may be located at varying points along the vB curve. Hence, multiple populations, 

even with only 2 or 3 length-age data points each, facilitate the estimation of common 

parameters.  

Model (3) has a hierarchical structure where the first age is estimated at population (stratum) 

level, the growth parameters are estimated at fleet level, and the underlying hyper-parameters 

are at species level in the whole Indian Ocean (Figure 1).  

In the second step, the mean length-at-age-class from known fleet, year, month, and grid is 

modelled as normal distribution along the mean of the vB model: 

 tgmyf

vB

tgmyf

M

tgmyf LnormL ,,,,,,,,,,,, ,~  . 

In this model, m

tgmyfL ,,,,
is the maximum likelihood estimate of length mode from Step-1 and 

vB

tgmyfL ,,,,
is the vB predicted mean length. To ensure the standard deviation is positive and 

realistic, we assume  

 

tgmyftgmyf

tgmyf gamma

,,,,,,,,

,,,,

/1

01.0,01.0~






 

The first age parameter (actual age of the first age-class) is assumed to follow a normal 

distribution: 

 1,1~,,, norma gmyf . 

We are particularly interested in the growth parameters at regional level and assume the 

following distributions: 



IOTC-2017-WPNT07-14 

 

5 

 

 KKf normK  ,log~  

  LLf normL  ,~,  

 00,0 ,~ ttf normt   

Weak hyper-priors are used for Kf and L∞,f: 

 01.0,1~ normK  

 01.0,01.0~ gammaK  and KK  /1  

 000001.0,100~ normL  

 01.0,01.0~ gammaL  and   LL  /1  

 

Modelling approaches 2: Integrated method 

The model 

The 2-step classic approach assumes that uncertainty in identifying age and uncertainty in 

fitting the growth model are independent, even though all information is based on frequency 

distribution. When the size frequency data lack clearly distinguishable modes, it can difficult 

to separate these two sources of uncertainties and the estimated growth parameters may be 

unreliable. We develop a Bayesian hierarchical approach to analyse length data in one 

integrated step. Unlike the 2-step method and other approaches that model length-frequency 

data at bin level, this integrated method models length of each individual fish i instead of 

mode: 

 tf

vB

tgmyfigmyf LnormL ,,,,,,,,, ,~  . 

This formulation attempts to model the probability of each fish i to age-class t where the 

mean length-at-age and variance-at-age are population specific and is restrained by the vB 

model (3). In other words, the method does not try to identify modes first and then fit the 

growth model to the modes. Instead, this approach integrates vB model into the process of 

estimating the probability of each fish belonging to one of the several possible age classes.  

A key question is to determine the age-class that each fish belongs to. We use Dirichlet 

distribution and categorical distribution to assign the probability that a fish is in the age-class 

t:   

 
nagetgmyf dirichletP :1,,,, ~   

 
tgmyfigmyf Pcatt ,,,,,,,, ~  

Preliminary analysis indicated that parameter estimates are unreliable with too few samples 

while Bayesian MCMC process takes too much computing power (time and computer 

memory) with large sample size. Therefore, we excluded populations with sample size < 30 

and reduced sample size to 300 fish for strata of large measurements by  𝑁𝑖 × 300/∑𝑁𝑖 
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where Ni is the number of fish in length interval i. Other parameters use the same priors as in 

the 2-step method above. 

Validating the integrated method by simulation 

Since the integrated method is a new approach, a simulation exercise was carried out to 

examine its reliability. As the major challenge in the neritic tuna length data is the limited 

number of age-classes captured in each population, the simulation focuses on this aspect. 

Known mean length-at-age data Lm are generated using equation (1). The following values 

are used: K=0.4, L∞ = 100, t0 =-0.2, and age from 0 to 8 by an increment of 0.2 year. For each 

of the M

tL  100 random lengths are produced by ),( M

tLnorm  where  = 3 is used. These 

41*100 fish are distributed and harvested in 10 strata, each with only two age-classes with 

varying ages. This assumption mimics fish migration from one area to another, resulting in 

age variation of several months in different regions. Only fish from age 1 to age 4 are 

“captured”.    

Two model structures were explored: (1) assuming that the ten populations are independent 

of each other so all the growth parameters (K, L∞, t0, a and their variances) are estimated for 

each of the populations. (2) assuming that the ten populations have an identical underlying 

growth pattern (i.e., one set of K, L∞, t0  and their variances) but the age of the first age-class 

differs among the populations. Same priors as described above are adopted for the simulated 

data. 

Model implementation 

The two forms of hierarchical Bayesian growth models are implemented in OpenBUGS and 

JAGS (also WinBUGS). Preparation of the model input data and initial values is quite 

complicated because the data are unbalanced and have multiple levels and varying number of 

age-class. After properly assembling the input and initials, we set up three MCMC chains and 

keep samples at every 20 iterations. Burn-in periods vary between models and species. Chain 

convergence is verified by visual inspection of the MCMC history as well as Gelman-Robin 

diagnostic. Generally, this requires the first several hundred thousand samples to be 

discarded. After convergence the model is run for additional 10,000 iterations to be saved for 

parameters inference. The 2-step method involves fewer data because it uses fish at stratum-

age level so the speed is fast. However, the integrated method has many thousands of fish so 

the MCMC process is very slow, typically taking many days.   

 

Results 

Simulation test of the integrated method 

We first tested whether the model structure that attempts to estimate growth parameters for 

each population is feasible. We found that MCMC chains were unable to converge after 

50,000 iterations (due to few data points in each stratum but many parameters). From these 

un-converged posterior distribution, mean K of the vB model varies between 0.17 and 1.88, 

and the mean L∞ varies between 73 and 184. The Schnute-Fourier model performs even more 

poorly, with all K > 1.1 and L∞ > 189. 
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For the second model structure that assumes a common growth pattern, the SF model still 

produces unrealistic results (too large K and L∞). However, the vB model yields a nice fit of 

length frequency (Figure 2) for most of the populations. The match between observed length 

frequency and the posterior length frequency indicate that accuracy of three parameters: mean 

length at age M

tL ,
, proportion of fish at age tP , , and standard error of length at age t, . The 

posterior mean length-at-age and the mean age are comparable with the true values (Figure 

3). The posterior mean K = 0.406 (sd = 0.014) and L∞ = 99.60 (sd = 1.37) are very close to 

the true values of 0.4 and 100. However, the posterior mean t0 = 0.004 is larger than the true 

value of -0.2. There is a high correlation between K and L∞ (r = -0.95).   

 

Spanish Mackerel 

Identifying age-class by length modes 

The length frequency database contains a total of 657 populations (i.e., {fleet, year, month, 

and grid} strata) for Spanish mackerel. We assume that there are possibly 1 to 6 age-classes 

in each population. One normal distribution model and five multi-normal mixture models are 

fitted to each of the populations. In many populations, fitting multi-normal mixture models 

do not significantly reduce AIC from the normal distribution model, indication that there is 

likely only one age-class. For some populations, multi-normal mixture models can 

significantly reduce AIC but the length increase is too small to be biologically realistic. 

Consequentially, the screen criteria result in a total of 152 populations (Table 5) where two or 

more age-classes are identified (Figure 4 and Appendix 2).  

2-step method 

The multi-normal mixture models identify that the most likely number of age-class ranges 

from 2 to 4 in the 152 populations. Since the location of modes varies between populations 

even when the number of age-class is the same, these 152 populations comprise many age-

classes at finer time step than 1 year. Meta-analysis of these populations together enables 

estimating the true age. Note the fine scale of the posterior age on the x-axis of Figures 5 and 

6. The length modes from Step 1 scatter around the vB curve. The Bayesian model (Step 2) 

tends to overestimate the length for smaller fish but underestimate it for larger fish (Figure 7).  

The posterior mean K varies from 0.25 for the LKA region to 0.39 for the OMN region 

(Table 6). The ocean-wide hyper-parameter muK is 0.32 (95%CI between 0.18 and 0.48). L∞ 

is similar across regions. One possible reason for this less variability is the shrinkage effect of 

hierarchical Bayesian model. The ocean-wide hyper-parameter muL∞ is 157.0 cm (95%CI 

between 136.5 and 176.6). Compared to the hyper-priors, the posteriors exhibit a fairly 

narrow distribution (Figure 8).  

Integrated method 

The major drawback of the Bayesian approach using Markov chain Monte Carlo technique is 

the slow computing speed. To reduce lengthy sampling time, we proportionally scale large 
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sample size to a maximum of 300 in each population. This reduction process results in about 

40,000 length measurements for Spanish mackerel.   

Waiting for the results… 

Discussion 

This draft paper focuses on the development of a meta-analysis method for analysing length 

measurement data that have very few identifiable age-classes. We fails to achieve MCMC 

chain convergence when applying a growth model to each strata separately. However, 

reliable results are obtained by Bayesian hierarchical models applied to multiple strata 

simultaneously. There are two possible approach under the Bayesian framework: one uses 

length-frequency modes as data and the other models individual fish length measurement. We 

discuss the performance of the approaches and some of the features. 

Comparing with other studies 

A range of studies have been carried out in separate locations around the Indian Ocean. We 

compare our results with 32 studies that report growth parameters (IOTC Secretariat, 2015c). 

Using various methods and data from various area and time, the estimated L∞ ranges from 

110 cm to 230 cm with a mean of 150.9 cm. The estimated K ranges from 0.12 y-1 to 0.78-1 

with a mean of 0.35 (Figure 9). Interestingly, our results are very close to these values. 

Assumption about the same growth model at region level 
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Table 1. Length measurements for the six neritic tuna species from 1983 to 2014.   

 

  

Year BLT COM GUT KAW LOT FRI Sum

1983 5,761     5,151     692         -          

1984 30           606         503         30           

1985 265         4,173     1,310     3,057     265         

1986 90           9,288     564         5,227     90           

1987 3,214     9,923     9,379     3,470     3,214     

1988 4,055     13,605   372         143,488 33,991   64,517   18,032   

1989 4,147     15,194   14           95,182   5,047     162,046 19,355   

1990 10,403   16,761   1              104,657 378         118,188 27,165   

1991 7,454     4,113     68,821   187         83,468   11,567   

1992 6,612     5,471     108,291 8,721     60,968   12,083   

1993 4,694     9,876     1              14,359   7,522     101,489 14,571   

1994 2,308     1,739     11,106   4,013     34,493   4,047     

1995 5,140     499         13,175   275         31,856   5,639     

1996 3,274     568         10,642   14,035   26,965   3,842     

1997 1,500     511         5,920     14,591   19,732   2,011     

1998 3,020     396         6,812     12,726   13,200   3,416     

1999 2,349     162         7,988     9,218     2,511     

2000 1,792     315         3,744     1,501     5,667     2,107     

2001 2,230     437         2,526     148         3,093     2,667     

2002 2,016     507         3,769     1,241     4,524     2,523     

2003 1,927     261         3,348     1,211     7,792     2,188     

2004 712         146         1,340     676         10,410   858         

2005 416         250         10           2,102     201         7,754     676         

2006 8,810     377         156         17,815   7,657     13,475   9,343     

2007 556         109         1,030     1,135     665         

2008 4,894     13,344   -          

2009 22,370   10,136   35,297   22,370   

2010 12,891   9,843     13,898   556         12,891   

2011 9              29,172   15,786   14,716   355         29,181   

2012 21,728   20,105   28,303   21,728   

2013 1              16,842   15,001   25,113   62           16,843   

2014 21,091   12,311   12,463   32,910   21,091   

Sum 73,810   198,605 554         743,942 273,659 826,822 272,969 
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Table 2. Length measurements for neritic tuna species by countries from 1983 to 2014.   1 

 2 

 3 

  4 

Year EUESP IDN IRN KOR LKA MDV MYS OMN PAK THA Sum

1983 827         10,357   11,184       

1984 659         659             

1985 2,338     2,170     4,508          

1986 3,136     807         3,943          

1987 3,147     11,632   6,307     190         21,276       

1988 189,398    3,417     52,624   12,868   1,037     259,344     

1989 265,931    1,664     10,632   2,596     280,823     

1990 247,139    1,957     744         223         250,063     

1991 161,840    1,627     576         164,043     

1992 6,436     176,010    3,552     4,065     190,063     

1993 5,843     120,986    4,482     6,630     137,941     

1994 2,598     10,184       38,230   2,647     53,659       

1995 275         23,827       26,843   50,945       

1996 14,035   21,655       19,794   55,484       

1997 14,591   12,567       15,096   42,254       

1998 12,726   15,069       8,359     36,154       

1999 17,349       2,368     19,717       

2000 1,501     8,637         2,881     13,019       

2001 148         7,523         763         8,434          

2002 1,241     9,381         1,435     12,057       

2003 1,211     7,720         5,608     14,539       

2004 676         3,040         9,568     13,284       

2005 2,429         6,846     1,458     10,733       

2006 925         1,313         3,079     42,973   48,290       

2007 2,830         2,830          

2008 18,238   18,238       

2009 45,086   22,717   67,803       

2010 34,569   2,619     37,188       

2011 58,890   773         375         60,038       

2012 69,937   199         70,136       

2013 56,254   2              296         467         57,019       

2014 32,335   39,357   46           1,373     5,664     46,440       

Sum 32,335   -          384,537 48           1,304,828 172,936 83,721   53,268   18,339   44,431   2,062,108 
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Table 3. Length measurements for neritic tuna species by gear type and countries.   5 

 6 

 7 

 8 

Table 4. Length measurements for six neritic tuna species by countries.   9 

 10 

  11 

Gear EUESP IDN IRN KOR LKA MDV MYS OMN PAK THA Sum

BB 61               115,831 115,892     

BS 1,067     1,067          

G/L 5,602         5,602          

GILL 4,103     364,096 1,256,977 230         43,786   18,339   1,687,531  

HAND 3,817         295         9,482     13,594        

HARP 20               20                

HATR 406             406              

HOOK 6,737     6,737          

LLCO 630             630              

PS 32,335   12,608   44,943        

PSOB 48           48                

PSS 14,306   13,888   44,431   72,625        

RIN 729             729              

TROL 3,473     1,096     35,508       807         69,603   110,487     

UNCL 1,078         56,003   57,081        

Sum 32,335   22,949   384,537 48           1,304,828 172,936 83,721   53,268   18,339   44,431   2,117,392  

Species EUESP IDN IRN KOR LKA MDV MYS OMN PAK THA Sum

BLT 385         1              64,189       9              9,226     73,810       

COM 119,784 52,732       17,323   8,486     198,325    

FRI 32,335   6,842     44           637,956     132,919 6,170     419         10,137   826,822    

GUT 388             166         554             

KAW 15,408   77,962   3              549,324     40,017   36,240   5,205     2,094     17,689   743,942    

LOT 314         186,791 239             41,311   30,740   7,331     6,933     273,659    

Sum 32,335   22,949   384,537 48           1,304,828 172,936 83,721   53,268   18,339   44,151   2,117,112 
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Table 5. Number of unique {Fleet, Year, Month, Grid} strata by fleet and year for Spanish 12 

mackerel used for the growth modelling. 13 

Fleet Year N strata 

IRN 2009 7 

IRN 2010 6 

IRN 2011 15 

IRN 2012 7 

IRN 2013 10 

IRN 2014 13 

LKA 1988 7 

LKA 1989 11 

LKA 1990 11 

LKA 1991 8 

LKA 1992 3 

LKA 1993 3 

LKA 2002 1 

OMN 1987 10 

OMN 1988 11 

OMN 1989 11 

OMN 1990 1 

OMN 2009 5 

PAK 1988 2 

PAK 1989 2 

PAK 1991 1 

PAK 1992 1 

PAK 1993 6 

  152 

 14 

  15 
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Table 6. Posterior key vB model parameters for Spanish mackerel based on the 2-step 16 

method.  17 

Param mean sd val2.5pc val97.5pc 

K[1] 0.30 0.06 0.22 0.45 

K[2] 0.25 0.05 0.18 0.37 

K[3] 0.39 0.04 0.31 0.48 

K[4] 0.31 0.07 0.21 0.46 

K[5] 0.37 0.08 0.25 0.54 

Linf[1] 156 12.21 131.1 176.8 

Linf[2] 156.8 12.16 134 177.2 

Linf[3] 158.6 9.645 140.4 177.7 

Linf[4] 155.7 11.93 130.9 175.3 

Linf[5] 157.5 12.98 131.8 181.6 

t0[1] -1.04 0.21 -1.49 -0.66 

t0[2] -1.59 0.31 -2.25 -1.03 

t0[3] -0.91 0.06 -1.03 -0.81 

t0[4] -1.49 0.37 -2.17 -0.93 

t0[5] 0.37 0.47 -0.27 1.49 

Kmu 0.32 0.08 0.18 0.48 

Linfmu 157 11.25 136.5 176.6 

t0mu 0.02 3.16 -6.19 6.22 

 18 

  19 
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 20 

 21 

  22 

Figure 1. Schematic design of the integrated hierarchical model structure and model 23 

parameters. 24 
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 26 
Figure 2. The classic vB growth model fitted to the simulated length data for 10 populations. 27 

The blue histogram is the input length-frequency, the solid lines are posterior distributions of 28 

distinctive age groups, and the dashed lines are the cumulative distribution.  29 

 30 

 31 

 32 

 33 

 34 
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 35 
Figure 3. Comparison between the posterior mean length and age with the true simulated 36 

length and age. 37 

  38 
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 39 
Figure 4. Fitting multi-normal mixture model to length-frequency of Spanish mackerel. The 40 

red line is the first mode, green the second, blue the third, and light-blue the fourth. The 41 

dashed lines are the cumulative probability curves.  42 

43 
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 44 

 45 

Figure 5. Posterior mean length and mean age for Spanish mackerel in four regions from the 46 

2-step method. The circles are ML estimates and the red xs are corresponding posterior mean. 47 

The curves are based on fleet level K, Linf, and t0.48 
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 49 

Figure 6. Posterior mean length and mean age for Spanish mackerel in combined regions 50 

from the 2-step method. The circles are ML estimates and the red xs are corresponding 51 

posterior mean. The curves are based on mean hyper-parameter mu[K], mu[Linf], and mean 52 

t0. 53 

  54 
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 55 

Figure 7. Comparison of length modes between multi-normal mixture model (MLE) and 56 

Bayesian hierarchical vB model for Spanish mackerel.   57 
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 58 

 59 

 60 

 61 

Figure 8. Density of hyper-prior and posterior for Spanish mackerel. The thin lines are for 62 

five fleet. The red lines are the hyper-prior and the green lines are posterior of the hyper-63 

parameters. 64 

 65 

 66 

  67 
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 68 

 69 

 70 

Figure 9. Comparing posterior hyper-parameters L∞ and K from 2-step method for Spanish 71 

mackerel with results from other 32 studies in the Indian Ocean. The solid lines are the mean 72 

and the dashed lines are 95% credible interval from current meta-analysis. 73 
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 75 

 76 

 77 

Appendix: Bugs code for hierarchical Bayesian model  78 

 79 

model{  80 

# model each length to age-class 81 

for (i in 1:nL){ 82 

  L[i]~ dnorm(muL[fleet[i], year[i], mon[i], grid[i], age[i]], tauL[fleet[i], year[i], 83 

mon[i], grid[i], age[i]]) 84 

  age_opt[i,1]~dcat(Page2[fleet[i], year[i],mon[i],grid[i],]) 85 

 age_opt[i,2]~dcat(Page3[fleet[i], year[i],mon[i],grid[i],]) 86 

 age_opt[i,3]~dcat(Page4[fleet[i], year[i],mon[i],grid[i],]) 87 

  age_opt[i,4]~dcat(Page5[fleet[i], year[i],mon[i],grid[i],]) 88 

  age[i] <- age_opt[i, (Nage[i]-1)] 89 

} 90 

 91 

# hyper-priors 92 

muK ~ dnorm(-1, 0.1) 93 

tauK ~ dgamma(0.1,0.1)  94 

muLinf~dnorm(100,0.000001) 95 

tauLinf~dgamma(0.01, 0.01) # dunif(0, 10) # 96 

 97 

# fitting vB model 98 

for (f in 1:nf) { 99 

# priors 100 

K[f]~ dlnorm(muK, tauK)I(0,3) 101 

Linf[f]~dnorm(muLinf, tauLinf) I(0,) 102 

t0[f] ~ dnorm(0, 0.1)I(-1,1) 103 

 104 

for (y in 1:ny[f]){  105 

  for (m in 1:nm[f,y]){ 106 

    for (g in 1:ng[f,y,m]){ 107 

Page2[f,y,m,g, 1:2] ~ ddirch(alpha2[])  108 

Page3[f,y,m,g, 1:3] ~ ddirch(alpha3[]) 109 

   Page4[f,y,m,g, 1:4] ~ ddirch(alpha4[]) 110 

   Page5[f,y,m,g, 1:5] ~ ddirch(alpha5[]) 111 

 age0[f,y,m,g] ~ dnorm(0,0.1)I(-0.5,3)  112 

    113 

for ( a in 1:maxNa ) { 114 

   sdL[f,y,m,g,a] ~ dnorm(0, 0.1)I(0.01,100) 115 

    muL[f,y,m,g,a] <- Linf[f]*(1-exp(-K[f]*(age0[f,y,m,g] +a-t0[f]))) 116 

              } 117 

    } 118 

}  119 

     } 120 

 }  121 
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} 122 

 123 

  124 
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Appendix 2. Fitting multi-normal mixture model to length-frequency of Spanish mackerel. 125 

The red line is the first mode, green the second, blue the third, and light-blue the fourth. The 126 

dashed lines are the cumulative probability curves.  127 

 128 
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