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SUMMARY 

Bigeye tuna (Thunnus obesus) and yellowfin tuna (Thunnus albacares) are important target species for 

the Japanese flagged vessels, which operate under South African joint-venture agreement in the IOTC 

region of the South African EEZ. The standardization of catch per unit effort (CPUE) from the joint-

venture fleet segment for the period 2004-2016 was carried out using Generalized Additive Mixed 

Models (GAMMs) with a Tweedie distributed error. Explanatory variables of the final model included 

year, month, geographic position and a targeting factor with 2 levels, derived by clustering of PCA 

scores of the root-root transformed, normalized catch composition. Vessels that fished for at least two 

years were included as a random effect. Standardized bigeye tuna CPUE showed a strong seasonal 

trend, with catch rates highest between April and July. The standardized CPUE index showed a de-

cline between 2005 and 2008, a slight increase between 2008 and 2010 and a fairly stable trend be-

tween 2010 and 2015 and a slight increase again in 2016. Yellowfin tuna showed less pronounced 

seasonal trend, which peaked in between July and August. The standardised CPUE index for yellowfin 

tuna showed a sharp decline between 2004 and 2012, followed by a slight increase until 2016. We 

anticipate that the here presented standardized abundance indices for bigeye tuna and yellowfin tuna 

could be useful for corroborating other abundance indices for the South-West Indian Ocean.  
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INTRODUCTION 

Commercial fishing for large pelagic species in South Africa dates back to the 1960s (Welsh, 1968; 

Nepgen, 1970). Exploitation of large pelagic species in South Africa can be divided into four sectors, 

1) pelagic longline, 2) tuna pole-line 3) commercial linefishing (rod and reel) and 4) recreational line-

fishing. Pelagic longline fishing by South African vessels began in the 1960s with the main target 

being the temperate southern bluefin tuna (Thunnus maccoyii) and albacore (Thunnus alalunga) 

(Welsh, 1968; Nepgen, 1970). This South African fishery ceased to exist after the mid 1960's, as a 

result of a poor market for low quality southern bluefin and albacore (Welsh, 1968). However, foreign 

vessels, mainly from Japan and Chinese-Taipei, continued to fish in South African waters from the 

1970s until 2002 under a series of bilateral agreements.  

The commercial longline fishery was only formalised in 2004 with the issuing of 10-year long term 

rights to the mainly swordfish-directed domestic vessels. On average, 15 domestic South African ves-

sels are active during a year, which target a mix of swordfish from 20-30 m length vessels. Additional-

ly, a varying number (2-12) of Japanese flagged vessels have been fishing under South African Joint-

Venture agreement in South Africa’s EEZ. These vessels mostly operate east of the 20°E longitude 

boundary (Figs. 1 & 2), which separates the Atlantic from the Indian Ocean and thus the jurisdictions 

of the Indian Ocean Tuna Commission (IOTC) and International Commission for the Conservation of 

Atlantic Tuna (ICCAT). These joint-venture vessels are considered tuna specialists that mainly target 

bigeye, yellowfin tuna (Thunnus albacares) and Southern Bluefin tuna (Thunnus maccoyii). Joint-

venture vessels fish under South African fisheries regulations and all catch accrue to South Africa. 

Observe presence is mandatory for all foreign flagged vessels fishing within South Africa’s, so that 

observer coverage of this fleet segment 100%.      

Here we use Generalised Additive Mixed Models (GAMM) to standardize set-by-set catch-per-unit-

effort data of bigeye tuna from Japanese-flagged joint-venture fishing trips for the period 2004-2016. 

We focus on the Japanese joint-vessels because these are considered to mainly target tuna, whereas 

skippers of domestic vessels have historical very limited experience in targeting tunas compared to the 

highly specialised Japanese skippers. As a result domestic vessels usual catch a broader mix of sword-

fish, sharks and tunas. Catch and effort data were subsetted to ≥25°E of the IOTC area to create a 

buffer zone to 20°E boundary due to concerns that large yellowfin tuna that seasonally occur in the 

tuna pole catches off Cape Agulhas at the 20°E boundary could form part of an Atlantic feeding mi-

gration. The GAMMs were fitted using a Tweedie distribution and included year, month, latitude, 

longitude, fishing tactic (targeting) as fixed factors and had a random vessel effect. Targeting was 

determined by clustering PCA scores of the root-root transformed, normalized catch composition. 
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MATERIALS AND METHODS 

Catch and effort data preparation 

All longline records from Japanese flagged Joint-Venture vessels for longline start positions ≥25°E 

were extracted from the database for the period 2004-2016, excluding 2006, due to the absence of 

joint-venture fishing operations in this year. The dataset was further subsetted to vessels that fished for 

at two years. This resulted in a total of sample size of 5709 sets, equating to 1.54 mio hooks. Each 

record included the following information: (1) date, (2) unique vessel number, (3) start position of the 

set in latitude and longitude and (4) mandatory catch reports in kilogram per species per set and (5) 

hooks per set. 

Model framework 

CPUE was standardized using Generalized Additive Mixed Models (GAMMs), which included the 

covariates year, month, degree latitude (Lat) and longitude (Long) coordinates of longline start posi-

tions and vessel as random effect. In an attempt to account for variation in fishing tactics, we consid-

ered an additional factor for targeting derived from a cluster analysis of the catch composition (He et 

al., 1997; Carvalho et al., 2010; Winker et al., 2013). For the clustering analysis, all CPUE was mod-

elled as catch in metric tons per species per vessel per day. All of the following analysis was conduct-

ed within the statistical environment R. The R package 'cluster' was used to perform the CLARA 

analysis, while all GAMMs were fitted using the 'mgcv' and 'nlme' libraries described in Wood (2006). 

Clustering of the catch composition data was conducted by applying a non-hierarchical clustering 

technique known as CLARA (Struyf et al., 1997) to the catch composition matrix. To obtain the input 

data matrix for CLARA, we transformed the CPUEi,j matrix of record i and species j into its Principal 

Components (PCs) using Principal Component Analysis (PCA). For this purpose, the data matrix 

comprising the CPUEi,j records for all reported species was extracted from the dataset. The CPUE 

records were normalized into relative proportions by weight to eliminate the influence of catch vol-

ume, fourth-root transformed and PCA-transformed. Subsequently, the identified cluster for each catch 

composition record was aligned with the original dataset and treated as categorical variable (FT) in the 

model (Winker et al., 2013). To select the number of meaningful clusters we followed the PCA-based 

approach outlined and simulation-tested in Winker et al. (2014). This approach is based on the selec-

tion of non-trivial PCs through non-graphical solutions for Catell's Scree test in association with the 

Kaiser-Guttman rule (Eigenvalue > 1), called Optimal Coordinate test, which available in the R pack-

age 'nFactors' (Raiche and Magis, 2010). The optimal number of clusters considered is then taken as 

the number of retained PCs plus one (Winker et al., 2014). The results suggest that only the first PC is 

non-trivial (Fig. 3) and correspondingly two clusters were selected as optimal for the CLARA cluster-

ing (Fig. 4). 
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The CPUE records were fitted by assuming Tweedie distribution (Tascheri et al., 2010; Winker et al., 

2014). The Tweedie distribution belongs to the family of exponential dispersion models and is charac-

terized by a two-parameter power mean-variance function of the form 𝑉𝑎𝑟(𝑌) = 𝜙𝜇𝑝, where 𝜙 is the 

dispersion parameter, 𝜇 is the mean and p is the power parameter (Dunn and Smyth, 2005). Here, we 

considered the case of 1 < p < 2, which represents the special case of a Poisson (p = 1) and gamma (p 

= 2) mixed distribution with an added mass at 0. This makes it possible to accommodate zeros in com-

bination with right-skewed continuous numbers in a natural way when modelling CPUE data (Winker 

et al., 2014; Ono et al., 2015). As it is not possible to estimate the optimal power parameter p internal-

ly within GAMMs, p was optimized by iteratively maximizing the profile log-likelihood of the 

GAMM for 1 < p < 2 (Fig. 5). This resulted in a power parameter of p =1.55 for both species with 

associated dispersion parameters of 𝜙 = 7.6 and 𝜙 = 8.4 for the full GAMMs fitted bigeye and yellow-

fin tuna, respectively. The full GAMM evaluated for both species was: 

𝐶𝑃𝑈𝐸𝑖 = 𝑒𝑥𝑝(𝛽0 + 𝑌𝑒𝑎𝑟 + 𝑠1(𝑀𝑜𝑛𝑡ℎ) + 𝑠2(𝐿𝑜𝑛𝑔, 𝐿𝑎𝑡) + 𝐹𝑇 + 𝛼𝑉) 

where s1() denotes cyclic cubic smoothing function for Month, s2() a thin plate smoothing function for 

the two-dimensional covariate of Lat and Long, FT is the vector of cluster numbers treated as categor-

ical variable for “Fishing Tactics”, and 𝛼𝑣 is the random effect for Vessel v (Helser et al., 2004). The 

inclusion of individual Vessels as random effects term provides an efficient way to combine CPUE 

recorded from various vessels (n = 25) into a single, continuous CPUE time-series, despite disconti-

nuity of individual vessels over the time series (Helser et al., 2004). The main reason for treating ves-

sel as a random effect was because of concerns that multiple CPUE records produced by the same 

vessel may violate the assumption of independence caused by variations in fishing power and skipper 

skills and behaviour, which can result in overestimated precision and significance levels of the pre-

dicted CPUE trends if not accounted for (Thorson and Minto, 2015). The significance of the random-

effects structure of the GAMM was supported by both Akaike's Information Criterion (AIC) and the 

more conservative Bayesian Information Criterion (BIC). Sequential F-tests were used to determine 

the covariates that contributed significantly (p < 0.05) to the deviance explained. 

Annual CPUE was standardized by fixing all covariates other than Year and Lat and Long to a vector 

of standardized values 𝑋0. The choices made were that Month was fixed to the months where catches 

were on average highest, and FT was fixed to the fishing tactic the produced highest average catch 

rates (FT = 1 for bigeye and FT = 2 for yellowfin). The expected yearly mean CPUEy and standard-

error of the expected log(CPUEy) for the vector of standardized covariates 𝑋0 were then calculated as 

average across all Lat-Long combinations (here forth grid cells) a, such that: 

𝐸[𝐶𝑃𝑈𝐸𝑦(𝑋0
𝑇 �̂�)] =

1

𝐴
∑𝑒

𝐴

𝑎

𝑥𝑝(𝜇𝑦 ,𝑎 ) 

and 
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where 𝜇𝑦 ,𝑎 is the standardized, model-predicted 𝑙𝑜𝑔(𝐶𝑃𝑈𝐸𝑦 ,𝑎 ) for Year y and Lat and Long for grid 

cell a, �̂�𝑦 ,𝑎 is the estimated model standard error associated with 𝑙𝑜𝑔(𝐶𝑃𝑈𝐸𝑦 ,𝑎 ), A is the total num-

ber of grid cells and T denotes the matrix in which X is transposed. 

RESULTS AND DISCUSSION 

Bigeye tuna and yellowfin tuna were the dominant target species of the Japanese flagged joint-venture 

vessels, making up for 37% and 43% of the total catch, respectively. The average catch composition of 

large pelagic species in each of the two fishing clusters showed that cluster 1 comprised a higher pro-

portion the temperate tuna species southern bluefin tuna and albacore as well as swordfish , whereas 

yellowfin tuna was the dominant species in cluster 2, contributing 55% to of the catches in weight 

(Table 1). Bigeye tuna was the dominant species in cluster 1 (39%), but almost contributed equally to 

the catch in cluster 1 (35%).  

The justification of using the Tweedie distribution is illustrated in Fig. 6, which shows adequate cov-

erage of observed CPUE when compared to the expected CPUE generated from Monte-Carlo simula-

tions based on the final GAMM fits. The inclusion of a vessel as a random effect and all considered 

fixed effects were supported by both the AIC and BIC (Tables 2 & 3). Given the notable variation 

among vessels (Fig. 7), it is unsurprising that the inclusion of the random vessel effect produced the 

most parsimonious error model.  

The analysis of deviance for the step-wise procedure showed that most the covariates considered were 

highly significant (p < 0.001). The exceptions of covariates with lower significance levels were the 

targeting effect for bigeye tuna (p < 0.01; Table 2) and the month effect for yellowfin tuna (Table 3). 

For both species, the year effect accounted for close to 50% of the total variation in the data explained 

by the final GAMMs. The month effect was the second most important variable for bigeye tuna, ex-

plaining 28.3% of the total variation explained, followed by spatial position (21.5%). The inclusion of 

the targeting effect explained the least deviance for bigeye tuna, but accounted for the second most of 

the deviance explained in the case of yellowfin tuna. In general standardized bigeye tuna CPUE 

showed a strong seasonal trend, with catch rates highest during the austral winter month June to Au-

gust (Fig. 8). Standardized CPUE for yellowfin tuna showed less pronounced seasonal trend, which 

peaked in November, but suggested showed a significant targeting effect as can be inferred from two 

times higher catch rates for sets within in fishing cluster 2 (Fig. 8). 
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Nominal and standardized CPUE (together with CVs, 95% C.I.) for big eye and yellowfin tuna caught 

by joint-venture long-line vessels are presented in Tables 4 and 5, respectively. The standardized 

CPUE index for bigeye tuna showed a decline between 2005 and 2008, a slight increase between 2008 

and 2010 and a fairly stable trend between 2010 and 2015 and a slight increase again in 2016 (Fig. 9). 

The standardised CPUE index for yellowfin tuna showed a sharp decline between 2004 and 2012, 

followed by a slight increase until 2016 (Fig. 10). The addition of covariates only slightly influenced 

the relative abundance trends, when compared to nominal CPUE (Figs. 9 & 10). The most discernible 

effect was inclusion of the random vessel effect for bigeye tuna, which may be indicative of smaller 

time-varying vessel (or skipper) efficiency of catching bigeye tuna.  

We anticipate that the here presented standardized abundance indices for bigeye tuna and yellowfin 

tuna based on South African joint-venture vessels could be useful for corroborating other abundance 

indices for the South-West Indian Ocean.  
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TABLES 

Table 1: Percentage contribution of large pelagic species to the average catch composition of each cluster used as 

a proxy for fishing tactic. SBT: Southern Bluefin; BET: bigeye tuna; YFT: yellowfin tuna; ALB: albacore; SKJ: skip-

jack tuna; SWO: swordfish; SMA: shortfin mako and BSH: blue shark 

Cluster SBT BET YFT ALB SKJ SWO SMA BSH 

1 3.4 39.5 24.4 20.1 0.2 5.6 1 5.7 

2 0.1 35 55.1 1.6 0.1 0.8 2.8 4.4 

 

 

Table 2: Model statistics for all fixed effects included in the final GAMM for bigeye tuna, summarising the de-

grees of freedom (df), AIC values,  BIC values, residual deviance (Res. dev.), changes in the residual deviance 

(Dev.), the percentage of the total reduction in deviance explained by each factor (% explained), and correspond-

ing p-values when a F-test was applied to test for significance.  

Model  df AIC BIC Res. Dev.  Dev. % explained P(2) 

Null 2 68842.4 68855.7 54108.5 0 0   

+ Year 13 68322.7 68409.2 50272.2 -3836.364 49.27 < 0.001 

+ Month 19 68010.3 68135.5 48068.3 -2203.882 28.3 < 0.001 

+ s(Lat,Long) 27 67774.1 67956.2 46392.9 -1675.327 21.51 < 0.001 

+ FT 28 67765.0 67953.1 46321.6 -71.32146 0.92 < 0.01 

Total variation explained (%): 14.4%       

 

 

Table 3: Model statistics for all fixed effects included in the final GAMM for yellowfin tuna, summarising the 

degrees of freedom (df), AIC values, BIC values, residual deviance (Res. dev.), changes in the residual deviance 

(Dev.), the percentage of the total reduction in deviance explained by each factor (% explained), and correspond-

ing p-values when a F-test was applied to test for significance.  

Model  df AIC BIC Res. Dev.  Dev. % explained P(2) 

Null 2 70597.2 70610.5 68534.7 0 0   

+ Year 13 69452.1 69538.5 58863.5 -9671.283 47.53 < 0.001 

+ Month 19 69315.6 69441.3 57702.7 -1160.732 5.7 < 0.01 

+ s(Lat,Long) 28 68862.3 69047.4 54119.0 -3583.738 17.61 < 0.001 

+ FT 27 68031.8 68211.9 48188.0 -5931.015 29.15 < 0.001 

Total variation explained (%): 29.69%       
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Table 4: Nominal and standardized CPUE for bigeye tuna caught by Japanese-flagged vessels fishing under 

South African joint-venture agreement off the south-west coast of South African (≥ 25°E longitude), including CVs 

and 95% C.I.s for the standardized CPUE produced by the final GAMM. 

Year Nominal Standardized CV lower CI upper CI 

2004 136.9 159.6 0.106 129.7 196.4 

2005 267.1 274.9 0.109 222.2 340.1 

2005 - - - - - 

2007 165.7 169.5 0.097 140.2 204.8 

2008 76.7 78.7 0.098 64.9 95.4 

2009 111.2 97.3 0.102 79.6 118.9 

2010 175.3 138.1 0.094 114.9 166.1 

2011 154.1 128.1 0.093 106.7 153.8 

2012 174.4 127.4 0.094 106.1 153.1 

2013 150.6 126.9 0.099 104.5 154.1 

2014 181.6 134.5 0.111 108.2 167.3 

2015 161.0 113.5 0.111 91.3 141.2 

2016 216.9 149.8 0.114 119.8 187.5 

  

Table 5: Nominal and standardized CPUE for yellowfin tuna caught by Japanese-flagged vessels fishing under 

South African joint-venture agreement off the south-west coast of South African (≥ 25°E longitude), including CVs 

and 95% C.I.s for the standardized CPUE produced by the final GAMM. 

Year Nominal Standardized CV lower CI upper CI 

2004 352.4 385.8 0.105 314.2 473.8 

2005 379.3 425.1 0.110 342.5 527.7 

2006 - - - - - 

2007 212.8 257.1 0.103 209.9 314.8 

2008 160.4 209.3 0.096 173.5 252.4 

2009 194.8 237.2 0.104 193.6 290.6 

2010 229.6 240.2 0.101 197.0 293.0 

2011 114.6 154.4 0.103 126.1 189.1 

2012 80.8 101.2 0.106 82.1 124.6 

2013 184.6 194.7 0.104 158.8 238.8 

2014 174.3 178.4 0.118 141.5 224.8 

2015 204.5 207.0 0.118 164.3 260.8 

2016 175.3 201.3 0.122 158.3 255.8 
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FIGURES 

 

Figure 1: Annual effort for the combined South African longline fleets. Longline sets that did not 

encounter a bigeye tuna are the smallest circles, and the circle diameter increases proportional to the 

weight of bigeye tuna caught per set. The black line indicates the ICCAT/IOTC boundary. The blue 

different shading highlights the Atlantic (ICCAT) region and the considered “buffer” zone between 

20°E and 25°E within the IOTC region of South Africa. 
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Figure 2: Annual effort for the combined South African longline fleets. Longline sets that did not 

encounter a yellowfin tuna are the smallest circles, and the circle diameter increases proportional to 

the weight of yellowfin tuna caught per set. The black line indicates the ICCAT/IOTC boundary. The 

blue different shading highlights the Atlantic (ICCAT) region and the considered “buffer” zone be-

tween 20°E and 25°E within the IOTC region of South Africa.  
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Figure 3: A non-graphical solution to the Scree test to determine the optimal number of clusters in the 

multivariate analysis to assess the influence of fishing tactic on CPUE estimation. 
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Figure 4: A graphical representation of the two clusters that characterise the different fishing tactics 

projected over the first two Principal Components (PCs), where only PC1 was determined to be non-

trivial. FT 1 (red) and FT 2 (green) compare to Table 1.   
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Figure 5: Log-likelihood profile for over the grid of power parameters values (1 < p < 2) of the 

Tweedie distribution for bigeye tuna (a) and yellowfin tuna (b). The vertical dashed line denote the 

optimized p used in the final standardization GAMM.  

  

(a) (b)
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Figure 6: CPUE frequency, and density, distributions for bigeye tuna (left panel) and yellowfin tuna 

(right panel). The red shaded areas denote the expected distributions generated using Monte-Carlo 

simulation based on the final GAMM fitted with a Tweedie distribution.  
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Figure 7: Random effects coefficients (dots) illustrating the deviation from the mean of zero across 

the 25 vessels retained for the GAMM analysis of bigeye tuna (upper panel) and yellowfin tuna (lower 

panel). Dashed lines denote the 95% confidence interval.  
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Figure 8: The influence of the fixed effects Month and Fishing Cluster on the standardized CPUE for 

bigeye tuna (upper panel) and yellowfin tuna (lower panel) based on the final GAMMs.  
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Figure 9:  Standardized CPUE for bigeye tuna for the time period 2004 to 2016 (upper panel) based 

on the final GAMM. The 95% confidence intervals for the nominal CPUE are denoted by grey shaded 

areas and comparison of nominal and the various standardized CPUE models (lower panel).  
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Figure 10:  Standardized CPUE for yellowfin tuna for the time period 2004 to 2016 (upper panel) 

based on the final GAMM. The 95% confidence intervals for the nominal CPUE are denoted by grey 

shaded areas and comparison of nominal and the various standardized CPUE models (lower panel).  
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