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Abstract 
 

IOTC CPUE workshop (2013) recommended that when environmental covariates are incorporated in CPUE 
standardization, it should be conducted in sub-area where variability pattern of the environmental signature is well 
identified. We attempted to implement this recommendation with one case study (Indian Ocean yellowfin tuna) 
incorporating oceanographic variables into CPUE standardization using HSI (Habitat Suitability Index). We used four 
oceanographic variables affecting YFT habitat, i.e., depth-specific sea temperature, salinity and vertical shear 
currents and thermocline depth. 
 
Then SI (Suitable Index) was estimated for each oceanographic variable through spatial correlations with YFT 
nominal CPUE. SI is % frequency distribution representing the most suitable sea temperature range for YFT (for 
example) as 1 then for other ranges, proportional scales (between 0 and 1) are assigned. Then, HSI integrated four 
SI using geometric means and was represented as one scale from 0 (worst habitat)-1 (best habitat). As SI is based on 
CPUE, we cannot use it in GLM due to violation of the assumption of GLM (CPUE should not be in both sides). Thus, 
we changed to operation-based SI as the proxy CPUE-based SI.  
 
We attempted CPUE standardization in sub-area (higher HSI score areas instead of the whole area) as 
recommended by the CPUE workshop. Then effectiveness of HSI was tested by GLM with and without HSI in that 
sub-area. The results showed that HSI effect was the highest significant term when it was incorporated, although 
trends of STD_CPUE with and without HSI are not much different. As this is very preliminary study with only one 
case study, we cannot make any general conclusion. We need to explore more case studies using different areas, 
species and fleet to provide reliable conclusions in the future. In addition, it is the critical point that we need to 
verify whether operation-based SI is the proxy of CPUE-based SI. Otherwise, we cannot use this approach.              
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1. Introduction   
 

In CPUE standardization for tuna longline fisheries, various oceanographic variables as 

covariates have been incorporated in the past. However, problems have been pointed 

out by tuna RFMOs. These problems were well described in the IATTC workshop (2011) 

on “Using Oceanography for Fisheries Stock Assessment and Management “and in 

IOTC CPUE workshop (2013). The major problem is that apparent over-fitting of 

oceanographic data to nominal CPUE and it is difficult to know if they are really related. 

This is because both data are used for all areas (such as 1ox1o, 5ox5o area) which 

produce apparent correlations (i.e., oceanographic conditions significantly affecting 

nominal CPUE). Thus, it is not considered that using oceanographic data in the whole 

area is meaningful.    

 

Because of this problem, in recent years less oceanographic data have been used than 

in the past. To improve this situation, IOTC CPUE workshop (2013) suggested as 

follows:    

 

Environmental data would be useful to consider in relation to standardization 

approaches. However, the way it is usually performed in GLMs, where an 

environmental covariate is associated to each observation (in regular 1°, 5° or even 10° 

grids), may not be the most pertinent as it does not allow to identify the ecological 

processes which may affect CPUE. Alternatively, GLMs could be performed in sub-areas 

where the variability pattern of the environmental signature is well identified (using 

spatial EOFs to delineate those sub-areas). In such sub-areas, GLMs could be designed 

with and without environmental covariates to understand the potential effect of the 

environment. Environmental covariates should be in limited numbers (the lesser the 

better) and selected in order to test hypothesis on the ecological processes at stake.  

 

This preliminary study attempts to incorporate this suggestion using HSI (Habitat 

Suitability Index) instead of EOFs, which may be able to identify sub-areas where the 

ecological processes produce good habitat areas and we need to standardize nominal 

CPUE.       
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2. Case study  
 

In the case study, we apply for Indian Ocean YFT in sub-area R2 (SW Indian Ocean) 

defined by SS3 (Fig. 1) (Langley, 2015). Due to the time constraint, we could conduct 

only this area for this time. In the future, we need to explore other areas (such tropical 

area for YFT), other species and other fleets to see the general situation.       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. Case study area (R2) defined in YFT SS3 stock assessment (Langley, 2015)  

 
3. Data  
 

3.1 Fisheries data 

 

Japanese tuna longline fisheries data (1980-2016) was used, which is the set by set 

data and represented by 1ox1o
 and month. Variables used are year, month, 1ox1o area, 

call signs (as skipper’s effect), number of hooks per float (targeting correction factor), 

effort (number of hooks), catch (fish), catch (kg) and nominal CPUE (no of fish/1,000 

hooks).   
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3.2 Oceanographic data 

 

We used oceanographic data available in Global Ocean Data Assimilation System 

(GODAS) (http://cfs.ncep.noaa.gov/cfs/godas/monthly) in NCEP, NOAA, USA (1980-

2016). The tempo-area resolution is (1/3) degrees in latitude x 1 degree in longitude 

and month.  

 

The GODAS data include temperature, salinity and current (u, v) digital data for 28 

depth layers, i.e., every 10 m starting from 5m depth to 225m with extra 5 deeper 

depth layers, i.e., 5m, 15m, 25m, 35m, 45m, 55m ,65m, 75m, 85m, 95m, 105m, 115m, 

125m, 135m, 145m, 155m, 165m, 175m, 185m, 195m, 205m, 215m, 225m, 238m, 

262m, 303m, 366m and 459m. This data set was estimated by the spatial models 

developed by the NCEP and the estimation method is described in the above-

mentioned web site. The GODAS data set has been validated. (Pentakota et al, 2016; 

Nishida et al, 2011). 

 

According to various references (see Appendix A), YFT habitats are influenced by 

temperature, salinity, thermocline depths and vertical shear currents. Thus, we use 

these 4 parameters to represent as oceanographic conditions. Thermocline depth 

were estimated using 20oC (north of latitude S25o), while 19.5oC (south of S25o) and 

vertical shear current was estimated by the model developed by Bigelow et al (2006). 

Resolution of oceanographic data were converted to 1ox1o
 and month data to match 

tuna longline fisheries data.  

 

 

4. Methods  
 

4.1 Concept of HSI (Habitat Suitability Index) 

 

HSI have been used in the terrestrial ecological studies for many years. In recent years, 

HSI have been applied in fisheries for fishing ground forecasting, ecological and habitat 

studies. Fig. 2 shows the concept of HSI in fisheries. HSI uses various environmental 

factors represented as SI (Suitable Index) significantly affecting habitat (nominal CPUE) 

in small area (e.g. 1ox1o area). Then HSI is estimated by integrating SI using geometric 

means, statistical methods (GLM, GAM etc.), AI etc. HSI is scaled from 0 (worst habitat) 

to 1 (best habitat), so that levels of habitat suitability can be identify by HSI scores. This 

http://cfs.ncep.noaa.gov/cfs/godas/monthly
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means that the area with higher HSI scores produce suitable habitat (high CPUE) areas 

which produce high q (catchability), consequently produce biased nominal CPUE. Thus, 

we need to standardize nominal CPUE using HSI.       

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2 Concept of HIS (above Eastwood, 2012 and below: Igarashi et al, 2014) 

Concept of HSI in fisheries (Eastwood, 2002)
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In CPUE standardization, HSI can be used as one integrated index to represent various 

levels of habitat. Thus, HSI can identify habitat area affecting nominal CPUE driven by 

ecological processes. Hence CPUE standardization by GLMs can be conducted in sub-

areas where the variability pattern of the environmental signature is identified. Thus, 

HSI is considered as the appropriate method suggested by the IOTC CPUE workshop.  

 

4.2 SI (Suitable Index) 

 

We incorporate HSI into CPUE standardization using GLM. In GLM, normally nominal 

CPUE is response variable (in the left side equation such as log normal function). But if 

we use HSI as one of covariates (in the right equation), it will be a violation of the 

assumptions in GLM. This is because HSI is based on nominal CPUE, thus both nominal 

CPUE will be placed in both equations, which is a violation. Thus, we cannot use CPUE-

based HSI. 

 

To solve this problem, we attempt to use number of operations for nominal CPUE 

assuming they are proxy of SI (operation-based SI). But we need to verify whether 

operation-based SI are the proxy of CPUE-based SI. If it is verified, operation-based SI 

can be used to estimate HSI. 

  

We attempted to use 4 types of oceanographic data as SI, i.e., sea temperature, 

salinity, vertical shear currents and thermocline depths. Tuna longline are deployed by 

different depth ranges according to number of hooks between floats (NHBF). Thus, we 

used 2 categories of depth ranges for sea temperature, salinity and vertical shear 

currents in corresponding depth (depth ranges) shown in Table 1.  

 

As for thermocline depths, we used depths at 20oC (north of latitude S25o) and 19.5oC 

(south of S25o). This is because sea temperature in the southern area is cooler than in 

the northern part, thus if we use 20oC criteria, we will have a lot of missing values. 

Table 1 summarizes specification of four types of SI.  
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Table 1 Summary of four oceanographic variables as YTF SI (Suitability Index) and their specifications   

 
Depth range Shallower Deeper 

NHBF 10 <= HFBF 11<=NFBF 
LL type Shallow or regular LL Deep or ultra-deep LL 

 
Oceanographic variables  

as YFT SI (Suitability Index) 
 

 Representative depth (depth ranges) 
(1) Sea temperature 105m 205m 
(2) Salinity 
(3) Vertical shear currents 

(Bigelow et al, 2006) 
105-205m 105-303m 

 
 Geographical area  
(4) Thermocline depth 25oS and/or north  25oS or south 

Criteria  at 20oC at 19.5oC 

 

4.3 Estimation of HSI 

 

In this study, HSI is estimated by √𝑆𝐼(𝑇) ∗ 𝑆𝐼(𝑆) ∗ 𝑆𝐼(𝑉𝑆) ∗ 𝑆𝐼(𝑇𝐷)
4  ------- (1) 

 

, where  

SI : Suitability Index (0-1)  

T : Sea temperature 

S : Salinity 

VS : vertical shear currents 

TD : Thermocline depth 

 

4.4 Area definitions  

 

Within our YFT study area R2, we define 3 sub-areas, i.e., LL operating area, minimum 

YFT habitat area and high YFT habitat area (Fig. 3). We need to define minimum YFT 

area as there are nearly 50% of 0 (zero) YFT if we use data in the whole LL operating 

area which makes GLM runs difficult. This is because the southern part of this area (R2) 

is fishing grounds for southern bluefin tuna. We define minimum YFT habitat area as 

1ox1o area where at least one YFT was caught in 1980-2016. In addition, to develop 

plausible SI we need to use high YFT habitat area, which is defined as 1ox1o area where 

there are more than median levels of YFT catch (in number) in 1980-2016.            



 

IOTC-2018-WPTT20-18(REV_1) 

 

8 

 

 
Fig. 3 Area defined in this study 

 
4.5 Evaluation of HSI 
 
(1) GLM 
 
We will evaluate effectiveness of HSI in CPUE standardization through GLM, i.e., we 
simply test if HSI statistically significant by comparing following 2 GLMs.   
 
 Log (nominal CPUE + n) =µ + YR + MO + target + Skipper   + error  
   
 Log (nominal CPUE + n) =µ + YR + MO + target + Skipper + HSI   + error  
 
, where  
n :  constant (10% of average nominal CPUE)  
YR  :  year effect 
MO :  month (seasonal) effect  
Target  :  targeting effect using number of hooks between floats (NFBF)  
 
          Range of NHBF  class LL type  
      <= 7  1 shallow   

8 <= NHBF <=10  2 regular  
        11<= NHBF <=13  3 deep 
  14<= NHBF <=16  4 deep 
  17<= NHBF <= 19  5 ultra-deep 
  20<= NHBF  6  ultra-deep 
 
Skipper : Skipper’s effect (Call sign)  
HSI : Habitat Suitability Index 
Error  : Normal distribution  
 

Area definitions
R2（R3)

LL 
operating 

area

YFT mini. 
Habitat area 

1 fish <

YFT (high) habitat area 
(to estimate SI)

(median level of YFT catch)
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5. Results  
 

5.1 SI  

 

Fig. 4 and 5 shows resultant SI for 4 oceanographic parameters (frequency and % 

frequency respectively). It is clearly understood that all SI have unique ranges 

producing suitable YFT habitats.     

 

5.2 HSI 

 

HSI was computed using the equation (1) (page 7) by year, month and 1ox1o area. Fig. 6 

shows the situation of average HSI by quartiles, i.e., HSI=0.58(25%tile), HSI=0.71 

(50%tile/median) and HSI=0.71(75%tile). We use the red zone for GLM as these are 

high HSI area where the ecological processes produce good habitat areas. 

 

5.3 Evaluation of HSI  

 

BOX 1-2 show results of GLM with and without HSI term respectively. ANOVA tables in 

BOX 2 clearly indicates that HSI is the strongest term affecting nominal CPUE. Thus, HSI 

is likely the important factor in CPUE standardization in our case study. Fig. 7 shows 

the comparison of trends among nominal CPUE and STD_CPUE with and without HSI, 

which indicates both STD_CPUE smooth out nominal CPUE well. However, trends 

between STD_CPUE with and without HSI do not show much differences. This 

concludes that HSI is highly significant factor affecting nominal CPUE, but HSI did not 

change the trend of STD_CPUE without HSI.  

 

One of possible reasons is that in this study, HSI is annual based, which may mask 

seasonal effects thus two trends are resulted in the similar outcome. SI are largely 

different by season in fishing ground forecasting in Pacific, season specific SI should be 

used (personal communication with Dr Itoh, Environment Simulation Laboratory, 

Japan).   

 

Hence, it is not possible to evaluate on effectiveness of HSI in this case study. We need 

to do further investigation applying season-based SI in other areas, species and/or 

fleets.  
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Fig. 4 SI (frequency distribution for number of operations) for 4 oceanographic parameters 
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Fig. 5 SI (% frequency distribution for number of operations) for 4 oceanographic parameters. 
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Fig. 6 Distribution of average HSI by quantile and 1ox1o area 

HSI=0.58(25%tile), HSI=0.71 (50%tile/median) and HSI=0.71(75%tile) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 Comparisons among nominal CPUE and STD_CPUE with and without HSI 
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BOX 1 Results of GLM: base case (without HSI)   

 

Log (nominal CPUE + n) =µ + YR + MO + target + Call(Skipper)   + error  

 

       Df  Deviance  Resid. Df  Resid. Dev F     Pr(>F) 

NULL  100822 172578                        

Year    36  17716.4  100786  154862 504.404  < 2.2e-16 *** 

Month 11  29846.2 100775  125016 2781.011  < 2.2e-16 *** 

Target    5    1813.6    100770 123202  371.763  < 2.2e-16 *** 

Call    583  25454.7 100187  97747    44.751  < 2.2e-16 *** 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
BOX 2 Results of GLM with HSI   

 

Log (nominal CPUE + n) =µ + YR + MO + target + Call (Skipper) + HSI   + error  

 

        Df  Deviance  Resid. Df  Resid. Dev F     Pr(>F)     

NULL              100822  172578                        

Year     36  17716.4   100786  154862  521.702 < 2.2e-16 *** 

Month  11 29846.2   100775  125016  2876.383  < 2.2e-16 *** 

Target    5    1813.6    100770  123202  384.512  < 2.2e-16 *** 

Call    583  25454.7   100187 97747  46.286 < 2.2e-16 *** 

HSI       1    3241.9    100186 94505  3436.814 < 2.2e-16 *** 
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6. Discussion  
 
As this is the preliminary study with only one case study, it is not possible to provide 
any conclusions on the effectiveness of HSI in CPUE standardization. We will discuss 
issues to improve the situation.     
 
(1) SI 
 
In fisheries related studies, HSI are normally applied using CPUE (for example, fishing 
grounds forecasting study, habitat study, ecological study etc.). However, in our case, 

we cannot use CPUE-based HSI in CPUE standardization and we will have CPUE in both 
sides of GLM or other statistical methods, which is a fundamental violation of 
assumptions. Thus, we decided to use operation-based SI instead of CPUE-based SI.   
 
However, we do not know if operation-based SI are valid to use because operation-
based SI may be influenced by vessel aggregations due to nature of fishing operations 
but not driven by intrinsic YFT habitat. This is one of major reasons why we cannot 
make any conclusions. To mitigate this problem, we investigated (fisheries 
independent) SI through past literature (Appendix A). We found that some ranges of SI 
(oceanographic parameters) are very similar to those in our case study. However, we 
could not find the SI frequencies (degrees of suitability). Thus, the validity of SI is still 
unknown.  

 
As a future work, we may be able to evaluate operation-based SI by comparing CPUE-
based SI estimated in the same area, i.e., if both SI patterns are similar, operation-
based SI is valid as proxy of CPUE-based SI (Fig. 8). Thus, we can use operation-based 
HSI in CPUE standardization. 

 

  

 
    
 
 
 
 
 
 
 
 
 
Fig. 8 Possible evaluation method if the operation-based SI is valid by comparing to CPUE-based SI. 
If both are similar patterns as in this graph, then operation-based SI is the proxy for CPUE-based SI. 
Then HSI can be estimated and incorporated to CPUE standardization.  
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(2) Other issues   

 

Even if operation-based SI is validated by the method explained in the previous section, 

we need to work three more issues to obtain reliable HSI.  

 

 Seasonal effects  

 

In this preliminary study, we developed annual based SI. However, YFT SI changes by 

season, we need to develop seasonal-based SI and HSI in the future. This is because 

YFT distributions (fishing grounds) vary by season.   

 

 Sensitivity analyses  

 

In this preliminary study, we set up arbitrary definitions such as depths for 

oceanographic data (105m and 205m), areas (boundaries) (Fig. 3, page 8), HSI area for 

CPUE standardization (Fig.7, page12), classes intervals of SI (Fig. 4-5, page 10-11) (HSI 

values are influenced by intervals, personal communication with Dr Itoh, Environment 

Simulation Laboratory) etc. We may need sensitivity analyses to seek optimum 

definitions that can estimate reliable HSI.     

 

 Additional case studies 

 

As we have conducted only one case study, we cannot make any general conclusions. 

We need to expand case studies further to cover other arears, species and fleets.   

 

(3) Alternative approaches using climate index (DMI and IOI) 

 

For this time, we applied DMI (Dipole Mode Index) and IOI (Indian Ocean Index) as the 

alternative parameters in our case study area (temperate area) if operation-based SI is 

not validated. This is because that DMI and IOI influence oceanographic conditions 

such as sea temperature, salinity, vertical shear currents and thermocline depths. DMI 

and IOI data were provided by Dr Francis Marsac (IRD, France). 

 

Similar GLM analyses were conducted and results are presented in Appendix B. It was 

concluded that DMI and IOI are not significant in CPUE standardization at all. The 

possible reason is that these indices are based on the tropical areas, thus they will not 

contribute significantly to CPUE standardization. Thus, we need to apply and test these 

indices in the tropical areas.  
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Appendix A References on SI (Suitable Index) for YFT  

 

This Appendix lists relevant references on SI for YFT (oceanographic variables) to 

examine if operation-based SI used in this study are similar to those available SI related 

information, especially fisheries independent data based on tagging experiments. 

Three types SI used in this study are investigated from three Oceans (Pacific, Indian 

and Atlantic), i.e., salinity, sea temperature and depth related data.   
 

YFT SI: Salinity 

 

 

YFT SI: Thermocline depth 

 

Area Salinity Note Title of source Author(s) Year

Indian Ocean 35.2 psu 50-200m

FACTORS AFFECTING

DISTRIBUTION OF ADULT

YELLOWFIN TUNA (THUNNUS

ALBACARES) AND ITS

REPRODUCTIVE ECOLOGY IN THE

INDIAN OCEAN BASED ON

JAPANESE TUNA LONGLINE

FISHERIES AND SURVEY

INFORMATION

Romena, November A 2001
IOTC-2001-

WPTT-10

35.30-35.69 psu
closely correlated

to CPUE

35.40-35.49 psu

more closely

correlated to

CPUE)

Area Salinity Depth Title of source Author(s) Year

Pacific Ocean

(Central Pacific

Ocean)

34.22-35.25 psu

Using remote-sensing data to

detect habitat suitability for

yellowfin tuna in the Western and

Central Pacific Ocean

KUO-WEI YEN,

HSUEH-JUNG LU,

YI CHANG and

MING-AN LEE

2012

Yellowfin Tuna Habitat - Salinity

Indian Ocean

Environmental preferences of

longlining for yellowfin tuna

(Thunnus albacares) in the

tropical high seas of the Indian

Ocean

SONG Liming

ZHANG Yu

*XU Liuxiong

JIANG Wenxin

WANG Jiaqiao

2006
IOTC-2006-

WPTT-13

Area Thermocline Depth Note Title of source Author(s) Year

Indian Ocean

(Arabian Sea)

（Jan-Jun）

100.8-141.9ｍ
the depth of the

20℃ isotherm

INFLUENCE OF THE MARINE

ENVIRONMENT VARIABILITY

ON THE YELLOWFIN TUNA

(THUNNUS ALBACARES)

CATCH RATE BY THE

TAIWANESE LONGLINE

FISHERY IN THE ARABIAN

SEA, WITH SPECIAL

REFERENCE TO THE HIGH

CATCH IN 2004

Kuo-Wei Lan,

Tom Nishida,

Ming-An Lee,

Hsueh-Jung Lu,

Hsiang-Wen Huang,

Shui-Kai Chang,

Yang-Chi Lan

2012

Yellowfin Tuna Habitat - TD
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Area Temperature Note Title of source Author(s) Year

25-27℃ (day)
upper part of the

thermocline

Above 27℃ (night) warm mixed layer

Indian Ocean 17-22℃ 50-200m

FACTORS AFFECTING DISTRIBUTION OF ADULT

YELLOWFIN TUNA (THUNNUS ALBACARES) AND

ITS REPRODUCTIVE ECOLOGY IN THE INDIAN

OCEAN BASED ON JAPANESE TUNA LONGLINE

FISHERIES AND SURVEY INFORMATION

Romena, November A 2001
IOTC-2001-WPTT-

10

14-17.9℃
closely correlated

to CPUE

16.0-16.9℃
more closely

correlated to CPUE

Indian Ocean

(Northeast Indian

Ocean)

28-30 ℃ SST

Environmental preferences of yellow tuna

(Thunnus albacores) in the northeast Indian

Ocean: an application of remote sensing data to

longline catches

Rajapaksha J.K. ,

Nishida T. and

Samarakoon L.

2010
IOTC-2010-WPTT-

43

25.1-29.3℃ SST

21.7-23.4℃
ST/subsurface

105m

Area Temperature Note Title of source Author(s) Year

Atlantic Ocean

(Tropical Atlantic

Ocean)

22-29℃ SST
Forecasting models for tuna fishery with

aerospatial remote sensing
J.M. STRETTA 1991

14-29℃
Fish spent 99.5±

0.2% of their time

22-29℃

※Nocturnal

distribution is

wamer

→Night：90.7±

0.2%

→Day：64.7±6.2%

Atlantic Ocean

(equatorial

Atlantic Ocea)

above 24-25℃

Ocean variations associated with fishing

conditions for yellowfin tuna (Thunnus albacares)

in the equatorial Atlantic Ocean

Kuo-Wei Lan,

Ming-An Lee,

Hsueh-Jung Lu,

Wei-Juan Shieh,

Wei-Kuan Lin,

Szu-Chia Kao

2011

Area Temperature Note Title of source Author(s) Year

Pacific Ocean

(California Bight)
17.5-20.5℃

Environmental preferences of yellow®n tuna

(Thunnus albacares ) at the northern extent of its

range

B. A. Block

J. E. Keen

B. Castillo

 H. Dewar

E. V. Freund

D. J. Marcinek

 R. W. Brill á

C. Farwell

1997

Pacific Ocean

(Hawaiian

Island/eastern

Pacific)

18-29℃

Fish spent >90% of

their time in water

above 22℃

Horizontal movements and depth distribution of

large adult yellowfin tuna (Thunnus albacares)

near the Hawaiian Islands, recorded using

ultrasonic telemetry: implications for the

physiological ecology of pelagic

R. W. Brill,

B. A. Block, C. H. Boggs,

K. A. Bigelow, E. V.

Freund, D. J. Marcinek

1999 Brill et al. 1999

Pacific Ocean

(Baja

Califronia/Mexico)

16-29℃ SST

Movements, behavior, and habitat utilization of

yellowfin tuna (Thunnus albacares) in the Pacific

Ocean off Baja California, Mexico, determined

from archival tag data analyses, including

unscented Kalman filtering

Kurt M. Schaefer a,

Daniel W. Fuller,

Barbara A. Block

2011
Schaefer et al.

2011

Pacific Ocean

(northeastern

Pacific Ocean)

17-31 SST

Movements, behavior, and habitat utilization of

yellowfin tuna (Thunnus albacares) in the

northeastern Pacific Ocean, ascertained through

archival tag data

Kurt M. Schaefer, Daniel

W. Fuller, Barbara A.

Block

2007
Schaefer et al.

2007

Pacific Ocean

(Central Pacific

Ocean)

29.8-30.5℃ SST

Using remote-sensing data to detect habitat

suitability for yellowfin tuna in the Western and

Central Pacific Ocean

KUO-WEI YEN,

HSUEH-JUNG LU,

YI CHANG and

MING-AN LEE

2012

Pacific Ocean

(Tropical Pacific

Ocean)

25-30℃ SST

Using Remote-Sensing Environmental and Fishery

Data to Map Potential Yellowfin Tuna Habitats in

the Tropical Pacific Ocean

Kuo-Wei Lan,

Teruhisa Shimada,

Ming-An Lee,

Nan-Jay Su,

Yi Chang

2017

Yellowfin Tuna Habitat - Temperature

Indian Ocean

(Comoros Islands)

Behaviour of yellowfin tuna (Thunnus albacares)

and skipjack tuna (Katsuwonus pelamis) around

fish aggregating devices (FADs) in the Comoros

Islands as determined by ultrasonic tagging

Patrice Cayré 1990

Indian Ocean

(Arabian Sea)

（Jan-Jun）

INFLUENCE OF THE MARINE ENVIRONMENT

VARIABILITY ON THE YELLOWFIN TUNA (THUNNUS

ALBACARES) CATCH RATE BY THE TAIWANESE

LONGLINE FISHERY IN THE ARABIAN SEA, WITH

SPECIAL REFERENCE TO THE HIGH CATCH IN 2004

Kuo-Wei Lan,

Tom Nishida,

Ming-An Lee,

Hsueh-Jung Lu,

Hsiang-Wen Huang,

Shui-Kai Chang,

Yang-Chi Lan

2012

Indian Ocean

Environmental preferences of longlining for

yellowfin tuna (Thunnus albacares) in the

tropical high seas of the Indian Ocean

SONG Liming

ZHANG Yu

*XU Liuxiong

JIANG Wenxin

WANG Jiaqiao

2006
IOTC-2006-WPTT-

13

Weng et al. 2009
Atlantic Ocean

(Gulf of Mexico)

Habitat and behaviour of yellowfin tuna Thunnus

albacares in the Gulf of Mexico determined using

pop-up satellite archival tags

K. C. WENG,

M. J. W. STOKESBURY,

A. M. BOUSTANY,

A. C. SEITZjj,

S. L. H. TEO,

S. K. MILLER

B. A. BLOCK

2009

YFT SI: Sea temperature 



 

IOTC-2018-WPTT20-18(REV_1) 

 

20 

 

YFT SI: Depth related information  

 

Area Depth NOTE Title of source Author(s) Year

Indian Ocean

(Comoros Islands)

70-110ｍ (Day)

40-70ｍ (Night)

Behaviour of yellowfin tuna (Thunnus

albacares) and skipjack tuna (Katsuwonus

pelamis) around fish aggregating devices

(FADs) in the Comoros Islands as

determined by ultrasonic tagging

Patrice Cayré 1990

50-200m 17-22℃

75-130m

100-179.9m
closely correlated to

CPUE

120-139.9m
more closely correlated

to CPUE

Indian Ocean

(Seychelles -

WesternIndian

Ocean)

0 - 75m
Fish spent 85% of their

time

Deep diving behavior observed in

yellowfin tuna

(Thunnus albacares)

Laurent Dagorn,

Kim N. Holland,

Jean-Pierre Hallier,

Marc Taquet,

Gala Moreno,

Gorka Sancho,

David G. Itano,

Riaz Aumeeruddy,

Charlotte Girard,

Julien Million

Alain Fonteneau

2006

Area Depth Title of source Author(s) Year

0 - 200m
Fish spent 93.4±2.0% of

their time

0 - 50m

Fish spent 72±5.0% of

their time

※Depth distribution

was shallower at night

→NIght：84.9±4.6%

→Day：59.3±6.1%

(corresponds

Atlantic Ocean

(Gulf of Mexico)
0 - 100m

→Total time spent at

night：99.8%

→Total time spent

during the day：90%

Vertical and Horizontal Movements of

Yellowfin Tuna in the Gulf of Mexico

J. P. Hoolihan

R. J. D. Wells

J. Luo

B. FaltermanA

E. D. Prince

J. R. Rooker

2014

Area 水深 Title of source Author(s) Year

Pacific Ocean

(California Bight)
18 - 45ｍ (above the thermocline)

Environmental preferences of yellow®n

tuna (Thunnus albacares ) at the northern

extent of its range

B. A. Block

J. E. Keen

B. Castillo

 H. Dewar

E. V. Freund

D. J. Marcinek

 R. W. Brill á

C. Farwell

1997

Pacific Ocean

(Hawaiian

Island/eastern

Pacific)

0 - 100m

Fish spent 80% of their

time

(in or immediately

below the relatively

uniform temperature

surface-layer)

Horizontal movements and depth

distribution of large adult yellowfin tuna

(Thunnus albacares) near the Hawaiian

Islands, recorded using ultrasonic

telemetry: implications for the

physiological ecology of pelagic

R. W. Brill,

B. A. Block, C. H.

Boggs, K. A.

Bigelow, E. V.

Freund, D. J.

Marcinek

1999
Brill et al.

1999

Yellowfin Tuna Habitat - Depth

2009
Weng et

al. 2009

K. C. WENG,

M. J. W.

STOKESBURY,

A. M. BOUSTANY,

A. C. SEITZjj,

S. L. H. TEO,

S. K. MILLER

B. A. BLOCK

Habitat and behaviour of yellowfin tuna

Thunnus albacares in the Gulf of Mexico

determined using pop-up satellite archival

tags

Atlantic Ocean

(Gulf of Mexico)

Indian Ocean

Environmental preferences of longlining

for yellowfin tuna (Thunnus albacares) in

the tropical high seas of the Indian Ocean

SONG Liming

ZHANG Yu

*XU Liuxiong

JIANG Wenxin

WANG Jiaqiao

2006
IOTC-2006-

WPTT-13

Indian Ocean

FACTORS AFFECTING DISTRIBUTION OF

ADULT YELLOWFIN TUNA (THUNNUS

ALBACARES) AND ITS REPRODUCTIVE

ECOLOGY IN THE INDIAN OCEAN BASED ON

JAPANESE TUNA LONGLINE FISHERIES AND

SURVEY INFORMATION

Romena,

November A
2001

IOTC-2001-

WPTT-10
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Appendix B Effectiveness of climate indices (DMI+IOI) in CPUE standardization (as alternative of HSI) 

 

At this stage we are not certain if operation-based SI is valid to estimate HSI. Hence, 

we attempted to incorporate alternative indices, i.e., the climate index such as DMI 

(Di-pole Mode Index) and IOI (Indian Ocean Index). They are temporal (monthly) 

indices and they will influence oceanographic conditions such as sea temperature, 

salinity, thermocline depth and vertical shear currents that we used in our case study. 

That is the reason why DMI and IOI can be the alternative indices for HSI. As they are 

not based on CPUE and independent covariates, we do not need to worry about the 

violation of assumptions in GLM. In the same way as for HSI, we compare the following 

2 GLMs to evaluate effectiveness of IOI and DMI. As IOI and DMI do not have spatial 

elements, we do not need to worry about spatial problems such as oceanographic data, 

thus we use the YFT minimum habitat area for GLM (Fig. 3, page xx).  

 

 Log (nominal CPUE + n) =µ + YR + MO + target + Skipper    + error  

   

 Log (nominal CPUE + n) =µ + YR + MO + target + Skipper + IOI + DMI   + error  

 

BOX 3-4 show results of GLM with and without DMI+IOI term respectively. ANOVA 

(BOX 4) clearly indicates that DMI+IOI produced very weak effects on nominal CPUE. 

Thus, DMI+IOI is unlikely the important factor in CPUE standardization. Fig. 9 shows 

the comparison among nominal CPUE and STD_CPUE with and without DMI+IOI, which 

indicates both STD_CPUE smooth out nominal CPUE well. However, trends between 

STD_CPUE with and without DMI+IOI are almost identical. This concludes that DMI+IOI 

is not significant factor affecting nominal CPUE. 

 

One of possible reasons why DMI+IOI are weak and not significant terms, is that they 

are based on the tropical areas, thus they will not affect nominal CPUE in the 

temperate area (our case study area).    
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BOX 3 Results of GLM: base case (without DMI+IOI)   

 

Log (nominal CPUE + n) =µ + YR + MO + target + Call(Skipper)   + error  

 

      Df  Deviance  Resid. Df  Resid. Dev  F      Pr(>F) 

NULL              126274    168290                        

Year     36     14833     126238    153457   498.129   < 2.2e-16 *** 

Month    11    28649     126227    124808   3148.593   < 2.2e-16 *** 

Target    5      1916     126222    122892   463.272   < 2.2e-16 *** 

Call    565     18952     125657    103940   40.553   < 2.2e-16 *** 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
BOX 4 Results of GLM with DMI+IOI   

 

Log (nominal CPUE + n) =µ + YR + MO + target + Call (Skipper) + DMI +IOI   + error  

 

    Df  Deviance Resid. Df Resid. Dev  F      Pr(>F)     

Year     36  14833.3   126238  153457   498.2075   < 2.2e-16 *** 

Month 11  28648.6   126227  124808   3149.0888  < 2.2e-16 *** 

Target  5  1916.0    126222    122892   463.3452   < 2.2e-16 *** 

Call  565 18952.4   125657    103940   40.5594   < 2.2e-16 *** 

DMI      1      11.8     125656    103928   14.2938   0.0001565  

IOI       1       6.2     125655    103922   7.4723   0.0062664 
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Fig. 9 Comparisons among nominal CPUE, STD_CPUE with and without climate indices (DMI+IOI) 
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