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Abstract	
Assessing	 the	 accuracy	 of	 biomass	 estimates	 obtained	 through	 echosounder	 buoys	 and	 improving	 the	

current	 algorithms	 used	 for	 estimating	 the	 associated	 biomass	 is	 a	 key	 step	 towards	 the	 derivation	 of	

fisheries-independent	 abundance	 indices	 for	 tropical	 tuna.	 Recent	 results	 obtained	 through	 supervised	

learning	 algorithms	 on	 M3I	 buoys,	 one	 of	 the	 main	 buoy	 models	 deployed	 by	 the	 French	 tuna	 purse-

seiners,	 demonstrate	 a	 good	 accuracy	 for	 assessing	 the	 presence	 and	 absence	 of	 tuna	 under	 FADs,	

regardless	of	the	ocean.	However,	these	algorithms	(and	buoy	model)	are	less	accurate	in	determining	the	

size	 of	 tuna	 aggregations.	 In	 this	 paper	we	 investigated	 possible	ways	 of	 improving	 the	 classification	 of	

tuna	 aggregation	 sizes	 by	 accounting	 for	 the	 species	 composition	 constituting	 the	 aggregation.	 Also,	we	

inspected	 how	 environmental	 variables	 (sea-surface	 temperature	 and	 chlorophyll-a)	 can	 affect	 the	

accuracy	of	the	biomass	estimates.	Our	results	demonstrate	that	accounting	for	the	species	composition	of	

tuna	aggregation,	sea-surface	temperature	and	chlorophyll-a	does	not	improve	significantly	the	accuracy	of	

biomass	estimates	with	this	buoy	model.	

Introduction	

Echosounder	buoys	are	used	worldwide	by	purse	seiners	to	remotely	assess	the	amount	
of	 tuna	 aggregated	 around	 drifting	 FADs	 (DFADs).	 The	 number	 and	 wide	 spatial	
distribution	of	DFADs	deployed	(Maufroy	et	al.	2015,	Moreno	et	al.	2016),	coupled	with	
their	 constantly	 evolving	 technology	 (Lopez	 et	 al.	 2014,	Moreno	 et	 al.	 2016),	 grant	 to	
these	fishing	tools	the	status	of	a	privileged	platform	for	the	observation	of	the	pelagic	
communities	that	constitute	the	aggregation	(Moreno	et	al.	2016;	Brehmer	et	al.	2018).	
Recent	 studies	 proposed	 to	 use	 this	 new	 data	 for	 building	 fisheries-independent	
abundance	indices	for	tropical	tuna	(Santiago	et	al.	2016,	Capello	et	al.	2016,	Baidai	et	al.	
2017).	Assessing	 the	accuracy	of	biomass	estimates	obtained	 through	 the	echosounder	
buoys	and	improving	the	current	algorithms	used	for	estimating	the	associated	biomass	
is	a	key	step	towards	the	derivation	of	such	indices.	

In	 a	 recent	 paper	 «SUPERVISED	 LEARNING	 APPROACH	 FOR	 DETECTING	 PRESENCE-	
ABSENCE	OF	TUNA	UNDER	FAD	FROM	ECHOSOUNDER	BUOYS	DATA.	»	by	Baidai	et	al	(see	
the	Annex),	we	proposed	a	new	method	for	processing	the	echosounder	data	collected	
by	the	M3I	Marine	Instruments	echosounder	buoys,	one	of	the	main	buoy	models	which	
equip	 the	 DFADs	 deployed	 by	 tuna	 purse-seiners.	 Thanks	 to	 the	 availability	 of	 a	 large	
acoustic	database	(all	echosounder	buoys	deployed	by	the	French	fleet)	and	observers’	
data,	 we	 could	 obtain	 biomass	 estimates	 using	 an	 empirical	 approach,	 based	 on	 a	
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supervised	 learning	algorithm	(random	forest)	trained	on	actual	catch	data	reported	by	
on-board	 observers	 on	 the	 same	 aggregations.	 The	 accuracy	 of	 the	 method	 was	
evaluated	in	the	Atlantic	and	Indian	Ocean	and	showed	that	the	approach	had	very	good	
efficiency	 for	 recognition	 of	 presence/absence	 of	 tuna	 but	 was	 less	 accurate	 for	
estimating	the	aggregation	sizes.	Among	the	possible	causes	of	the	loss	of	accuracy	in	the	
multiclass	classification,	we	identified	the	influence	of	environmental	conditions	and	the	
multispecific	 nature	 of	 tuna	 aggregations.	 Environmental	 conditions	 is	 well	 known	 to	
affect	 both	 accuracy	 of	 acoustic	 measurements	 (Bamber	 and	 Hill	 1979,	 Straube	 and	
Arthur	1994)	 and	 tuna	abundance	 (Boyce	et	 al.	 2008),	 and	 fishermen	usually	 integrate	
various	 environmental	 factors	 in	 their	 empirical	 interpretation	 of	 echosounder	 buoys	
data.	

Moreover,	skipjack	has	a	lower	target	strength	than	yellowfin	and	bigeye	tuna	(Bertrand	
et	al.	1999,		Josse	and	Bertrand	2000,	Boyra	et	al.	2018)and	thus	the	same	acoustic	signal	
could	 correspond	 to	 very	 different	 aggregation	 sizes,	 depending	 on	 the	 species	
composition	of	the	aggregation.	Similarly,	large	bigeye	and	yellowfin	tuna	could	provide	a	
different	acoustic	response	relative	to	small	individuals,	due	to	the	fact	that	they	occupy	
lower	 depths,	 where	 the	 buoy	 may	 be	 less	 efficient	 in	 detecting	 the	 backscattered	
acoustic	energy.		

This	paper	 constitutes	 an	update	of	 the	 recent	 results	obtained	by	Baidai	 et	 al	 (2018).	
Based	 on	 the	 same	 data,	 we	 investigated	 how	 to	 improve	 the	 supervised	 learning	
multiclass	classification	algorithm	to	account	for	the	species	composition	and	size	of	the	
individuals	 constituting	 the	 aggregation	 and	 we	 analyzed	 the	 contribution	 of	 two	
environmental	parameters	(chlorophyll-a	and	sea	surface	temperature)	in	the	algorithm	
accuracy.	

DATA	AND	METHODS	

Species	composition	of	the	aggregations	

We	 considered	 the	 observers	 data	 reporting	 the	 amount	 of	 tuna	 caught	 at	 each	 FAD	
having	 a	 unique	 buoy	 ID	 present	 in	 the	 echosounder	 buoy	 database	 (567	 sets	 in	 the	
Indian	Ocean	and	942	sets	 in	 the	Atlantic	Ocean,	see	details	 in	Baidai	et	al	2018	 in	the	
Annex).	 First,	 we	 characterized	 the	 catch-per-set	 composition	 of	 our	 database,	
considering	 the	 amount	 of	 skipjack	 (SKJ),	 small	 yellowfin	 and	 bigeye	 (s-YFT-BET,	
individuals	<=	10	Kg)	and	large	yellowfin	and	bigeye	(l-YFT-BET,	individuals	>	10	Kg)	tuna	
caught	 per	 set.	 Globally,	 Figure	 1	 demonstrate	 that	 the	 catch	 data	 present	 in	 our	
database	are	representative	of	 the	multi-specific	nature	of	 tuna	aggregations	caught	at	
FADs	where,	despite	the	majority	of	sets	showed	a	larger	percentage	of	SKJ,	as	expected,	
there	is	a	significant	amount	of	s-YFT-BET	and	l-YFT-BET,	particularly	in	the	Indian	ocean.		

	



	

Figure	 1:	 Catch-per-set	 composition	 for	 each	 ocean	 (SKJ	 :	 Skipjack	 tuna;	 s-YFT-BET:	 small	 yellowfin	 and	
bigeye		and	l-YFT-BET	:	large	yellowfin	and	bigeye	tuna).	The	ratio	indicates	the	tonnage	reported	for	
each	species/size	class	relative	to	the	total	catch	per	set	(total	tons	of	tuna).	

	

Reweighted	 catch	 data	 accounting	 for	 the	 species	 composition	 of	 the	 aggregation	 in	
the	classification	algorithm	

In	order	to	test	the	hypothesis	(H0)	that	accounting	for	the	catch	composition	improves	
the	 quality	 of	 the	 classification	 algorithm,	 the	 multiclass	 random	 forest	 algorithm	
described	 in	 Baidai	 et	 al	 2018	 (Annex),	 was	 run	 on	 the	 catch	 and	 echosounder	 buoys	
dataset,	with	the	catch	data	reweighted	as	follows:	

Catch_eff	s-YFT-BET	=	[s-YFT-BET]	+	α	[SKJ]	+	β	[l-	YFT-BET]	 (Equation	1)	
	
were	the	brackets	denote,	for	each	species/size-class,	the	reported	catch	per	set	(in	tons)	
and	 α, β 	 are	 two	 multiplicative	 constants.	 The	 above	 equation,	 for	 α 	 and	 β in	 the	
interval	 [0,1),	accounts	 for	the	fact	that	the	buoy	underestimates	the	actual	amount	of	
[SKJ]	and	[l-	YFT-BET]	relative	to	[s-YFT-BET],	due	to	the	lower	target	strenght	of	SKJ	and	
the	 lower	 detectability	 of	 l-YFT-BET.	 In	 the	 following,	H0	was	 tested	by	 comparing	 the	
accuracy	of	the	classification	algorithm	for	different	values	of	α, β 	in	[0,1)	relative	to	the	
case	α=1, β=1.	If	H0	holds,	an	improved	accuracy	of	the	classification	algorithm	would	be	
expected	for	α<β<1.	

Environmental	parameters	

The	random	forest	multi-class	classification	algorithm	was	run	integrating	the	sea	surface	
temperature	(SST)	and	chlorophyll-a	(Chla),	as	classification	features.	SST	and	Chla	data	
were	 obtained	 from	 the	 daily	 data	 collected	 by	MODIS	 (Moderate	 Resolution	 Imaging	
Spectroradiometer)	 global	 9	 km	 resolution	 product,	 from	 2014	 to	 2017	 (ORNL	 DAAC,	
2018).	 The	missing	values	 for	a	defined	 time	and	position	have	been	 replaced	by	 their	
monthly	average	at	the	same	position.	Figures	3	and	4	show	an	example	of	the	values	of	



SST	 and	 Chla	 recorded	 during	 one	 month	 in	 the	 proximity	 of	 the	 buoy	 positions	
constituting	our	database	in	the	Indian	and	Atlantic	Ocean,	respectively.	The	boxplot	of	
Figure	 5	 shows	 the	 overall	 values	 of	 SST	 and	Chla	 recorded	 in	 the	 proximity	 of	 all	 the	
buoys	constituting	our	database	for	the	two	oceans.	

RESULTS	

Environmental	parameters	

Overall	performances	of	 the	multi-class	 classification	algorithm	 integrating	 the	SST	and	
Chla	as	classification	features	are	shown	in	Table	1	and	2	for	the	two	oceans.	Although	
the	identification	of	tuna	absence	and	large	tuna	aggregations	under	FADs	(more	than	25	
tons)	 remain	 relatively	 acceptable	 (precision	 respectively	 0.80	 and	 0.44	 in	 the	 Atlantic	
Ocean,	and	0.83	and	0.59	 in	the	 Indian	ocean,	the	classification	algorithms	are	still	 less	
effective	 in	 identifying	 small	 (less	 than	 10	 tons)	 and	 intermediate	 tuna	 aggregation	
(between	10	and	25	tons).	However,	the	contribution	of	SST	and	Chla	in	the	classification	
process	appears	higher	than	that	of	several	acoustic	predictors	(Figure	6).		

	
Figure	2:	Examples	of	sea	surface	temperature	and	sea	surface	chlorophyll	located	at	the	position	of	277	

buoys	present	within	our	database	(acoustic	data	+	catch	data)	during	August	2016	in	the	Indian	
Ocean.	



	

Figure	3:	Examples	of	sea	surface	temperature	(top)	and	sea	surface	chlorophyll	a	(bottom)	located	at	the	
position	of	70	buoys	present	within	our	database	(acoustic	data	+	catch	data)	during	Mars	2016	in	
the	Atlantic	Ocean.	

	



	

Figure	4:	Boxplot	of	sea	surface	temperature	and	chlorophyll-a	recorded	at	buoys	positions	in	the	Atlantic	
and	Indian	ocean.	The	outliers	are	omitted	for	obtaining	a	more	visible	plot.		

	

Table	1:	Summary	of	multiclass	classification	performance	for	the	 Indian	Ocean	with	the	SST	and	Chla	as	
predictor	variables.	Means	and	standard	deviations	(in	bracket)	of	evaluation	metrics	by	classes.	

Evaluation	
Metric	

Indian	

No	tuna	 <10	tons	 [10,	25	tons]	 >	25	tons	 Average	

Sensitivity	 0.95	(0.01)	 0.13	(0.05)	 0.21	(0.02)	 0.39	(0.05)	 0.42	
Specificity	 0.58	(0.03)	 0.95	(0.01)	 0.95	(0.006)	 0.96	(0.01)	 0.86	
Precision	 0.85	(0.01)	 0.13	(0.03)	 0.36	(0.03)	 0.55	(0.06)	 0.47	
F1	score	 0.90	(0.01)	 0.13	(0.04)	 0.27	(0.02)	 0.45	(0.05)	 0.44	
Accuracy	 0.76	(0.03)	
Kappa	 0.40	(0.01)	

	

Table	2:	Summary	of	multiclass	classification	performance	for	the	Atlantic	Ocean	with	the	SST	and	Chla	as	
predictor	variables.	Means	and	standard	deviations	(in	bracket)	of	evaluation	metrics	by	classes.	

Evaluation	
Metric	

Atlantic	

No	tuna	 <10	tons	 [10,	25	tons]	 >	25	tons	 Average	
Sensitivity	 0.85	(0.03)	 0.45	(0.06)	 0.35	(0.08)	 0.38	(0.07)	 0.49	
Specificity	 0.83	(0.05)	 0.88	(0.02)	 0.85	(0.02)	 0.920(0.02)	 0.86	
Precision	 0.81	(0.05)	 0.41	(0.05)	 0.32	(0.07)	 0.51	(0.11)	 0.49	
F1	score	 0.83	(0.03)	 0.43	(0.04)	 0.33	(0.07)	 0.43	(0.08)	 0.49	
Accuracy	 0.60	(0.04)	
Kappa	 0.42	(0.03)	

	



	

Figure	 6:	 Predictors	 importance	 from	 random	 forest	multiclass	 classification	 algorithm	with	 the	 SST	 and	
Chla	as	predictor	variables	for	the	Indian	Ocean.	Acoustic	predictors	refer	to	acoustic	values	recorded	
in	a	depth	layer	at	a	specific	day	period	(see	Annex).	

	



	

Figure	7:	Predictors	importance	from	random	forest	multiclass	classification	algorithm	with	the	SST	and	
Chla	as	predictor	variables	for	the	Atlantic	Ocean.	Acoustic	predictors	refer	to	acoustic	values	
recorded	in	a	depth	layer	at	a	specific	day	period	(see	Annex).	

	
Catch	composition	

Figures	 8	 and	 9	 shows	 the	 kappa	 and	 accuracy	 values	 (performance	 index	 of	 the	
classification	algorithm,	see	Annex)	of	the	classification	algorithm	for	different	values	of	
α, β indicate	that	there	is	little	improvement	in	the	multiclass	classification	when	a	lower	
weight	is	assigned	to	the	catches	of	SKJ	and	l-YFT-BET	composing	the	aggregation.	



	
 Figure	8.	Heat	map	of	kappa	and	accuracy	values	for	different	combinations	of	α, β in	the	Indian	ocean.	

 

	

Figure	9.	Heat	map	of	kappa	and	accuracy	values	for	different	combinations	of	α, β in	the	Atlantic	Ocean.	

Conclusion	

This	 study	 shows	 that,	 for	 the	 echosounder	 data	 obtained	 from	 the	 M3I	 buoys,	
accounting	 for	 two	 environmental	 parameters	 (SST	 and	 Chla)	 and	 for	 the	 species	
composition	of	the	aggregation	have	little	effects	on	the	accuracy	of	biomass	estimates.	
The	analysis	of	predictors’	importance	in	the	multiclass	classification	shows	that	SST	and	
Chla	 constitute	more	 relevant	predictors	 than	 some	of	 the	acoustic	 values	 recorded	 in	
the	water	column	(namely	acoustic	data	collected	at	surface	 layers	at	night).	However,	
their	integration	in	the	classification	process	did	not	induce	a	significant	improvement	of	
model	 performance.	 Further	 analyses	 could	 focus	 on	 the	 integration	 of	 other	
environmental	 factors,	 like	the	mixed	 layer	depth,	 that	may	be	more	relevant	than	SST	
and	 Chla.	 Finally,	 accounting	 for	 the	 catch	 composition	 of	 the	 aggregation	 did	 not	
demonstrate	to	improve	the	quality	of	the	classification.	Future	attempts	could	be	made	
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by	reducing	 the	number	of	classes	used	 for	 the	aggregation	sizes	 (like	considering	only	
<25t	and	>25t	classes).	Also,	the	application	of	this	algorithm	on	other	more	recent	buoy	
models,	 like	the	M3I+	Marine	 Instruments	buoys,	 that	work	on	double	frequencies	and	
has	an	 improved	hardware/software,	may	provide	more	accurate	results	 for	the	size	of	
the	aggregation.		
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SUMMARY 

This study presents a new methodology for analyzing acoustic data from commercial 
echosounder buoys that equip the drifting FADs (DFADs) deployed by tuna purse-seiners. Our 
approach is based on specific processing of acoustic information, combined with machine 
learning methods, to translate the raw outputs provided by the buoys into metrics of tuna 
presence and abundance. The classifications were built from a training dataset constituted from 
cross-referencing of acoustic and catch data recorded on the same schools, considered as tuna 
occurrences, and acoustic data recorded a few days after a deployment of new DFADs 
considered as tuna absences. Our results demonstrate that the detection of tuna aggregations 
from echosounder buoys was typically more effective during daytime periods and at ocean-
specific depths. The approach has very good efficiency for pattern recognition of presence and 
absence of tuna aggregation under DFADs regardless of the ocean (84 and 87 % of correct 
predictions respectively in Atlantic and Indian Ocean), but is less accurate for estimating the 
precise range of aggregation sizes. Future research lines for improving models performance 
are discussed. This work constitutes the first steps towards the development of novel fishery-
independent indices of abundance for tropical tuna based on acoustic data. 
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1. Introduction 
 
A wide diversity of marine fauna is known to aggregate naturally under floating objects. Although still poorly 
explained, this behavior is widely exploited by the fishermen, who deploy artificial floating objects (called fish 
aggregating devices or FADs) worldwide to improve their catches (Kojima 1956 ; Biais and Taquet 1990 ; 
Kakuma 2000 ; Taquet 2004). In the tropical tuna purse-seine fishery, the use of artificial drifting devices was 
first introduced in the late 1980s in the Eastern Pacific ocean by the US purse seine fleet (Lennert-Cody and Hall 
2000) and was later extended to all oceans and fleets from the 1990s (Fonteneau et al. 2013). These devices are 
referred to as Drifting Fish Aggregating Devices (DFAD), as opposed to anchored FADs, used near the coasts 
and mainly operated by artisanal fisheries (Itano et al. 2004; Scott et al. 2014). DFADs significantly improve the 
probability of success of tuna seiners' fishing sets (Fonteneau et al. 2000) and, currently, over half of the yearly 
tuna catches worldwide originate from DFADs (Miyake et al. 2010; Fonteneau et al. 2013). The instrumentation 
of DFADs with GPS beacons and echosounder buoys, which occurred in the mid and late 2000s, respectively, 
led to major changes in the fishing strategies and behavior of the purse-seine fleet (Lopez et al. 2014). By 
providing purse seiners with real-time remote information on the precise location of DFADs and the estimated 
size of the aggregation, echosounder buoys allow the elaboration of more productive exploration pathways, 
thereby contributing to the fishing efficiency (Suuronen et al. 2012). On the other hand, instrumenting DFADs 
with a constantly evolving technology (Lopez et al. 2014), grant them the status of a privileged platform for 
observing the epipelagic communities and scientists recently proposed to use the data collected at DFADs for 
scientific purposes (Moreno et al. 2016; Brehmer et al. 2018). 
 
One of the major opportunities offered by DFADs in scientific research is the possibility of using the biomass 
estimates provided by the echosounder buoys that equip them to provide fisheries-independent abundance 
indices for tropical tuna (Santiago et al. 2016, Capello et al 2016, Baidai et al. 2017). However, the direct use of 
the biomass estimates provided by the buoys is limited by the reliability and variability of the information 
provided, that depend on the hardware and software characteristics of the buoys and can vary depending on the 
buoy manufacturers (Lopez et al. 2014; Moreno et al. 2016, Santiago et al 2016). As a result, the data provided 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!
1 MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France yannick.baidai@ird.fr (corresponding author) 
2 Centre de Recherches Océanologiques (CRO), DRAV, 29, Rue des pêcheurs, BPV 18, Abidjan, Côte d’Ivoire 



by echosounder buoys are of heterogeneous types, natures and formats and little studies provided an assessment 
of their accuracies to the purpose of exploiting them for scientific purposes (Lopez et al. 2014, Baidai et al 
2017). Moreover, in order to limit the volume of satellite communications, only simplified values of the acoustic 
energy detected by the buoys at different layers are transmitted to the satellite. The loss of raw acoustic data is a 
major limitation to the use of conventional echo-integration techniques for scientific purposes and requires the 
development of dedicated approaches to estimate the presence and size of aggregations. 

This paper proposes a new method for processing the echosounder data collected by the M3I Marine Instruments 
echosounder buoys, one of the main buoy models which equip the DFADs deployed by tuna purse-seiners. 
Thanks to the availability of a large acoustic database (all echosounder buoys deployed by the French fleet), we 
could obtain biomass estimates using an empirical approach, based on a supervised learning algorithm trained on 
actual catch data reported by on-board observers on the same aggregations. The accuracy of the method could be 
evaluated in the Atlantic and Indian Ocean. This method offers the advantage of being easily transferable and 
adaptable to other existing buoy models and brands. 
 
 
 
2. Material and Methods 
 
2.1. Database description 
 
2.1.1. Echosounder buoy database 
 
We considered the echosounder buoys database hosted by Ob7/IRD, constituting the totality of the Marine 
Instruments echosounder buoys deployed by the French fleet between 2010 and nowadays. Our study focused on 
the period 2014-2017. Four different buoy models constituted the database: MSI, M3I, M4I and M3I+ (Figure 
1). These buoys are all equipped with GPS positioning devices, and differ mainly in the presence and 
specifications of their echosounders (Table 1). Of the 37526 unique buoy identifiers in the database from 2014 to 
2017, the M3I model was the most represented (Figure 1).This model is equipped with an echosounder powered 
by solar panels operating at a frequency of 50 KHz, with a power of 500 W, and a beam angle of 42° (Figure 2).  

In its default operating mode, the M3I buoy is programmed to sample the water column at 5-minutes intervals 
(288 pings per day). The acoustic data are processed by an internal buoy module that saves them, selects and 
transmits the best recorded sample (namely the sample that corresponds to the highest biomass) every 2-hour 
(default mode). Data exports are then carried out by satellite communications (6 samples per message 
transmitted every 12 hours in the default mode), during which GPS coordinates are also acquired. In addition to 
acoustic and geolocation data, these buoys also provide information on water temperature and battery level. 
 
The acoustic data generated by M3I buoys over the 2-hours sampling period correspond to 50 integer scores 
ranging from 0 to 7, representing the intensity of the acoustic signal detected at layers of 3-meters depth over a 
total detection range of 150 m (Figure 2). In the following, these 50 discrete scores are referred to as “acoustic 
sample”. Each acoustic sample is also associated with a biomass index calculated by an internal buoy algorithm.  
 
 
2.1.2 Observers data 
 
We considered observers’ data recorded during 2014-2017 from the observers programs “OCUP” and “DCF” 
(IRD) conducted in the Atlantic and Indian oceans. Two types of data were used to build the training dataset 
used in the analysis: DFAD deployment data and catch data for sets conducted on DFADs. The former consisted 
on the deployment of a new instrumented DFAD in the water, reporting the date and time of the deployment, 
GPS position and buoy unique ID. The catch data consisted of the estimated catch size for the tuna and bycatch 
species caught at DFADs, together with the GPS location of the set and the unique identifier of the buoy 
equipping the DFAD. Only the data for which the unique buoy identifier corresponded to a buoy identifier 
present in the echosounder buoys database were retained in the analysis. For catch data, null fishing sets and 
fishing sets for which the positions reported by the buoy and the observer were not consistent were excluded 
from the analysis. The final database consisted of 1509 catch data and 4506 deployment data (see Table 2). 
Catch data were also categorized into three classes of 0-10 tons, 10-25 tons and >25 tons, by summing the 
recorded catches of the target tuna species (yellowfin tuna, bigeye tuna and skipjack tuna), see Table 3.  
 
 
2.2. Acoustic data pre-processing 
 



In order to derive a buoy biomass index on a daily basis, we considered, for each buoy and day, a 50 × 12 
matrix, reporting the acoustic scores recorded at different depths (50 rows) and different times of the day (every 
2 hours in the default operating mode of the buoy, corresponding to 12 columns). To reduce the dimensionality 
of the problem, this matrix was pre-processed and the temporal and spatial information aggregated. First, in 
order to aggregate the acoustic samples over time, the 24-hours data were aggregated over 6 slices of 4 hours 
each, each slice containing the acoustic sample whose sum of scores corresponded to the maximum recorded 
over the period considered. This resulted in a matrix of 6 columns (one for each time slot), and 50 rows for the 
different depth layers. Secondly, clustering methods were used for identifying groups of homogeneous layers. 
The cluster analysis was based on a dissimilarity matrix computed from Euclidean distance and Ward's method 
for merging clusters (Murtagh and Legendre 2014)3. In each of the two oceans considered (Atlantic and Indian), 
excluding the first two layers (corresponding to the transducer blanking zone), 6 groups of layers were identified 
(Figure 3 and 4). The acoustic scores (denoted below as si

G) recorded for each of the i layers constituting a group 
G were summed and scaled to obtain a single score (S'G) per group, ranging between 0 and 1, according to Eq.1. 
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  (Eq. 1) 

 
where the sum runs over the nG layers belonging to group G and maxs is a constant denoting the maximum value 
of the score (7 in the case of M3I buoys). This pre-processing allowed obtaining a daily matrix of 6 rows (groups 
of layers) and 6 columns (time slots), referred in this study as  "daily acoustic matrix (Figure 5). 
 
 
2.3. Supervised learning classification algorithm  
 
We applied a random forest classification algorithm (Breiman 2001)4, considering each ocean separately. The 
training datasets for each ocean were constructed from the cross-matching of observers data (see paragraph 
2.1.2) and the daily acoustic matrices corresponding to the same buoy ID (see paragraph 2.2). Two types of 
classification algorithms were considered: a binary classification algorithm describing the absence or presence of 
tuna, and a multiclass classification considering different sizes of aggregations under DFAD (no tuna, less than 
10 tons, between 10 and 25 tons, more than 25 tons). The acoustic data recorded 5 days after a new DFAD 
deployment were used to build the “no tuna” or “absence” training database. The rationale for choosing a 5-days 
period after deployment is related to the need of accounting for the acoustic signal produced by the bycatch 
species within the “no tuna” class.  
 
A stratified down-sampling procedure was applied for building the training dataset, for dealing with the 
imbalanced number of observations in the different classes. The down-sampling procedure consisted in 
resampling the majority class to make their frequencies closer to the rarest class (Kuhn and Johnson 2013). 
Classifiers were represented by daily acoustic matrix values and predicted classes were "No tuna" and "Tunas" 
for presence-absence classification, and "No tuna", "less than 10", "between 10 and 25 tons" and "more than 25 
tons", for multiclass classification. 
 
The importance of the different predictors in the classification process (combination between layers group and 
day period) in each ocean was assessed through analysis of the mean decrease accuracy (increase of prediction 
error after permutation of a variable while all others are left unchanged, during tree construction), in the random 
forest model (Breiman, 2001).!
 
Model training and evaluation were performed through a two-fold cross-validation replicated 10 times 
(Dietterich 1998). The original dataset was divided into two subsets, in each of the 10 replica: the training set 
(75% of the initial data volume) used for training and building the classification models, and the validation 
dataset (remaining 25%) used for model performance evaluation.  
 
 
2.4. Model evaluation 
 
Several metrics were considered to evaluate the performance of the classification algorithm. The overall 
accuracy (proportion of correct prediction) and the kappa coefficient (Cohen 1968) were used to assess the 
overall performance of both binary and multiclass classifications. Kappa coefficient is a reliability index varying 
between 0 and 1, estimated according to (Eq. 2) 
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where Pr(a) is the total proportion of agreement between the two classifications and Pr(e) is the theoretical 
proportion of agreement expected by chance. The closer this ratio is to 1, the better the classification performed. 
 
In presence-absence classification, sensitivity, specificity, precision and F1 score were also evaluated from 
confusion matrix, using Eqns. 3-6: 
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where TP (true positive) and TN (true negative) are the proportions of presence (respectively absence) correctly 
classified; FN (false negative) and FP (false positive) are the proportions of absence (respectively presence) 
incorrectly predicted.  
 
 Sensitivity (recall or true positive rate) measures the efficiency of the algorithm in correctly classifying positive 
cases, and specificity (or true negative rate) measures the efficiency of the algorithm in correctly classifying 
negative cases. Precision (also called positive predictive value) is the fraction of correctly predicted presence 
among tuna presence prediction. The F1 score is the harmonic average of the precision and recall, where an F1 
score reaches its best value at 1 (perfect precision and recall) and worst at 0. The same evaluation metrics 
recalculated at the level of classes, were also considered for the multiclass classification. These validation 
metrics were computed from the 10-fold cross-validation, with the R package “caret” (Kuhn, 2018). 
 
 
 
3. Results 
 
 
3.1. Aggregation of the depth layers sampled by the buoy 
 
The 6 groups of depth layers identified from cluster analysis during data pre-processing (Figure 3) are 
characterized by significantly different score values in their constituent layers (p-value at Kruskall-Wallis test < 
0.001 for both Indian and Atlantic Oceans). These values decline strongly with depth.  The deepest group of 
layers (which is also the one that aggregates the largest number of depth layers, in the Atlantic and Indian 
oceans), exhibits the lowest acoustic values, with average score values in its constituent layers, almost equal to 
zero (Figure 4). 
 
 
3.2. Presence/absence classification 
 
The results for the metrics obtained for the binary classification (tuna presence or absence) are shown in Table 4. 
The random forests algorithm shows a good performance in successfully discriminating the presence and 
absence of tuna, in both oceans, with an accuracy of 84% and 87% in the Atlantic and Indian ocean, respectively. 
However, while in the Atlantic ocean the correct classification of positive (“Tuna”) and negative instances (“no 
tuna”) remains broadly similar (about 0.8 for sensitivity and specificity), in the Indian Ocean, tuna absence under 
FAD is more easily detected than its presence as shown by the high specificity (0.95) and low sensitivity (0.64) 
for this ocean. 
 
 



3.3. Multiclass classification 
 
Multi-class classification performs less than binary classification (Table 5 and 6), and in both oceans, 
classification algorithms are not sufficiently effective to correctly identify small (less than 10 tons) and medium 
tunas aggregation (between 10 and 25 tons). Nevertheless, the identification of absence and large aggregations of 
tunas appears relatively acceptable (precision respectively 0.80 and 0.44 in Atlantic, and 0.83 and 0.59 in 
Indian). The comparison of classification performance between the two oceans shows that, although the overall 
efficiency of multiclass classifications remains similar (kappa ≈ 0.40), the classification of aggregation sizes in 
the intermediate classes (less than 25 tons) appears more accurate in the Atlantic than in the Indian Ocean. 
 
 
3.4. Predictors’ importance 
 
The importance of the predictors shows different patterns depending on the ocean, whereas, for the same ocean, 
it does not significantly differ between the binary and multiclass classification, see Figure 6. In both oceans, the 
acoustic data recorded during the daytime appear to be more important to assess tuna presence/absence. In the 
Atlantic Ocean, the most relevant time periods to detect and estimate tuna aggregations appear to be from 8 am 
to 4 pm and the most important depths range between 6 to 50 m depth. By contrast, in the Indian Ocean, the 
main predictors correspond to deeper layers (from 21 meters to 150 meters) over a more spread period of time 
(from 4 am to 4 pm), see Figure 6 and 7. 
 
 
 
4. Discussion  
 
To the purpose of providing abundance indicators for large pelagic fish species like tropical tuna, whose habitat 
is ocean-wide, the large amount of acoustic data collected by echosounder buoys is of undeniable value. 
However, this data still remains difficult to exploit directly. Although many buoy models process the data 
internally, and generate an index that is supposed to assess the abundance of fish under the buoy, previous 
studies demonstrated that these indices have a poor reliability (Lopez et al 2014). Lopez and co-authors indicated 
that most fishers pay little attention to these indices and their exploitation of the buoy data is rather based on the 
interpretation of the acoustic scores recorded at different depths and times. Our approach, based on a supervised 
learning algorithm trained on a set of catch and deployment data, can be assimilated to the fishermen’s approach 
that learn how to interpret the acoustic scores based on their experience.  
 
The pre-processing methodology presented in this paper, combined with the use of supervised learning 
algorithms, may constitute a valuable approach for the exploitation of buoy acoustic data, as evidenced by the 
satisfactory results obtained in the discrimination of the presence/absence of tuna aggregations under DFADs. 
The potential of automated classification for unconventional acoustic data treatment has been highlighted by the 
recent work of Uranga et al. (2017). These authors proposed a very efficient method for detecting the presence-
absence of bluefin tuna schools (kappa values ranged between 0.74 and 0.79 for the different machine learning 
algorithms used), from echograms provided by the commercial medium-range sonar used on fishing vessels.  
 
In the construction of our training dataset for tuna presence/absence, we made two main assumptions: (i) that 
newly deployed DFADs corresponded to tuna absences and (ii) that the DFADs associated to a fishing set 
corresponded to tuna presence. For the new deployments, we took the acoustic scores recorded 5 days after 
deployment as a signature of a DFAD without tuna. In this respect, it is important to notice that we limited the 
database to the deployments of new DFADs only, excluding other possible deployment events, like the addition 
of a buoy to an existing log/DFAD or its reinforcement. This restriction ensured that a virgin floating object, 
without an existing aggregation, was considered in the “tuna absence” database. The choice of considering 
acoustic data after a time delay of 5 days for newly deployed FADs was based on previous field studies that 
showed the FAD colonization of bycatch species occurs during the first days after deployment (Taquet 2004; 
Nelson 2003; Moreno et al 2007a). This choice allowed separating the acoustic signature of bycatch species (that 
may already occupy the FADs after 5 days), from the characteristic signal of tuna in the fished DFADs. Further 
sensitivity analyses should be conducted, by varying the size of the time window after deployment, to evaluate 
the sensitivity of results relative to this variable. Secondly, the assumption that a fished DFAD corresponded to 
tuna presence was driven by the fact that the captain’s choice of fishing on a DFAD is guided by different 
proxies of tuna presence, not only the echosounder buoy data. For example, purse-seiners dispose of on-board 
echosounders and sonars, much more powerful and accurate than those of the buoys, and it is very likely that a 
fishing operation takes place when the on-board instruments confirmed the tuna presence at the DFADs. 
 



On the other hand, the performance of our algorithms remains more limited for the discrimination of tuna 
aggregation sizes under DFADs. One possible cause may be the imbalanced percentage of data samples in the 
different size classes, (for example, of the four classes defined for multiclass classifications, the "No tuna" class 
alone represents about 80% and 50% of the training data used respectively in the Indian and the Atlantic Ocean). 
This imbalance in the data is known to produce undesirable results such as a lower performance on both test and 
training data (Provost 2000; Japkowicz and Stephen 2002; He and Garcia 2010). Despite the sampling 
methodology used to offset its effects, this fact could be one of the main factors involved in the decrease in 
efficiency observed for multiclass classification. Future research actions testing other learning techniques that 
deal with unbalanced data such as oversampling or SMOTE (Synthetic Minority Oversampling Technique; 
Chawla et al. 2002), and other classification algorithms such as neural networks (Bishop 2007), SVM (Cortes et 
Vapnik 1995), or gradient boosting machine (Friedman 2001), could improve the efficiency of multiclass 
classification. Another possible source of bias for the multiclass classification may rely in the different species 
composition of the aggregations considered in each class. Considering that skipjack and yellowfin/bigeye have a 
different acoustic response (Bertrand et al. 1999 ; Josse and Bertrand 2000 ; Boyra et al. 2018), a total 
aggregation size of, for example, 10 tons would provide a different acoustic signature depending on the 
percentage of each species. Moreover, the analysis of scores in layer groups identified by the cluster analysis 
reveals that layers below 50 meters are characterized by very low score values (Figure 4). Several studies on 
vertical species distribution under DFADs, evidenced that tuna clearly evolve below this depth (Dagorn et al. 
2007a ; Dagorn et al. 2007b ; Moreno et al. 2007b ; Forget et al. 2015; Matsumoto et al. 2016 ; Lopez et al. 
2017). Thus, the surprisingly low values obtained for this layer groups with this buoy model might potentially 
constitute a severe limitation for the accurate estimation of aggregation sizes under FADs through M3I buoys, 
especially for tuna species which are vertically distributed beyond this limit. Finally, catch data could not reflect 
the full size of the aggregation and part of the school may have escaped from the net, thus inducing an 
underestimation for certain catch sizes that thus do not reflect the acoustic data of the buoy.  
 
The analysis of the importance of the predictive factors in the random forest classifications has shown that, 
regardless of the ocean, the daytime period appears to be the most relevant to distinguish the presence of tuna 
schools from other acoustic targets. This outcome could be linked to the behavior of fish schools and their spatial 
and temporal distribution around DFAD. Indeed, the accuracy of the measurement made by the echosounder 
remains highly dependent on the characteristics and the position of fish schools in relation to that of the 
measuring instrument. Sonar surveys conducted on FADs in the Indian ocean, revealed that fish form a large 
number of small and dispersed schools during nighttime, and a few and large schools during daytime (Trygonis 
et al. 2016), more easily detectable at this period. However, as evidenced by Lopez et al. (2017), this behavioral 
patterns are highly variable and appear to be both species and region specific. Another possible reason for the 
higher importance of daytime detection could be related to the influence of deep scattering layers (Hobert 1962; 
Chapman and Marshall 1966; Robinson and Gómez-Gutiérrez 1998), whose nycthemeral upwards migration 
may affect the acoustic signal. Also, this study highlighted the differences in the relevance of the water column 
strata for the detection of tuna schools between the Atlantic and Indian Ocean. At first sight, one would be 
tempted to explain these variations by a vertical stratification of species, differing according to the oceans 
(deeper and more segregated tuna schools in the Indian than in the Atlantic Ocean, linked to the lower depth of 
the thermocline in the Indian Ocean). Further studies, comparing the presence-at-depth profiles of tuna species in 
the two oceans, should be conducted to confirm these findings. 
 
Finally, environmental factors could affect the acoustic signal detection and fish behavior and could thus have an 
effect on the classification of the aggregation size. For example, it is known that water temperature has an effect 
on both the acoustic signal (Straube and Arthur 1994; Bamber and Hill 1979) and the abundance of tuna (Boyce 
et al. 2008). The integration of these parameters into the classification algorithm may eventually lead to a better 
algorithm performance. 
 
 
 
5. Conclusion 
 
The methodology developed in this study provides accurate results for the assessment of presence/absence of 
tuna schools at DFADs in both oceans. This approach can be applied to other buoy models and particularly to the 
recent M3I+ buoy model, a novel multi-frequency buoy model that is being widely adopted in recent years. 
Despite further improvements of the algorithm can be still operated, particularly for the assessment of the 
aggregation size, the accurate assessment of presence/absence of tuna schools at the DFADs opens the way 
towards the exploitation of echosounder buoy data to provide novel and robust indicators for the management of 
FAD fisheries in future years. 
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Table 1 : Main technical specifications of Marine Instruments buoys 
 

 
 
Table 2 : Number of catch and deployment data used in the presence-absence classification for the Atlantic and 
Indian ocean. 

 Catch data Deployment data 

Atlantic 567 562 

Indian 942 3944 

 

 

Table 3: Number of catch and deployment data used in the multiclass classification for the Atlantic and Indian 
ocean. 

 No tuna < 10 tons [10, 25 tons] > 25 tons 

Atlantic 562 176 217 174 

Indian 3944 233 346 363 

 

  

 MSI M3I M4I M3I+ 

Year 2010 2010 2012 2016 

Satellite GPS : Yes Yes Yes Yes 

Echo-sounder : No Yes Yes Yes 

Frequency : - 50 kHz 50, 120, 200 KHz 50 and 200 KHz 

Power : - 500 W 500 W 500 W 

Resolution per layer 
: - 3 m 3 m 3 m 

Range : - 150 m 150 m 150 m 

Blind area : - 6 m 6 m 6 m 

Soundings : - each 5 minutes 
each 5 minutes 

(in three frequencies) 

each minute (in two 
frequencies) 

TVG correction : - No No Yes 



Table 4 : Summary of tuna presence/absence classification performances for the Atlantic and Indian ocean: 
mean and standard deviation values (in bracket) of evaluation metrics. 

Evaluation Metric Atlantic Indian 

Accuracy 0.84 (0.005) 0.87 (0.002) 

Kappa 0.67 (0.03) 0.63 (0.02) 

Sensitivity 0.81 (0.02) 0.64 (0.02) 

Specificity 0.87 (0.02) 0.95 (0.005) 

Precision 0.88 (0.02) 0.80 (0.01) 

F1 score 0.84 (0.01) 0.71 (0.01) 

 

 

Table 5 : Summary of multiclass classification performances for the Atlantic Ocean. Mean and standard 
deviation (in bracket) of evaluation metrics. 

Evaluation 
Metric 

Atlantic 

No tuna <10 tons [10 , 25 tons] > 25 tons Average 

Sensitivity 0.86 (0.04) 0.37 (0.05) 0.35 (0.06) 0.39 (0.09) 0.49 

Specificity 0.82 (0.02) 0.88 (0.02) 0.85 (0.03) 0.89 (0.03) 0.86 

Precision 0.80 (0.03) 0.35 (0.07) 0.38 (0.05) 0.44 (0.08) 0.49 

F1 score 0.83 (0.03) 0.36 (0.05) 0.36 (0.05) 0.41 (0.08) 0.49 

Accuracy 0.60 (0.05) 

Kappa 0.40 (0.04) 
 

 

Table 6: Summary of multiclass classification performance for Indian Ocean. Means and standard deviations (in 
bracket) of evaluation metrics by classes. 

Evaluation 
Metric 

Indian 

No tuna <10 tons [10 , 25 tons] > 25 tons Average 

Sensitivity 0.95 (0.005) 0.13 (0.037) 0.21 (0.03) 0.40 (0.03) 0.42 

Specificity 0.54 (0.02) 0.96 (0.004) 0.95 (0.006) 0.97 (0.004) 0.85 

Precision 0.83 (0.01) 0.17 (0.03) 0.35 (0.05) 0.59 (0.004) 0.48 

F1 score 0.89 (0.008) 0.14 (0.03) 0.27 (0.03) 0.47 (0.03) 0.44 

Accuracy 0.75 (0.01) 

Kappa 0.39 (0.02) 
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Figure 1: Characteristics of the echosounder buoys database from 2014 to 2017. 

 



!
Figure 2: (A) Beam width (or angle) (a), depth range (h), and diameter (d) at 150 m of the Marine Instruments 
M3I echosounder buoy; (B) Example of an acoustic sample 
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!
Figure 3: Dendrogram resulting from the cluster analysis of raw acoustic data for the Atlantic (A) and (B) 
Indian ocean. The red horizontal line indicates the height at which the dendrogram was sliced to create the 6 
groups of layers. Colors identify the different groups of depth layers sampled by the buoy. 



!
Figure 4: Boxplot of score values in the layer groups identified by the cluster analysis (with exclusion of 
transducer blanking zone 0-6m), for the (A) Atlantic, and (B) Indian oceans. Red squares represents mean value 
of scores in each layer group.  
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Figure 5: Acoustic data pre-processing. (1) Temporal resolution reduction, selecting the highest echo over a 4 hours period on the whole sampling day. (2) Layers aggregation 
gathering the 50 vertical layers into 6 layers based on cluster analysis. The final output is a 6x6 matrix (daily acoustic matrix) summarizing the aggregation on a full sampling 
day.

(1) (2)
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Figure 6 : Predictors importance from random forest algorithm for the Atlantic and Indian in presence/absence classification. Each cell represents a combination between a depth 
and a time period. Cells brightness indicates the relevance of the predictor in the classification. Red box indicates groups of relevant predictors in classification. 
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Figure 7: Predictors importance from random forest algorithm for the Atlantic and Indian in multiclass classification. Each cell represents a combination between a depth and a 
time period. Cells brightness indicates the relevance of the predictor in the classification. Red box indicates groups of relevant predictors in classification. 
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