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Abstract

The EU purse seine fleet catches of yellowfin tufaugnus albacar@drom the Indian Ocean were
standardized using the framework described in Kagtral (2016, 2017) with a Delta-lognormal
generalised linear mixed model developed specifically for the standardisation of tropical tuna catch
per unit effort (CPUE) time series. With the aim to depict the trend in abundance for adults and for
juveniles yellowfin separately, the CPUE time series were treated by fishing mode: free school (FSC)
sets and sets associated with floating objects (FOBS).

CPUE for FSC was defined as the catch per hour of large yellowfin tuna (> 10 kg). For FOBs sets
(i.e., dFAD and log sets), CPUE was defined as the catch per positive set of small yellowfin tuna (<
10 kg) — a positive set defined as a set with small yellowfin catches > 0 . Due to the availability of
covariates that likely affect them, the time series considered were 1986-2017 and 2010-2017 for FSC
and FOB, respectively. . In both cases, the least absolute shrinkage and selection operator method
(LASSO) was applied for model selection.

A step forward compared to previous years was the inclusion of environmental variables known to
affect catchability. Another improvement is the availability of information on dFAD densities, i.e.
densities of FOBs with transmitting buoys. This standardization of yellowfin tunas CPUE for the
European purse seiners in the Indian Ocean, therefore, represents a significant advance over previous
efforts, having used the most recently available data on nontraditional explanatory factors, particularly
on dFAD density. Nevertheless, several avenues for future progress are noted in the discussion, such
as further improvements in dFAD density estimates and inclusion of additional or different
explanatory variables to best represent the impacts of fishery change on CPUE.

Keywords: CPUE standardization; purse seine fishery; dFADs; FOBs; FSC; mixed models; yellowfin
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This paper is the result of thNgorkshop for the development of yellowfin indidesbmndance for the

EU tropical tuna purse seine fishery operating le indian Oceanhosted at the IRD MARBEC
laboratory in Sete, France in September 2018 asgfahe EU funded project Cecofad.IThe
workshop aimed at developing standardised CPUE sienes to be provided to IOTC as an input for
the upcoming stock assessment of yellowfin t(v&T, Thunnus albacargsCatch per unit effort
(CPUE) time series were standardized by fishingenasdts on free school (FSC) and sets associated
with floating objects (FOBS).

We followed the recommendations of the 2016 worgsionthe development of indices of abundance
for the EU tropical tuna purse seine fishef@aertneret al, 2017), as well as the framework
described in Katarat al (2016, 2017). Delta-lognormal generalised lineaxed models (Delta-
lognormal GLMMSs) with LASSO component were develoder the standardisation of the time
series. Along with the commonly used covariatestied to vessel characteristics and spatiotemporal
variability, we also considered three environmewutalables (chlorophyll-a, the vertical current ahe
and the depth of 20°C isotherm) and informationduifting fish aggregating devices (hereafter
dFADSs) density that may affect catchability (Eseall al, 2018).

Material and M ethods
CONVENTIONAL FISHING DATA

Logbook data for the French and Spanish purse fleigts targeting tropical tuna in the Indian Ocean
from 1986 to 2017 were analysed to derive the stahsed CPUEs. The logbook databases are
managed by the Tuna Observatory (Ob7) and the I&OtHe French and the Spanish fleets,
respectively. The raw logbook data (Level 0) praduby the skippers were corrected in terms of
total catch per set (to account for the differebeaveen reported catch at sea and landed catch) and
species composition (based on port size samplidgta T3 methodology — see Pallares and Hallier
1997, Duparet al, 2018) to generate the Level 1 logbook databasd in this paper.

The database was split into 2 datasets: (i) freedcsets (FSC), i.e. non-associated school sets an
whales’ sets and (ii) FOB-related sets, includiRr@\D, logs and whale-sharks’ sets. The FSC dataset
was used to derive CPUE for the adult fractionhef yellowfin stock, by selecting the size categorie
2 and 3 (10-30 kg and >30 kg respectively). The @8 dataset was used to derive CPUE for the
juvenile fraction of the yellowfin stock, based thie size category 1 (< 10kg) in the logbook records

The analysis was restricted to:

- the period 1986-2017 for FSC sets because sherfy only reached its full spatial distributiomeaf
1985, and the period 2007-2017 for FOB relatedduwtsto dFAD density data availability;

- the area defined by all grid cells that wereduslfior at least 5 years over a period of no less 5
years, to avoid areas that are not routinely fished

- high-seas and all EEZs except for the Somali EHE to the effects of piracy (Okamoto, 2011;
Chassott al, 2012; Guillotreaet al, 2012).

DFAD AND BUOYS DATA

We assumed that the density of the surroundingifigeobjects (FOBs) can affect the size of the
school aggregated under a floatting object (Formtenend Marsac, 2016). However, it remains

! Catch, effort, and ecosystem impacts of tropigahtfisheries (CECOFAD2); EASME/EMFF/2016/008
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difficult to estimate the total number of FOBs.,. idkifting Fish Aggregating Devices (dFADs) and
instrumented and non-instrumented logs, by 1°xif ¢gll - month. Previous studies showed that the
vast majority of FOBs in the Indian Ocean were enitlly dFADs with buoys (Maufrogt al 2015).
Consequently, for the sake of simplicity we conmdethat the density of transmitting buoys (on
dFADs or logs, but hereafter referred to as dFAE28) be used as a proxy of the total FOB density.
No information on dFADs with inactive transmittinguoys or natural FOBs (logs) without
transmitting buoys were available.

For each month over the period 2010-2017, the geenamber of transmitting buoys found in each
1°x1° cell of the Indian Ocean was calculated. F@nch dFAD trajectory data, individual dFAD
water trajectories were linearly interpolated admight GMT on each day. These daily French
interpolated water positions were then assignet?xa° grid cells, summed for each month and then
these sums were divided by the number of dayseémibnth. Spanish data consisted of one position
per day, so no interpolation was necessary. Frelath coverage was 100% over the period 2010-
2017, whereas Spanish data coverage was partrgssively increasing from a mean of 32% in
2010 to over 70% in 2017 (estimated by the fractibthe fleet and the types of transmitting buoys
for which data were available; the monthly variataf the coverage rate was not quantified in this
study). To correct for the partial coverage, tddganish buoy densities were extrapolated from
available data by dividing the initial Spanish dFABnsity values in each grid cell-month strata by
the fraction data coverage for the correspondingitindi.e., the number of vessels sharing the
information and availability of information by buayodel, assuming the same deployment strategy
for all Spanish vessels). The total number of SgfadFADs was estimated for grid cells in which the
vessels regularly operate (> 40°S and longitud@°€p

The dFAD datasets of the 2 fleets were then condbamel three indicators were calculated:

- distance of the set from the edge of the neafeaDdhotspot. dFAD hotspots were derived
using the ArcGIS algorithm for hotspots (Getis &, 1992), positive hotspots with p-
values < 0.05 were selected,

- dFAD density in an area of a 1°x1° buffer arouralftshing set, and (iii) dFAD density in an
area of a &2° buffer around the fishing set.

ENVIRONMENTAL DATA
Three environmental datasets were considered:

1. chlorophyll-a concentration derived from Sea®/ignd MODIS (O’Reillyet al, 1998)
over the period September 1997 to December 201gh @hl-a values indicate areas with high
productivity and potentially high density of micekion organisms preyed upon by tuna. For
instance, the record catches of yellowfin in 20082 were associated with anomalously high levels
of Chl-a (Marsac 2008, Fonteneat al, 2008) and an outburst of the stomatopdatosquilla
investigatorisfound in abundance in tuna stomachs (Petiel 2007). At a monthly timescale, 1°x1°
squares with high levels of Chl-a can thus be mitie of foraging aggregations of tuna and thus
increased catchability.

2. The vertical current shear between depths 514b6dn; the depth range refers to the major
part of the water column sampled during a purseessét. The vertical current shear may affect the
tension on the net with possible consequencesedepth reached by the seine. We used the method
developed by Bigelovet al (2006), simplifying the equation by taking onlya levels instead of
integrating through all depth levels. The verticatrent shear calculated between two levels z1 and
z2 (5 and 145 m respectively) is obtained by:
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S =Log(W /A z)
w = |g21 —g22| whereU, is the horizontal velocity vector at depth level z

3. Changes in depth of the mixed layer are knawaiffiect the catchability of purse seines, as
surface-dwelling tunas mostly gather above thentbetine (Green, 1967; Cayré and Marsac 1993;
Bertrandet al, 2002). A deep thermocline may, therefore, desedhe vulnerability of tuna schools
to purse seining. We used the depth of 20°C isothas a proxy of the thermocline depth, and
subsequently, of the mixed layer depth.

Chlorophyll is obtained by direct (satellite) measuents (SeaWiFS for 1997-2002 and Maodis for
2003-2017). The vertical current shear and thehdepthe mixed layer were computed from ocean
model outputs. We used the Global Ocean Data Alsgion System (GODAS) of the NCEP/NOAA
which is an assimilated model incorporating cordimi real-time data from the Global Ocean
Observing System. The grid resolution is 1° in ltde and 1/3° in latitude, and we used the
monthly time steps of GODAS which cover the perd®&0 to the present.

MODELLING APPROACH

We followed the modelling approach developed byakatt al (2016, 2017). As the CPUE data for
free schools followed a zero-inflated lognormaltritisition, delta-lognormal GLMMs were used
which comprised of two sub-models (a binomial GLNtt standardises the probability of a positive
set, and a lognormal GLMM that standardises catztditional to positive set). We performed the
binomial GLMM where the full model included the lfmhing fixed effects: fleet country, vessel
capacity category, year that the vessel startedctisity, year, month, quarter, fishing set duwafi
mixed layer depth, vertical current shear, latitudagitude, vessel length, vessel horsepower,eless
storage capacity, the proportion of FOB sets ppr Tihe last parameter was included as a proxy for
vessels’ fishing strategy changes across time dubd increase of dFADs. We also tested for the
interactions between year and month and betweegrggloical coordinates. The random structure of
the model includes the Exclusive Economic Zone, TtBearea used for logbook catch correction, a
vessel unique identifier, a trip unique identifserd the interaction between year and 1°x1° square.

The full model for the lognormal GLMM included tfiellowing fixed effects: fleet country, vessel
capacity category, year that the vessel startedctisity, year, month, quarter, fishing set duwafi
mixed layer depth, vertical current shear, latifudagitude, vessel length, vessel horsepowereless
storage capacity, the proportion of FOB sets pigx, interaction between year and month and
interaction between geographical coordinates. Tdredom structure of the model includes the
Exclusive Economic Zone, the T3 area used for doglcatch correction, a vessel unique identifier, a
trip unique identifier and the interaction betwgear and 1°x1° grid cell.

For both models, if the residuals indicated noedinrelationships, polynomials were used to describ
those relationships.

Table 1 available variables for the calculation of CPUE and the development of the standardisation models.

Variable description

fleet country France; Spain

Vessel ID Unique vessel identifier

vessel capacity category Vessel category relatddweissel length and capacity
the year that the vessel started its

activity

vessel length In meters

vessel horsepower In kws
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vessel storage capacity
quarter

year

month

Time at sea

Time fishing

Fishing set duration
Searching time

Mixed layer depth

Vertical current shear
chlorophyll-a concentration
latitude

longitude

distance from a dFAD hotspot

dFAD density at a 1° buffer
dFAD density at a2buffer

IFm
A quarter of the year at which the fishéeg took place
Year at which the fishing set took place
Month at which the fishing set took place
Duration of the fishing trip
Cumulated time dedicated to fishing
Inh
Inh
Details in the main document
Details in the main document
Details in main docutnen
Fishing set location coordinates
Fishing set location coordinates

The distance of thefien the edge of a FAD hotspot. Temporal

Resolution: monthly
Density around the $etnporal Resolution: monthly
Density around the set. Temporal Resolutionthly

the proportion of FOB sets per trip  The number ©BFsets divided by the total number of sets

Exclusive Economic Zone Identifiers of EEZs and dffshore area

T3 area used for logbook catchT3 areas used for correcting the species compnsifithe catch reported
correction in the logbook

trip ID trip unique identifier

1°x1° grid cell Reference grid of the fishing as¢a 1°x1° resolution

The CPUE for FOB related sets was defined as qactpositive set of small YFT (size < 10 kg) —
positive set being every set with small YFT catcl®d.>Because the ratio of positive sets remains
practically stable and greater than 90% throughtioeitime series, the CPUE was simplified to catch
per set conditional to catch > 0 (i.e. catch pesitpe set, the second sub-model of the Delta-
lognormal GLMM approach). The full model includeldetfollowing fixed effects: fleet country,
vessel capacity category, year that the vesseédtis activity, year, month, quarter, time at, s&ae
fishing, fishing set duration, mixed layer deptlertical current shear, chlorophyll-a concentration,
latitude, longitude, distance from a dFAD hotsgtAD density at a 1° buffer, dFAD density at®a 2
buffer, searching time, vessel length, vessel Ipaser, vessel storage capacity, proportion of FOB
sets per trip, interaction between year and monthiateraction between geographical coordinates. If
the residuals indicated non-linear relationshipdymomials were used to describe them. The random
structure of the model includes the Exclusive EooicoZone, the T3 area used for logbook catch
correction, a vessel unique identifier, a trip wagdentifier and the interaction between year and
1°x1° grid cell.

Model selection involved the use of the LASSO regian (Tibshirani 1996, 2011), using algorithms
that handle continuous explanatory variables (Rk@ge: glmnet; Friedmaat al. 2009, 2010) and
grouped covariates (R package: grpriegeheny and Breheny, 2018%iven a linear regression with
standardized predictorss and centred response valye$or i=1,2, ...,N andj=1,2, ...,p, the gimnet
algorithm estimates the regression coefficidinty} to minimize:

1 (1-a)lBll3
TN Wil b + bTx) + 2| 2RE b
where/ covers a range of values, I{y,is the negative log-likelihood contribution fobservation i

anda controls the elastic-net penalty (for lagsdl). The tuning parametéris chosen through cross-
validation.

The LASSO procedure was followed by backward maadéction for both the random and fixed
effects of the mixed models using AIC and BIC. Hinathe selected model was refitted as an
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unrestricted GLMM (R-package: Ime4; Bates et @14) but not with LASSO, as LASSO estimated
coefficients are known to be biased (Friednearal, 2001). Finally, the standardized CPUEs were
fitted using estimated marginal means (R packageneans; Lenth, 2018).

Residuals were tested for patterns including sifi@taporal autocorrelation (R package: DHARMa;
Hartig, 2017). All the statistical analyses werenpated using the software R (v3.4.3; R Core Team,
2017).

Results
FSCsSETS(1986-2017ERIOD
Binomial GLMM (probability of large-size YFT catch0)

The model selection methods (Figs 1-2) gave tHevimhg model: i. the fixed effects included vessel
capacity category (p-value < 0.001), year (p-vatu@.001), month (p-value < 0.001), longitude (p-
value < 0.001) and a"2degree polynomial for latitude (p-value < 0.00hyl ai. the random effects
included a trip unique identifier and the interantibetween year and 1°x1° square. All fixed and
random effects were statistically significant wiB% confidence. There was no obvious trend in
residuals (Figs 3-4). Estimated marginal means sar@&s of probability catch > 0 at an annual scale
is shown in Fig 5. GLMM tables and results are @nésd in appendices.
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Figure 1 FSC sets — probability (catch > 0): crosdigtation estimation of lambda for group Lasso (gw).
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Figure 2 FSC sets — probability (catch > 0): crosdigation estimation of lambda for Lasso with glmnet

QQ plot residuals Residual vs. predicted
©
, -
7] o
© _] & ©
= < S ®
= = _| _g <
0 () .2 a
O _ ©
©
o C o
© T T T T 1 % o
0.0 04 08
Expected Predicted value

Figure 3 FSC sets — probability (catch > 0): testiegiduals for normality (left) and homogeneityg(ri)
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Figure 4 FSC sets — probability (catch > 0): Residugersus fixed effects.
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Figure 5 FSC sets — predicted probability (catch)><iandardised time series (by year) with 95% aterfce intervals.

Log-Normal GLMM (catch per hour conditional to YE&atch > 0)

The model selection methods (Figs 6-8) gave tHeviithg model: i. the fixed effects includéiket
country (p-value = 0.16), vessel capacity categpryalue = 0.09), the interaction between year and
month (p-value < 0.001)mixed layer depth (p-value = 0.005), vertical cotrghear (p-value = 0.1)
year that the vessel started its activipsvalue < 0.001)and ii. the random effects includeke
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Exclusive Economic Zone, the T3 area of logbookltatorrection, a vessel unique identifier, a trip
unique identifier and the interaction between yaat 1°x1° square. The residuals (Figs 9-10) show a

reasonable fit of the model (Fig 11) with a nedligidivergence from normality and homogeneity.
GLMM tables and results are presented in appendices

Groups selected
0224943 16 17 21 22 22 22 21 24 21 24 22 23

3
3
3
i
!
1
3
2

Cross-validation error

08 —

I T : I T T 1
-2 -4 -6 8 10 -12

log(®)
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Figure 7 FSC sets — catch per hour | catch > 0: &lmation of the path of the coefficients againstdrm for gimnet
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Figure 11 FSC sets — catch per set | catch > 0: déadised time series (by year) with 95% confidentervals.

DELTA LOGNORMAL GLMM APPROACH

The product of the two sub-models described aboweiged the standardised CPUE time series for
free school sets (Fig 12).
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Figure 12 standardised CPUE (catch per hour) forefizhool sets with 95% Cls (top) and compared to man@PUE
(bottom). Time series on an annual basis.
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FOB-RELATED SETS(2007-2017ERIOD
Log-Normal GLMM (catch per set conditional to YFatch > 0)

The model selection methods (Figs 13-15) gavedheviing final model: i. the fixed effects included
vessel capacity category, the interaction betwesar yand month (p-value < 0.0001), mixed layer
depth (p-value < 0.0001), vertical current sheavajue = 0.08), the interaction between latitudd an
longitude (p-value < 0.0001), vessel horsepoweralpe = 0.005), vessel storage capacity (p-value =
0.2), proportion of FOB sets per trip (p-value €3), fleet country (p-value = 0.0005) and ii. the
random effects included the Exclusive Economic Zdhe T3 area of logbook catch correction, a
vessel unique identifier, a trip unique identifsgrd the interaction between year and 1°x1° squiaee.
residuals (Figs 16-17) show a reasonable fit of tfwelel (Fig 18) with a slight divergence from
normality and homogeneity that can be consideragligible due to the robustness of the model.
GLMM tables and results are presented in appendices
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Figure 13 FOB-related catch per set| catch > 0: €sevalidation estimation of lambda for group LAS8reg).
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Figure 14 FOB-related catch per set| catch > 0:uaBsation of the path of the coefficients againstorm for the Lasso
regression (glmnet).
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Figure 15 FOB-related catch per set| catch > 0: €sevalidation estimation of lambda for Lasso witinigét.
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Figure 18 Catch of YFT < 10 kg per set for FOB rethtsets. Nominal and standardised CPUE with 95% cendiel
intervals. Time series on an annual basis.

Discussion

As mentioned in the Method section, we followed fteanework for CPUE standardization for the
tropical tuna purse seine fisheries described itatézet al (2016) to account for the hierarchical
structure of the data, for the non-randomised siag@ind the numerous candidate variables linked to
technological developments and evolving fishingtsigies. A step forward compared to previous
years was the inclusion of environmental variatkeswn to affect catchability. Another major
improvement is the availability of information orfFAD densities, i.e. densities of FOBs with
transmitting buoys. Indeed, this study of the ssaddation of yellowfin tunas CPUE for the
European purse seiners operating in the Indian iOg@esents to our knowledge the most extensive
effort to include data nontraditional explanatamgtbrs, particularly on dFAD densities.

Environmental variables, primarily mixed layer amal,a lesser extent, vertical current shear, were
important variables for predicting catch per honrfree schools and catch per FOB.

It has been theorized that dFAD densities shoudkttatatch per FOB set via, for example, disruption
of tuna schooling behaviour at high FOBs dens(fi@nteneau and Marsac, 2016). In this preliminary
analysis, dFAD densities were not informative faydals of catch on FOB sets. There are a number
of possible explanations for this. Though to ouowtedge this study represents the most thorough
effort to collect dFAD position and density infortiwen in any tropical ocean, incomplete data
coverage is a potential explanatory factor forldek of an observed dFAD density effect. Whereas
complete data on French buoys have been usedsianhiysis, Spanish buoy densities were estimated
from partial data for which the coverage rate dirae (i.e. by month) has not been quantified yet. A
buoy densities are estimated on the relatively $icale of 1° months, this could lead to bias inybuo
density estimates over space and time. One indic#tiat this might be the case is that the proporti

of EU dFADs that are French as estimated from amyldensity data is considerably higher than a
previous estimate in the Indian Ocean of 10.4%2fat3 based on random encounters with dFADs
noted by observers aboard EU purse seiners (Maefray, 2017; Figure 19). It is also noteworthy
that although Spanish and French data look veryaimfter ~2014, suggesting that the Spanish data
is a reasonable representation of the true spaisfibution of dFADs after this time, the larger
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differences observed between data from the twdsflpgor to 2014 may be indicative of potential
problems requiring further exploration (Figure 2fher explanations, such as differences in fishing
strategy, are also quite possible). As data coeehas greatly improved over time and continues to
improve, it is likely that these concerns regardiaga coverage will diminish in future studies.

Percent of FADs that are French
Just data in Spanish data domain

30 35
| |

Percent French
25

10

e = =- Density data
Maufroy et al. 2017

| | | | I
2010 2012 2014 2016 2018

Figure 19: Proportion of EU (French and Spanish)AlDs that are French as estimated from our buoy iedsita. French
data have been limited to the same data domairpasisSh data. Mean proportions for 2013 for our datad from Maufroy
et al. (2017) are shown be horizontal dashed blaukgray lines, respectively.
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Figure 20: Adjusted Rof the linear relationship between French and Sglariuoy densities. Models were calculated by
month using ordinary least squares based on tha ttatall cells for which either the Spanish or theench buoy density
estimates were non-zero.

In the western central Pacific, dFAD density wasnft to significantly impact catch rates on FOBs
despite the fraction of dFAD trajectory data cogerdeing only 30-40% (Escalket al, 2018).
Nevertheless, dFAD density explained less devidhae the coordinate variables with the overall
model explaining only 6-17% of the deviance (Escetlal, 2018). Furthermore, the range of dFAD
densities observed in Escalle et al. (2018) wasdaerior to that in our study (>3000 per 1° month
maximum density in their study versus a maximurt@d per 1° month in ours) and the authors noted
that decreases in CPUE were only observed abovEAD ddensity of 250 per 1° month. It is,
therefore, plausible that dFAD densities observedur study may be too low for disruption of
schooling behaviour (the theorized mechanism byclviotal FOBs densities affect FOB CPUE) to
be occurring or measureable.

Numerous other explanations for the lack of an ichph dFAD densities on CPUE rates are possible.
Transmitting buoy density estimates may not acelyatpresent FOB densities because they do not
include FOBs without a buoy or with an inactive hublowever, it has been estimated that the vast
majority of FOBs in the Indian Ocean are curreiADs with buoys (Maufroy et al. 2015) and
inactive transmitting buoys were considered a ingdft rare phenomenon until the implementation of
dFAD management plans in 2016. Furthermore, it beaghat the %1° grid cell size and the 1-month
temporal resolution used for dFAD densities maytdielarge to accurately represent the impact of
local dFAD densities on smaller spatial and temipscales on tuna behaviour and skipper decision
making in the Indian Ocean. In addition, the decif a skipper to set on a particular dFAD dods no
directly depend on the overall density of that tatrdout rather depends on the distribution and
predicted biomass associated with the boats “oviARDk in the region (owned density/aggregation).
In other words, skipper choice is driven by infotioia available to the skipper at the time of fighin
not the total dFAD density, which is not gener&ihown by fishers. Though this does not address the
potential of total dFAD density to disrupt schoglibehaviour, it may explain fishers setting on
schools in areas with a variety of total dFAD dgesi Furthermore, based on the high rate of buoy
ownership change (Snouck-Hurgroefeal 2017), skippers may make sets on accessible dmAtDs
low aggregated biomass underneath to avoid lossigng opportunities (this has been already
described in 2017 WPTT report), independently & tiAD density. Buoy density may also be
impacting the decision of whether or not to fislainone at a given time (particularly since theesdv

of echosounder buoys that remotely estimate fighbldmass), as opposed to impacting how much is
caught in a given set. Ideally, future studies sthinclude variables representing the local density
dFADs owned by the individual fishing boat condngtihe set (i.e., the dFAD density information
directly available to the skipper) and examineithpact of dFAD density on the decision to fish in
addition to the amount of fish caught to more fullyplore the suite of potential mechanisms
impacting purse-seine CPUE rates on FOBs.
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APPENDICES
FSCSETS(1986-201%ERIOD
Binomial GLMM (probability of large-size YFT catch0)

Generaliged linear mixed model fit by maximm likelihood (Laplace Approximaticn]l ["glmearMod']
Family: binomial [ logit }
Formula: cpuell ~ annee de_peche + mois_de peche + CAT + lon + poly(lat,

2, zaw = TROE} + (1 | =.tm==_d.=_P=|:h=.-"|:rpll: + (1 | tripID)

Data: D
AIC BIC loglik deviance df.resid
105408.8 108508%.2 —-54€51.4 109202.8 93172

Scaled residuals:
Min 10 Median g Max
-2.7837 -0.T220 -0.3552 0.8373 10.2110

Random effects:

Groups Hame Variance 3td.Dev.
cwpll:annee de peche [Intercept} 4.5€B8e—01 0.£75875
triplD [Intercept) 2.575e—01 0.507444
annee de peche [Intercept] 5.703=—05 0.005851

Humber of obs: 53225, groups: cwpll:annee de peche, %214; tripID, 42€7; annee de peche, 22

Fimed effects:
E=stimate S3td. Error =z wvalue Pr(>|=|}

[Intercept) —2.€E1l0EE 0.3€75% —T_.102 1.323e-13 #*#=4
annee_de pechelS87 =0.0E150 0.11%44 -0_515 0.€0€553
annee_de pechelS88 0.5378% 0.11741 4_.581 2.€Je-0g =44
annee_de pechelS585 —-0.17245 0.12051 -1_43€ 0.153804
annee_de pechel550 0_4€742 0.11755 2.5€2 7.40e-05 #84
annee de pechel%5l 0_€5815 o.53a03 1.237 0.31€0€3
annee_de pechelS52 0_74505 0.53l02 1.411 0.15B3€8
annee_de pechel553 0.77757 0.53084 1.42€5 0.142580
annee_de pechel$54 0.g2151 0.532054 1.548 0.121€18
annee_de pechelS5S 0_E025€ 0.5311€ 1.134 0.25€€11
annee_de pechelSS5€ 0_€€828 0._52978 1_2€l 0.207152
annee_de pechel$57 0.50815 0.53022 0.558 0.237881
annee_de pechel$58 0_045€E 0.53440 0.05%3 0.535%€0
annee_de pechelS555 0_€4€37 a_12785 5_.05€ 4_2He—07 #&4
annee_de peche2000 0.47225 0.123450 3.753 0.00014g5 #&4
annee_de peche2l0l 0_€3330 o.11873 5.250 1.53e-07 #&4
annee_de pechel002 0_40358 0.13233 2_.202 0.000%€0 #&4
annee_de pechell02 0.50215 o.11B28 T.€21 2.52e—14 *a4
annee de peche2(04 0_€3Bas 0.115%€3 5.33€ 5.53e-0B *44
annee_de peche2005 0_7eB22 0.114232 E_.72€ 1.75e-11 #*#a
annee_de pechell0€ 0.44211 0.11€25 2.812 0.0001l2@ #&s
annee_de pechel007 0_228E5 0.11881 2.775 0.005528 *#

Analysis of Deviance Table (Type II Wald chisguare tests)

Response: cpuell
Chisg Df Pr (>Chisq)

annee_de peche 352.99 31 <« Z.Ze-1lg *%*
mois de peche £€11.75 11 < 2.2e-16 ***
CAT 232.47 4 <« 2.2e-16 #w%
lon 204.76 1 <« 2Z.2e-16 %%
poly(lat, 2, raw = TRUE) 752.42 2 < 2.2e-16 *%*

Signif. codes: 0 Y¥%*F Qg Q01 Y&*r Q.01 “*r Q.05 *.' 0.1 ' 1
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Log-Normal GLMM (catch per hour conditional to YE&atch > 0)

Linear mixed model fit by REML ["lmerMod®]
Formmla: log.cpue ~ annee de peche + mois_de peche + AN _3ERV + CAT + shear +
d20 + (1 | see} + (1 | mes) + (1 | :u'pll::nnz:_d:_pz:hz: +
(1 | wessel}) + (1 | tripID} + pays + mnz:_dz_pz:h::mu:i:_dz_pz:h:
Data: D
BEML criterion at convergence: 104700.2
Jcaled residuals:
Min 10 Median g Max
-4.3115 —-0.€007 0.0807 0.€822 2.0057
Random effects:
Eroups Hame Variance Jtd.Dev.
cwpll:annee de peche [Intercept} 0.11702 0.3421
tripID [Intercept} 0_0€011 0_.2452
vessel (Intercept] 0.0135%2 0.1180
D (Intercept} 0.033€5 0.1834
met [Intercept} 0_10248 0.33201
Residual 1l.0€252 1.0308
Humber of obs: 24855, groups: cwpll:annee de peche, 50€€; tripID, 23€5; vessel, 55; zee, 14; ges, 13
Fixed effects:
Estimate 3td. Error t wvalue
[(Intercept) -21.728741 4.1€5222 -5.212
annee_de pechelS87 0.4€8057 0.1B85744 2.520
annee_de pechelS88 0.125540 0.155701 0.B4as
annee_de pechelS8S 0_0024€L 0_.lgaalza 0.015
annee_de pechelSS0 —0.2€0382 0.le2818 -2.213
annee_de pechelS51 0.4B81150 0.3€1572 1.33%
annee_de pechel$S2 —0_277295 0.3€1400 —-0.7€7
annee de pechel353 =0.1723070 0.358080 -—0.483
annee_de pechelS54 0.2845982 0.351375 0.B11
annee de pechel335 -0.aa7?7aza 0.3555%08 -0.54%
annee de pechel35E -0 ._355035 0.370414 -0.€85
annee de pechel$S57 =0.10010€ 0.255208 -0.282
annee de pechel358 -0.a757a3 0.€43752 -0.585
annee_de pechelSSS5 —-0.054711 0.250811 -0.218
annee de peche2l00 0.2B25€1 0.1555€23 2.452
annee_de peche2001 0.448782 0.le0llm 2.\802
annee_de peche2002 0.07524€ 0.1€l442 0.4€€
annee_de peche202 0.705781 0.145€74 4_71&
annee_de peche2004 0.52428€ 0.l5€€34 5.501
annee_de peche2005 0.22€007 0.14575€ 2,177
annee_de pecheZl0€ 0.443584 0.14494€0 a.073
annee_de peche2007 —0.10217% 0.1€31l3€ -0.€2€
annee_de peche2008 0.0B5084 0.133578 0.553
annee_de pecheZl0% 0.447€53 0.170€€8 2.€23
annee de peche20ld 0.1342387 0.2301€12 O.€1l€
annee_de peche2lll 0.23B%E7S 0.187388 a.080
annee de peche2ll2 0.52@52l1 0.177151 3.583
annes de pechel0l3d =0._147043 0_184375% -0_758
Analysis of Deviance Table (Type II Wald chisgquare tests)
Response: log.cpue
Chisg Df Pr(>Chisqg)
annee_de_ peche 342.1307 31 < 2.Ze-16 **%%*
mois de peche 193.9%04 11 < 2.2e-1lg **%*
AN SERV 27.0932 1 1.939e-07 ###
CAT 8.1288 4 0.08e%71
shear 2.3336 1 0.126605
dz20 7.8359 1 0.005122 %
pays 1.9038 1 0.16764%9
annee de peche:mois de peche 1345.3326 337 <« 2.Ze-16 **%*
Signif. codes: 0 Y***' 0.001 ***r Q.01 **f 0.05 *.'" 0.1 * ' 1
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FOB-RELATED SETS(2007-2017ERIOD

Log-Normal GLMM (catch per set conditional to YFatch > 0)

Linaar mixad modal Fit by REML [ ' lmsecbod® ]

Fisad affacta:

Eartimats Stdd.
0.755010 a.

EEERE € valua
E2AS3IA 1.270

-0.071644 a. -1.606
-N.157346 a. -1.905%
annsas s e -0.11HER0 a. -0.134
annas s e 0. A304%0 a. 0.94%
annes e ps ~-AR3017 a. 1.00%
annes e ps -2EETRD a. 1.447
annas s e -HAARGA a. 1.054
annas s e ~2213R% a. 1.3845
3P ~-153RES O.A750R3 1.317
| -HaA171 O.A7E244 0.%&R
| a_AaMs 1.000
3P a.A?a7na 0.66%
meia o pe 0. 0AR%SS0 2987
meia s pe ~10306% O.0AA%?3 1.15R
maia_ e e L3ANE1S 0. ORESS? 1.92%
mia de [P ~-1AGA%3 0.0%1441 2.033
meia o pe ~243143 1.110418 2.202
meia de pe -AE2IR3 a.0A57%3 5
meia de pe a.0/A0RA7
mia de [P n.0And42
meia ds [P 0.0A451%
meia de pe 0.0AR4A1%
meia ce pe -164741 a.a%n3aa
<20 SNavelE a.010478
ahaae ~010353 0.005%15%
lat ~N%e7a7 N.01%65E
1ean 070577 a.oroasa
FUTE.CV -IH185E a. 5
CAP.M3 E 0.03%361
FADFACHRatiaTeip L a.00&74%
payad ~12536R 0036187
annes_ e pe L133022 n.208660
anneas s e - 44797 0.1230%8
anneas s e ~-2RF53T a.11%080
annes e ps 0.12&18A 3 B
annes e ps 0.12045% -2.611

Poemula: laog.e - cabtdgeria + annes de peecha * mols de peche + d20 +
ahsag * lan + PUIS.LCY + CAP.M3 + PADFACHRatiaTEip + paya + (1 | =aad + (1 | =at) + (1 | annas da pecha/owpll) +
i1 ¥l) + (1 | tEipIDy
Data
REML critacion abt conveegaenos: 114918
Realad oo Al
Min 1g  Madian g Max
-3.07A% —0.6A%A  0.00R2 0O.67A% 3.6216
Random affacta:
CEoupa Variance Std.Daw.
ewpll tannas da pachea yon.az % 0.1e%20
CEipID 3 D.O2AT21 N.18%47
VA A ) DLONSEET 0.075H2%
yoa. -231R4
Jon.n22AES 0.15121
{Inteeoapt) 0.379156 0.61576
0.7003R5% D.A3AEAD
Wundsie of obs: 45094, groups: ewplliannes de peche, 4707; beipID, 1333; wae 13; zaw, 133 annas de peche, 11

Analysis of Deviance Tabkle (Type II Wald chiscquare tests)
Response: log.cpue

Chisg Df Pr(>Chisqg)
categorie 3.7%24 2 0.1501385
annee de peche 1.5823 10 0.9986553
mois_de peche 182.84985 11 < 2.2e-lg **%*
dz20 20.7038 1 5.36le-0pg **=*
shear 3.0631 1 0.0800885 .
lat 21.3516 1 3.823e-0g *#w*
lon £4.1955 1 1.127e-15 *++
PUIS.CV 7.7109 1 0.0054885 *~*
CRP.M3 1.7025 1 0.1915558
FADFSCHRatioTrip 4.6334 1 0.031355¢e *
pays 11.9834 1 0.00053e8 *+*x*
annee_de peche:mois_de_peche 1018.1658 110 <« 2.2e-16 **%
lat:lon 359.12e2 1 3.973e-10 **x*
Signif. codes: 0 Y&**r [ Q01 Y**r g.01 “*r Q.05 *.f 0.1 v r




