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ABSTRACT 

 Production Model remain widely used to assess stock status and can represent a parsimonious 

alternative to age-structured assessment models, in particular in the absence of reliable size and/or 

age structure information and in cases where life history parameters are uncertain. Here we present 

an approach to objectively incorporate available life history parameters into Bayesian surplus 

production model priors for the intrinsic rate of population increase r.  First we use the R package 

FishLife to determine probable life history parameters from FishBase. The model is then updated 

with stock-specific estimates of the asymptotic length (Loo), as derived by fitting the recently 

proposed Length-based Bayesian estimator (LBB) to available size data for the Indian Ocean region. 

The resulting FishLife predictions of parameter means and their covariance are then used to 

propagate parameter uncertainty and correlation structure into the formulation of the r prior. In 

addition, LBB was applied to estimate a logistic selectivity function for each stock, which is required 

to parameterize the age-structured model. The approach is illustrated by its application to Indian 

Ocean striped marlin and black marlin with the aim to develop objective priors for r for a range of 

steepness assumptions about the stock-recruitment relationship. The results demonstrate that the 

functional form of a 14-parameter yield curve for an age-stock stock can be well approximated by 

the 3-parameter Pella-Tomlinson surplus production curve. To adequately account for the 

uncertainty about the productivity of each stock, we propose three steepness-specific sets of priors 

for r and BMSY/K values for consideration in the 2018 IOTC assessments based on the Bayesian 

Surplus Production Modelling software JABBA. 
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INTRODUCTION 

Surplus Production Models (SPMs) are one of the least data demanding population dynamic models 

to provide estimates of stock status and fisheries reference points (FRPs) such as the Maximum 

Sustainable Yield (MSY). Despite the increased application of more complex age-structured models 

(ASMs) within tuna Regional Management Fisheries Organizations (RFMOs), SPMs have remained an 

integral part of the assessment toolbox for large pelagic tuna and billfish (Brodziak and Ishimura, 

2012; Chang et al., 2014; Punt et al., 2015). In particular, billfish assessments are commonly 

conducted with SPMs (Chang et al., 2014; Punt et al., 2015), due to paucity of stock-specific 

biological information and reliable size structure data.  

 

SPMs are age- and size aggregated models that approximate changes in biomass as a function of the 

biomass of the preceding year, the surplus production and the removal by the fishery. Somatic 

growth, reproduction, natural mortality and associated density-dependent processes are inseparably 

captured in the estimated surplus production function that is governed by the the intrinsic rate of 

population increase r, the shape parameter m and the unfished biomass K (Winker et al., 2018a). In 

contrast, it typically requires at least 14 parameters to approximate the surplus production function 

within an age-structured assessment framework (Winker et al., 2018a, 2018b, 2017). Most of these 

parameters are rarely estimable within the ASM framework and therefore typically assumed without 

error, especially in data-poor to -moderate assessments. The parameterization of ASM strongly 

relies on externally estimated parameters describing growth, maturity, natural mortality and the 

spawning- recruitment relationship of the stock. Misspecification of one or several parameters can 

introduce severe bias in the stock status estimates or cause data conflict between abundance indices 

and size data (Henrıiquez et al., 2016).  In the absence of reliable data to infer life history and stock 

parameter estimates SPMs may provide a more parsimonious alternative to estimate stock status.  

 

Here, we apply an age-structured Monte-Carlo simulation approach to convert life history 

parameters into Bayesian surplus production model priors for r (Winker et al. 2017; Winker et al. 

2018b). We make use of the multivariate hierarchical life history tool FishLife (Thorson et al., 2017; 

https://github.com/James-Thorson/FishLife) to source life history parameters from FishBase 

(www.fishbase.org). The FishLife model estimates plausible combinations of species-specific life 

history parameters nested within taxonomic relationships by employing hierarchical multivariate 

statistics on available data. To obtain stock-specific estimates, we then update the FishLife 

predictions with stock-specific estimates of the asymptotic length (Loo), which we derived by fitting 

the Length-based Bayesian estimator (LLB; Froese et al., 2018) to available size data for the Indian 

http://www.fishbase.org/
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Ocean region. These updated model results are used to propagate parameter uncertainty and 

correlation structure into the formulation of the r prior. In addition, LBB was applied to estimate a 

logistic selectivity function for each stock, which is required for parameterizing the age-structured 

model. We implement this approach for Indian Ocean striped marlin (MLS) and black marlin (BLM) 

with the aim to develop objective priors for r for a range of steepness assumptions about the stock-

recruitment relationship.       

 

1. MATERIALS AND METHODS 

1.1 Linking Age-Structured and Surplus Production Model 

The following concepts build on previous work by Winker et al. (Winker et al., 2018a, 2018b, 2017). 

Central to their idea of linking age-structured stock parameters and the surplus production function 

is the application of age-structured spawning biomass- and yield-per-recruit models with integrated 

stock-recruitment relationship (SRR), which we subsequently refer to as age-structured equilibrium 

model (ASEM). This type of model is widely used for ASMs to derive MSY-based fisheries reference 

points from estimated stock parameters by searching iteratively for the fishing mortality that 

produces MSY, FMSY, from the corresponding spawning biomass SBMSY at MSY (Punt et al., 2013). 

Typical ASEM inputs are the stock parameters describing length-at-age (La), weight-at-age (wa), 

maturity-at-age (ψa) and selectivity-at-age (sa), natural mortality M and the steepness parameter h 

of the of the assumed SSR (Punt et al., 2013).  

 

To illustrate the link between the generalized three parameter SPM by Pella and Tomlinson (1969) 

and an ASEM, we make the assumption that surplus production is a function of spawning biomass 

(Thorson et al., 2012), so that:  

 

𝑆𝑃 =
𝑟

𝑚−1
𝑆𝐵 (1 − (

𝑆𝐵

𝑆𝐵0
)

𝑚−1
)        (1) 

 

where r is the intrinsic rate of population increase, SB0 is the unfished biomass and m is a shape 

parameter that determines at which SB/SB0 ratio maximum surplus production is attained. If the 

shape parameter m = 2, the model reduces to the Schaefer form, with the surplus production (SP) 

attaining MSY at exactly SB0/2. If 0 < m < 2, SP attains MSY at biomass levels smaller than K/2; the 

converse applies for values of m greater than 2. The Pella-Tomlinson model reduces to a Fox model 

(Fox, 1970) if m approaches one, resulting in maximum surplus production at ~ 0.37SB0, but there is 

no exact solution for the Fox surplus production with m = 1 (Figure 1) 
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The functional link between the Pella-Tomlinson SPM and the ASEM is illustrated in Figure 2. 

Accordingly, it is possible to first generate MSY/SBMSY and SBMSY/SB0 from the ASEM and 

translate those into surplus production parameter r and m from typical input parameters for 

age-structured assessment models, where m is directly related to the inflection point 

SBMSY/SB0 of the surplus production curve: 

 

𝑆𝐵𝑀𝑆𝑌

𝑆𝐵0
= 𝑚(−

1

𝑚−1
)         (2) 

          

and r can be expressed as a function of MSY/SBMSY and m such that: 

 

𝑟 =
𝑀𝑆𝑌

𝑆𝐵𝑀𝑆𝑌

𝑚−1

1−𝑚−1         (3) 

 

1.2 Age-structured equilibrium model (ASEM) 

Assuming deterministic, age-structured population dynamics, the numbers at age per-recruit (�̃�𝑎) at 

equilibrium are given by: 

 

�̃�𝑎 = {
1                                                     𝑖𝑓 𝑎 = 0

�̃�𝑎−1 exp(−𝑠𝑎𝐹 − 𝑀)              𝑖𝑓 𝑎 > 0
      (4) 

 

where 𝑠𝑎 is the selectivity at age a, F is the instantaneous rate of fishing mortality and M 

instantaneous rate of natural mortality. For ease of presentation, we assumed a constant M and 

omitted the plus group.  

 

The Spawning-biomass-per-recruit ( 'S ) is obtained as function of F, such that: 

 

�̃�(𝐹) = ∑ 𝑤𝑎𝜓𝑎�̃�𝑎𝑎          (5) 

         

where aw  is the weight at age, a  is the proportion of mature fish in the population and �̃�𝑎 is the 

number survivors-at-age per recruit. The corresponding yield-per-recruit is given by: 

 

�̃�(𝐹) = ∑
𝑤𝑎𝑠𝑎𝐹

𝑍𝑎
�̃�𝑎(1 − exp(−𝑍𝑎))𝑎        (6) 
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where aZ  is the age- and sex-specific total mortality given by: 

 

𝑍𝑎 = 𝑀 + 𝑠𝑎𝐹          (7) 

 

and as  is the selectivity-at-age. 

 

Under steady state conditions, the yield (Y) can then be expressed as a function of equilibrium 

recruitment R’ and yield-per-recruit (�̃�)  

 

𝑌(𝐹) = �̃�(𝐹) × �̃�(𝐹)         (8) 

 

The corresponding equilibrium spawner-biomass SB is:  

 

𝑆𝐵(𝐹) = �̃�(𝐹) × �̃�         (9) 

          

where �̃�(𝐹) denotes the spawning-biomass-per-recruit for a given fishing mortality F. 

 

Assuming a Beverton and Holt SSR, the equilibrium recruitment at F is given by: 

 

�̃�(𝐹) = 𝑅0
4ℎ�̃�−(1−ℎ)�̃�0

�̃�(5ℎ−1)
        (10) 

 

where the steepness parameter h is defined as the ratio of recruitment of average unfished 

recruitment 𝑅0 when spawner biomass is reduced to 20% of unfished levels, SB0, i.e., ℎ𝑅0 =

�̃�(0.2𝑆𝐵0)  (Mace and Doonan, 1988) and �̃�0 is unfished spawner-biomass-per-recruit when F = 0. 

 

The quantity MSY and the corresponding fishing mortality at MSY, FMSY, is obtained through iterative 

maximization of Eq. 8 over a range of plausible F values, which then allows calculating SBMSY by 

inputting FMSY into Eq. 9.  

 

Weight-at-age is described as function of the weight to length conversion parameters ω and δ and 

length-at-age for sex s, La, such that  

 

𝑤𝑎 = 𝜔𝐿𝑎
𝛽

         (11) 
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The corresponding La was calculated based on the Bertalanffy growth function parameters as: 

 

 𝐿𝑎 = 𝐿∞(1 − exp (−𝑘(𝑎 − 𝑎0)       (12) 

 

where 𝐿∞ is the asymptotic length, k is the growth coefficient and 𝑎0 is the theoretical age at zero 

length.  

 

The fraction of mature fish at age a was calculated as: 

 

𝜓𝑎 =
1

1+exp (−(𝑎−𝑎𝑚𝑎𝑡)/𝛿𝜓
       (13) 

 

where 𝑎𝑚𝑎𝑡 is the estimated age-at-50%-maturity and 𝛿𝜓  is the inverse slope of the ogive.     

 

Selectivity-at-age was calculated as a function of length-at-age, La, using a two parameter logistic 

model of the form 

 

𝑠𝑎 =
1

1+exp (−(𝐿𝑎−𝐿 𝐶)/𝛿𝑠
        (14) 

 

where sa is the proportion of fish selected in the age a and sex s, Lc  is the length at which 50% of the 

fish are retained and δS is the inverse slope of the logistic ogive.  

 

1.3 Generating life history input parameters  

A general overview of the approach to generate stock parameters as input for the ASEM is illustrated 

in Figure 2.   

 

First, we derived approximations of stock-specific asymptotic length (𝐿∞) estimates and fisheries 

selectivity parameters by applying the Bayesian length-frequency analysis tool LBB (Froese et al. 

2018) to combined size frequency data for the period 2000-2016 from the Taiwanese longline fleet. 

The size data for MLS (n = 85,898) and BLM (n = 12,676) were made available for the 2017 meeting 

of the IOTC Working Party on Billfish (WPB). LBB provides a Bayesian estimation framework to 

simultaneously estimate𝐿∞, the length-at-50%-selectivity (Lc), the slope parameter of the logistic 

selectivity function (α), relative natural mortality and relative fishing mortality from length frequency 
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data (Froese et al. 2018). In LBB, selectivity is assumed to follow a logistic function of length classes Li 

relative to 𝐿∞, such that: 

 

𝑆𝐿𝑖 =
1

1+exp (−𝛼𝑠(
𝐿𝑖

𝐿∞
−

𝐿𝑐
𝐿∞

))

         (15) 

 

where SLi is the probability of fish in length class i (here 3 cm) are vulnerable to the fishery and S is 

the slope of the selectivity curve. Here, we only focus on the LBB estimates of 𝐿∞ and the selectivity 

parameter estimates Lc /𝐿∞ and S for MLS and BLM.  

 

Next, we made use of the R package FishLife (Thorson et al. 2017)  to generate random deviates of 

the ASEM input parameters 𝐿∞
′ , 𝑘′, 𝑎𝑚𝑎𝑡

′ , 𝑎𝑚𝑎𝑥
′  and 𝑀′ .  This R package allows predicting life history 

traits for marine fishes based on a multivariate prediction model, which draws inferences from life 

history information for more 32,000 marine fishes available in FishBase, while accounting for 

taxonomic structure in residuals with five levels for class, order, family, genus, and species. On 

species level, the multivariate prediction model produces the expected mean values (�̂�𝑠𝑝𝑒𝑐) and 

covariance matrix (𝐶𝑜𝑣𝑠𝑝𝑒𝑐) for the following seven life history parameters and, in addition, 

temperature: 

 

�̂�𝑠𝑝𝑒𝑐 = {log (𝐿∞), log(𝑘) , log(𝑊∞) , log(𝑎𝑚𝑎𝑥) , log(𝑎𝑚𝑎𝑡) , log(M) , log (𝐿𝑚𝑎𝑡), log (𝑇)}  (16) 

 

𝐶𝑜𝑣𝑠𝑝𝑒𝑐 = {log (𝐿∞), log(𝑘) , log(𝑊∞) , log(𝑎𝑚𝑎𝑥) , log(𝑎𝑚𝑎𝑡) , log(M) , log (𝐿𝑚𝑎𝑡), log (𝑇)} (17) 

 

where Lmat is the length-at-50% maturity and T is the temperature. FishLife also provides a function 

to update predictions of life history parameters for a given species based on user-supplied data. 

Here, we only updated the predictions with the 𝐿∞ estimate from LBB to tune the predictions to 

more stock-specific estimates  �̂�𝑠𝑡𝑜𝑐𝑘 and 𝐶𝑜𝑣𝑠𝑡𝑜𝑐𝑘 for MLS and BLM in the Indian Ocean. We then 

applied a multivariate random generator in R to obtain a large number (nsim =  1000 × 1000) of 

random deviates 𝑦𝑠𝑡𝑜𝑐𝑘
, , such that: 

 

𝑦𝑠𝑡𝑜𝑐𝑘
, ~𝑀𝑉𝑁( �̂�𝑠𝑡𝑜𝑐𝑘 , 𝐶𝑜𝑣𝑠𝑡𝑜𝑐𝑘)        (18) 

 

To further exclude implausible sets of history parameters given the stock specific size information 

(e.g. observed mean length  > Loo), we extracted a random subset of 1000 generated life history 
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parameters, based on the condition that 𝐿∞
′  falls within the 2.5th  and 97.5th percentile of lognormal 

distribution with a CV of 15% around the log of the LBB-based Loo estimate. From this subset, we 

extracted the vectors random deviates of  𝐿∞
′ , 𝑘′, 𝑎𝑚𝑎𝑡

′ , 𝑎𝑚𝑎𝑥
′  and 𝑀′ as input for the ASEM.  

 

The remainder of required ASEM input parameters were parameterized as follows. The theoretical 

age at zero length was set to a0 = -1 (Eq. 12) and the weight-length parameters were set to ω = 0.01 

and β = 3 (Eq. 11). In both cases, the choice of parameter is predicted to have little influence on the 

results as these are expressed in the form of relative quantities.  The slope of the maturity ogive was 

set to   = 0.01 amat (Eq. 13) to approximate knife-edge maturation. Finally, we generated random 

selectivity input parameters (Eq. 14) as function of:  

 

𝐿𝑐
′ = 𝐿∞

′ 𝐿𝑐

𝐿∞
  and 𝛿𝑠

′ = 𝐿∞
′ /𝛼𝑠      (19) 

 

where  Lc /𝐿∞ and S are the LBB estimates and 𝐿∞
′  is the vector randomly generated Loo deviates 

from the stock-specific FishLife model predictions 

 

2.4 Monte-Carlo procedure for prior generation  

Prior distributions for r and corresponding proxies for BMSY/K (and m) were obtained as a function of 

random deviates of MSY/SBMSY and SBMSY/SB0 that were generated from Monte-Carlo simulation 

based on 1000 iterations. This was done using the following of steps: (1) iteratively input the 1000 

stock parameters deviates into the ASEM , (2) iteratively maximize Eq. 6 over a range of F values to 

obtain deviates of MSY’ and the corresponding 𝐹𝑀𝑆𝑌
′ , (3) input the resulting 𝐹𝑀𝑆𝑌

′  into the ASEM to 

obtain the associated 𝑆𝐵𝑀𝑆𝑌
′  through Eq. 9, (4) set F = 0 to obtain 𝑆𝐵0

′   through Eq. 9, (5) calculate 

ratios 𝑀𝑆𝑌′/𝑆𝐵𝑀𝑆𝑌
′  and 𝑆𝐵𝑀𝑆𝑌

′ /𝑆𝐵0
′  and (5) iteratively solve Eq. 2 for 𝑆𝐵𝑀𝑆𝑌

′ /𝑆𝐵0
′  to derive m’ and 

input m’ and the ratio 𝑀𝑆𝑌′/𝑆𝐵𝑀𝑆𝑌
′  into Eq. 2 to obtain r’. Note that ratios of 𝑀𝑆𝑌′/𝑆𝐵𝑀𝑆𝑌

′  and 

𝑆𝐵𝑀𝑆𝑌
′ /𝑆𝐵0

′  are insensitive to the choice of R0 (in Eq. 10) and thus the absolute quantity of SB0, 

hence there is not loss of generality by setting R0 = 1.  

 

The Monte-Carlo simulation was repeated of the range of fixed input values of h = 0.4-0.8 in steps of 

0.1. In addition, we added h = 0.86 so as to match the stock-recruitment assumption for the stock 

synthesis (SS3; Methot and Wetzel, 2013) reference run for the 2017 IOTC striped marlin assessment 

(Wang, 2017).  

 

3. Results and Discussion 
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The LBB approximations of Loo were 331.5 cm for MLS and 363.3 cm for BLM and the size-at-50%-

selectivity was estimated as ratios of Lc/Loo = 0.46 and 0.37, respectively (Figure 4).The pairwise 

predictions of six selected variables (Loo, k, Lmat, amat, amax and M) highlight the interrelations among 

life traits, which are represented in FishLife by the covariance (Figs. 5-6). The MLS life history 

predictions mostly overlapped between species and stock level, suggesting that the model-update 

based on Loo estimate from LBB had little influence on the predictions (Fig. 5). This was notably 

different for BLM, where the predictions on species level initially produced a large proportion of 

surprisingly small Loo deviates (Fig. 6). In particular, Loo values below 190 cm appear implausible for 

the Indian Ocean stock when compared the observed size data shown in Fig .4. The reason for this 

discrepancy is likely related to limited, highly variable life history records for BLM in FishBase. 

Updating FishLife and subsetting the generated sets parameters based on the Loo estimate from LBB 

seemingly produced more realistic stock-specific life history estimates for BLM (Fig. 6).  Kernel 

density distributions of the subsets of stock-specific ASEM input parameters are shown in Figs. 7-8. 

The resulting relationships of length-at-age, maturity-at-age, unfished numbers-at-age and 

selectivity-at-age provide an illustration of the ranges of uncertainty that are propagated into the r 

priors for MLS (Fig. 9) and BLM (Fig. 10).  

 

The results from ASEM demonstrate that the iterative (F) solution of a 14-parameter yield curve of 

an age-structured stock can be closely approximated by the closed-form solution of the 3-parameter 

Pella surplus production curve over a wide range of steepness h assumptions for both stocks (Figs. 

11-12). The larger r priors for MLS (Fig. 11) suggest that the stock is more resilient to exploitation 

than BLM (Fig. 12), with minimal overlap between expected mean r values of 0.21-0.31 for MLS and 

0.15-0.22 for BLM over the same range of steepness h input values (Table 1). In addition, the 

precision of the r priors was substantially higher for MLS (CV ~ 15%) than for BLM (CV ~ 30%), which 

is probably an adequate reflection of the quality and quantity of available biological information for 

the two species.     

 

Our results also revealed an approximately linear relationship between steepness h and BMSY/K, 

which was comparable between the stocks. For example, a steepness value of h=0.5 closely 

approximated a Fox-type surplus production function with an inflection points at about BMSY/K ~ 0.37 

for MLS and BLM; and the same was found in the case of Atlantic blue marlin (Winker et al., 2018b). 

This agrees previous findings by Forrest et al. (2010) and Mangel et al. (2013), who showed that 

steepness is a strong predictor for SBMSY/SB0 in general. Whereas the inflection point BMSY/K and thus 

the shape m of the surplus production function appear to be mainly governed by the choice of the 
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the steepness parameter h, we found that r is influenced by all key life history traits including 

growth, longevity, natural mortality and h. In addition, r is inherently impacted by the selectivity 

function, a fact that is widely ignored in approaches for predicting r (McAllister et al., 2001). The 

effect of h on r can be inferred from the notable change in central r values over the range steepness 

assumptions (Figs. 11-12). However, this also implies that r and m are interdependent and it follows 

that, for example, the biologically inferred r prior for a Schaefer SPM is not directly transferrable to a 

Fox SPM without incurring misspecifications between these two widely used SPM formulations.     

 

As is common practice, the Schaefer (BMSY/K = 0.5) and the Fox model (BMSY/K = 0.37) were also 

considered as alternative scenarios in previous SPM-based assessments of Indian Ocean MLS and 

BLM (Andrade, 2017; Yokoi and Nishida, 2016).  For both stocks, we could closely approximate the 

Fox model based on a steepness input value of h = 0.5, whereas the lowest considered steepness 

value h =0.4 resulted in BMSY/K = 0.40-0.41 and thus still well below the Schaefer model assumption 

of BMSY/K = 0.5.  The derived lognormal r priors of 0.253 (CV = 0.15) for MLS and 0.184 (CV = 0.3) for 

BLM, corresponding to h = 0.5 (Table 1), therefore appear to be a natural choice for a reference case 

consistent with previous SPM-based assessment. The inflection point of BMSY/K = 0.4 (h = 0.4) 

matches the mean estimate of BMSY/K derived by meta-analysis of 147 fish stock (Thorson et al., 

2012) and is widely considered as a reference point for BMSY that is fairly robust to recruitment 

overfishing (Clark, 1991; Punt et al., 2013). As such, the r priors for r for h = 0.4 (Table 1) would 

provide a plausible option for sensitivity runs based on a lower resilience assumption. The high h = 

0.86 was included here to match the stock-recruitment assumption for the SS3 reference model for 

2017 IOTC striped marlin assessment (Wang, 2017). While perhaps reasonable for striped marlin, the 

here inferred life history traits for black marlin rather point towards more similarity to the less 

productive  Atlantic blue marlin stock, for which a steepness of h  = 0.6 was considered the upper 

plausible limit  by the ICCAT Billfish Working Group (Mourato et al., 2018; Winker et al., 2018b).  We 

therefore propose to only consider the r prior specific to h = 0.86 for striped marlin, but choose the 

more conservative h = 0.4 input to specify the r prior for black marlin.            
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Table 1. Mean and standard deviation (log.sd) for lognormal r prior approximations and associated 

input values for the inflection point BMSY/B0 as determined by the shape m, derived for each of 

steepness parameter input scenarios for (a) striped marlin (MLS) and (b) black marlin.  

a) Striped marlin (MLS)         

Parameters h=0.4 h=0.5 h=0.6 h=0.7 h=0.8 h=0.86 

prior mean r  0.209 0.252 0.28 0.297 0.307 0.308 

log.sd r 0.14 0.15 0.15 0.15 0.15 0.16 

BMSY/B0 0.4 0.36 0.32 0.28 0.24 0.21 

shape m 1.18 0.95 0.76 0.61 0.46 0.38 

b) Black marlin (BLM)             

Parameters h=0.4 h=0.5 h=0.6 h=0.7 h=0.8 h=0.86 

prior mean r  0.145 0.174 0.193 0.204 0.21 0.211 

log.sd r 0.29 0.30 0.30 0.30 0.30 0.31 

BMSY/B0 0.41 0.37 0.34 0.3 0.26 0.24 

shape m 1.23 1.01 0.84 0.69 0.55 0.47 
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Figure 1. Surplus production as a function of biomass for different values of the shape parameter m 

= 0.1 – 4 (from left to right) based the JABBA Pella–Tomlinson model formulation (Winker et al. 

2018a) 
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Fig. 2. Schematic of functional relationships between the productivity parameter r and the shape 

parameter of the surplus production function and the Age-Structured Equilibrium Model (ASEM; i.e. 

yield- and spawning biomass-per-recruit models with integrated spawner recruitment relationship). 

Numbers in boxes denote the sequence of deriving deviates of r and m from life history and 

selectivity parameter inputs into the ASEM. 
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Fig. 3. Schematic illustrating the steps for objectively deriving informative r priors and associated 

input values of BMSY/K as a function (“~”) of the shape parameter m of Pella-Tomlinson surplus 

function. ASEM: Age-Structured Equilibrium Model; LBB: Length-based Bayesian length frequency 

analysis (Froese et al., 2018); FishLife: Multivariate life history prediction model (Thorson et al. in 

press); stockŷ : Expected stock-specific means of life history parameters predicted by the FishLife 

multivariate model, stockCov : Covariance matrix for stockŷ  predicted by FishLife; MVN: random 

Multivariate Normal number generator applied to generate random deviates of life history as input 

for the ASEM.     
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Fig. 4 Observed length (cm) frequency data from longline fleet of Taiwan, China (upper panel), which 

were binned into 3 cm length interval (Li) and pooled for the period 2000-2016 for striped marlin 

(MLS; left) and black marlin (BLM; right). The lower panel shows the LBB fits (red line) to ratios of     

Li /Loo, denoting the estimated relative length-at-50%-selectivity Lc /Loo for MLS (left) and BLM (right). 
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Fig. 5. Predictive distribution for six selected life-history variables on stock, species, genus and family 

level for Indian Ocean striped marlin, illustrating the parameter space and correlation for different 

combination of life parameters. The distributions were generated from a Multivariate Normal 

random generator based on predicted means and covariance matrices derived from the R package 

FishLife.   
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Fig. 6. Predictive distribution for six selected life-history variables on stock, species, genus and family 

level for Indian Ocean black marlin, illustrating the parameter space and correlation for different 

combination of life parameters. The distributions were generated from a Multivariate Normal 

random generator based on predicted means and covariance matrices derived from the R package 

FishLife. 
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Fig. 7. Stock-specific kernel density distributions of generated life history parameter form a 

multivariate normal distribution for striped marlin (MLS).    
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Fig. 8. Stock-specific kernel density distributions of generated life history parameter form a 

multivariate normal distribution for black marlin (BLM). 
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Fig. 9. Basic population dynamic functions for striped marlin (MLS) showing generated 

variations in length-at-age, maturity-at-age, unfished numbers-per-recruit as a function of 

natural mortality M and selectivity-age.  
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Fig. 10. Basic population dynamic functions for striped marlin (BLM) showing generated variations in 

length-at-age, maturity-at-age, unfished numbers-per-recruit as a function of natural mortality M 

and selectivity-age. 
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Fig. 11. Monte-Carlo simulation results from the Age-Structured Equilibrium Model (ASEM) 

for striped marlin (MLS), showing comparisons of the 14-parameter ASEM yield curve and 3-

parameter Pella-Tomlinson surplus production over a range of steepness h values (upper 

left), the corresponding density distributions of simulated r values (upper right), boxplots of 

randomly generated ratios of SBMSY/SB0 for each of the fixed steepness h input (low left) and 

the approximately linear relationship between of the steepness h and the means of the 

means of the generated SBMSY/SB0 ratios.   
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Figure 12. Monte-Carlo simulation results from the Age-Structured Equilibrium Model 

(ASEM) for black marlin (BLM), showing comparisons of the 14-parameter ASEM yield curve 

and 3-parameter Pella-Tomlinson surplus production over a range of steepness h values 

(upper left), the corresponding density distributions of simulated r values (upper right), 

boxplots of randomly generated ratios of SBMSY/SB0 for each of the fixed steepness h input 

(low left) and the approximately linear relationship between of the steepness h and the 

means of the means of the generated SBMSY/SB0 ratios.   

 

 

 

 

 


