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Abstract 

The EU purse seine fleet catches of yellowfin tuna (Thunnus albacares) from the Indian Ocean were 
standardized using the framework described in Katara et al. (2016, 2017) with a Delta-lognormal 
generalised linear mixed model developed specifically for the standardisation of tropical tuna catch 
per unit effort (CPUE) time series. With the aim to depict the trend in abundance for adults and for 
juveniles yellowfin separately, the CPUE time series were treated by fishing mode: free school (FSC) 
sets and sets associated with floating objects (FOBs).  

CPUE for FSC was defined as the catch per hour of large yellowfin tuna (> 10 kg). For FOBs sets 
(i.e., dFAD and log sets), CPUE was defined as the catch per positive set of small yellowfin tuna (< 
10 kg) – a positive set defined as a set with small yellowfin catches > 0 . Due to the availability of 
covariates that likely affect them, the time series considered were 1986-2017 and 2010-2017 for FSC 
and FOB, respectively. . In both cases, the least absolute shrinkage and selection operator method 
(LASSO) was applied for model selection. 

A step forward compared to previous years was the inclusion of environmental variables known to 
affect catchability. Another improvement is the availability of information on dFAD densities, i.e. 
densities of FOBs with transmitting buoys. This standardization of yellowfin tunas CPUE for the 
European purse seiners in the Indian Ocean, therefore, represents a significant advance over previous 
efforts, having used the most recently available data on nontraditional explanatory factors, particularly 
on dFAD density. Nevertheless, several avenues for future progress are noted in the discussion, such 
as further improvements in dFAD density estimates and inclusion of additional or different 
explanatory variables to best represent the impacts of fishery change on CPUE. 

Keywords: CPUE standardization; purse seine fishery; dFADs; FOBs; FSC; mixed models; yellowfin 
tuna 
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This paper is the result of the Workshop for the development of yellowfin indices of abundance for the 
EU tropical tuna purse seine fishery operating in the Indian Ocean, hosted at the IRD MARBEC 
laboratory in Sète, France in September 2018 as part of the EU funded project Cecofad II1. The 
workshop aimed at developing standardised CPUE time series to be provided to IOTC as an input for 

the upcoming stock assessment of yellowfin tuna (YFT, Thunnus albacares). Catch per unit effort 
(CPUE) time series were standardized by fishing mode: sets on free school (FSC) and sets associated 
with floating objects (FOBs). 

We followed the recommendations of the 2016 workshop for the development of indices of abundance 
for the EU tropical tuna purse seine fishery (Gaertner et al., 2017), as well as the framework 
described in Katara et al. (2016, 2017). Delta-lognormal generalised linear mixed models (Delta-
lognormal GLMMs) with LASSO component were developed for the standardisation of the time 
series. Along with the commonly used covariates relating to vessel characteristics and spatiotemporal 
variability, we also considered three environmental variables (chlorophyll-a, the vertical current shear 
and the depth of 20°C isotherm) and information on drifting fish aggregating devices (hereafter 
dFADs) density that may affect catchability (Escalle et al., 2018).  

Material and Methods 

CONVENTIONAL FISHING DATA 

Logbook data for the French and Spanish purse seine fleets targeting tropical tuna in the Indian Ocean 
from 1986 to 2017 were analysed to derive the standardised CPUEs. The logbook databases are 
managed by the Tuna Observatory (Ob7) and the IEO for the French and the Spanish fleets, 
respectively. The raw logbook data (Level 0) produced by the skippers were corrected in terms of 
total catch per set (to account for the difference between reported catch at sea and landed catch) and 
species composition (based on port size sampling and the T3 methodology – see Pallarès and Hallier 
1997, Duparc et al., 2018) to generate the Level 1 logbook database used in this paper. 

The database was split into 2 datasets: (i) free-school sets (FSC), i.e. non-associated school sets and 
whales’ sets and (ii) FOB-related sets, including dFAD, logs and whale-sharks’ sets. The FSC dataset 
was used to derive CPUE for the adult fraction of the yellowfin stock, by selecting the size categories 
2 and 3 (10-30 kg and >30 kg respectively). The FOB sets dataset was used to derive CPUE for the 
juvenile fraction of the yellowfin stock, based on the size category 1 (< 10kg) in the logbook records.  

The analysis was restricted to:  

 - the period 1986-2017 for FSC sets because the fishery only reached its full spatial distribution after 
1985, and the period 2007-2017 for FOB related sets due to dFAD density data availability;  

- the area defined by all grid cells that were fished for at least 5 years over a period of no less than 15 
years, to avoid areas that are not routinely fished;  

- high-seas and all EEZs except for the Somali EEZ due to the effects of piracy (Okamoto, 2011; 
Chassot et al., 2012; Guillotreau et al., 2012). 

DFAD AND BUOYS DATA  

We assumed that the density of the surrounding floating objects (FOBs) can affect the size of the 
school aggregated under a floatting object (Fonteneau and Marsac, 2016). However, it remains 

                                                           

1 Catch, effort, and ecosystem impacts of tropical tuna fisheries (CECOFAD2); EASME/EMFF/2016/008 
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difficult to estimate the total number of FOBs, i.e. drifting Fish Aggregating Devices (dFADs) and 
instrumented and non-instrumented logs, by 1°x1° grid cell -  month. Previous studies showed that the 
vast majority of FOBs in the Indian Ocean were currently dFADs with buoys (Maufroy et al. 2015). 
Consequently, for the sake of simplicity we considered that the density of transmitting buoys (on 
dFADs or logs, but hereafter referred to as dFADs) can be used as a proxy of the total FOB density. 
No information on dFADs with inactive transmitting buoys or natural FOBs (logs) without 
transmitting buoys were available.  

For each month over the period 2010-2017, the average number of transmitting buoys found in each 
1ºx1º cell of the Indian Ocean was calculated. For French dFAD trajectory data, individual dFAD 
water trajectories were linearly interpolated at midnight GMT on each day. These daily French 
interpolated water positions were then assigned to 1ºx1º grid cells, summed for each month and then 
these sums were divided by the number of days in the month. Spanish data consisted of one position 
per day, so no interpolation was necessary. French data coverage was 100% over the period 2010-
2017, whereas Spanish data coverage was partial, progressively increasing from a mean of 32% in 
2010 to over 70% in 2017 (estimated by the fraction of the fleet and the types of transmitting buoys 
for which data were available; the monthly variation of the coverage rate was not quantified in this 
study). To correct for the partial coverage, total Spanish buoy densities were extrapolated from 
available data by dividing the initial Spanish dFAD density values in each grid cell-month strata by 
the fraction data coverage for the corresponding month (i.e., the number of vessels sharing the 
information and availability of information by buoy model, assuming the same deployment strategy 
for all Spanish vessels). The total number of Spanish dFADs was estimated for grid cells in which the 
vessels regularly operate (> 40ºS and longitude < 90ºE).  

The dFAD datasets of the 2 fleets were then combined and three indicators were calculated:  

-  distance of the set from the edge of the nearest dFAD hotspot. dFAD hotspots were derived 
using the ArcGIS algorithm for hotspots (Getis and Ord, 1992), positive hotspots with p-
values < 0.05 were selected, 

-  dFAD density in an area of a 1ºx1º buffer around the fishing set, and (iii) dFAD density in an 
area of a 2ox2o buffer around the fishing set.  

ENVIRONMENTAL DATA 

Three environmental datasets were considered: 

 1. chlorophyll-a concentration derived from SeaWiFS and MODIS (O’Reilly et al., 1998) 
over the period September 1997 to December 2017. High Chl-a values indicate areas with high 
productivity and potentially high density of micronekton organisms preyed upon by tuna. For 
instance, the record catches of yellowfin in 2004-2005 were associated with anomalously high levels 
of Chl-a (Marsac 2008, Fonteneau et al., 2008) and an outburst of the stomatopod Natosquilla 
investigatoris found in abundance in tuna stomachs (Potier et al. 2007). At a monthly timescale, 1°x1° 
squares with high levels of Chl-a can thus be indicative of foraging aggregations of tuna and thus 
increased catchability.  

 2. The vertical current shear between depths 5 and 145 m; the depth range refers to the major 
part of the water column sampled during a purse seine set. The vertical current shear may affect the 
tension on the net with possible consequences on the depth reached by the seine. We used the method 
developed by Bigelow et al. (2006), simplifying the equation by taking only two levels instead of 
integrating through all depth levels. The vertical current shear calculated between two levels z1 and 
z2 (5 and 145 m respectively) is obtained by: 
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 S = Log( W / ∆ z) 

 � = ���� −���� where �� is the horizontal velocity vector at depth level z.  

 3. Changes in depth of the mixed layer are known to affect the catchability of purse seines, as 
surface-dwelling tunas mostly gather above the thermocline (Green, 1967; Cayré and Marsac 1993; 
Bertrand et al., 2002). A deep thermocline may, therefore, decrease the vulnerability of tuna schools 
to purse seining. We used the depth of 20°C isotherm as a proxy of the thermocline depth, and 
subsequently, of the mixed layer depth. 

Chlorophyll is obtained by direct (satellite) measurements (SeaWiFS for 1997-2002 and Modis for 
2003-2017). The vertical current shear and the depth of the mixed layer were computed from ocean 
model outputs. We used the Global Ocean Data Assimilation System (GODAS) of the NCEP/NOAA 
which is an assimilated model incorporating continuous real-time data from the Global Ocean 
Observing System. The grid resolution is 1° in longitude and 1/3° in latitude, and we used the 
monthly time steps of GODAS which cover the period 1980 to the present. 

MODELLING APPROACH 

We followed the modelling approach developed by Katara et al. (2016, 2017). As the CPUE data for 
free schools followed a zero-inflated lognormal distribution, delta-lognormal GLMMs were used 
which comprised of two sub-models (a binomial GLMM that standardises the probability of a positive 
set, and a lognormal GLMM that standardises catch conditional to positive set). We performed the 
binomial GLMM where the full model included the following fixed effects: fleet country, vessel 
capacity category, year that the vessel started its activity, year, month, quarter, fishing set duration, 
mixed layer depth, vertical current shear, latitude, longitude, vessel length, vessel horsepower, vessel 
storage capacity, the proportion of FOB sets per trip. The last parameter was included as a proxy for 
vessels’ fishing strategy changes across time due to the increase of dFADs. We also tested for the 
interactions between year and month and between geographical coordinates. The random structure of 
the model includes the Exclusive Economic Zone, the T3 area used for logbook catch correction, a 
vessel unique identifier, a trip unique identifier and the interaction between year and 1ºx1º square.  

The full model for the lognormal GLMM included the following fixed effects: fleet country, vessel 
capacity category, year that the vessel started its activity, year, month, quarter, fishing set duration, 
mixed layer depth, vertical current shear, latitude, longitude, vessel length, vessel horsepower, vessel 
storage capacity, the proportion of FOB sets per trip, interaction between year and month and 
interaction between geographical coordinates. The random structure of the model includes the 
Exclusive Economic Zone, the T3 area used for  logbook catch correction, a vessel unique identifier, a 
trip unique identifier and the interaction between year and 1ºx1º grid cell.  

For both models, if the residuals indicated non-linear relationships, polynomials were used to describe 
those relationships. 

Table 1 available variables for the calculation of CPUE and the development of the standardisation models. 

Variable description 
fleet country France; Spain 
Vessel ID Unique vessel identifier 
vessel capacity category Vessel category related with vessel length and capacity 
the year that the vessel started its 
activity 

 

vessel length In meters 
vessel horsepower In kws 
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vessel storage capacity In m3 
quarter A quarter of the year at which the fishing set took place 
year Year at which the fishing set took place 
month Month at which the fishing set took place  
Time at sea Duration of the fishing trip 
Time fishing Cumulated time dedicated to fishing 
Fishing set duration In h 
Searching time In h 
Mixed layer depth Details in the main document 
Vertical current shear Details in the main document 
chlorophyll-a concentration Details in main document 
latitude Fishing set location coordinates 
longitude Fishing set location coordinates 
distance from a dFAD hotspot The distance of the set from the edge of a FAD hotspot. Temporal 

Resolution: monthly 
dFAD density at a 1º buffer Density around the set. Temporal Resolution: monthly 
dFAD density at a 2o buffer Density around the set. Temporal Resolution: monthly 
the proportion of FOB sets per trip The number of FOB sets divided by the total number of sets 
Exclusive Economic Zone Identifiers of EEZs and the offshore area 
T3 area used for logbook catch 
correction 

T3 areas used for correcting the species composition of the catch reported 
in the logbook 

trip ID trip unique identifier 
1ºx1º grid cell Reference grid of the fishing area at a 1ºx1º resolution 
 

The CPUE for FOB related sets was defined as catch per positive set of small YFT (size < 10 kg) – 
positive set being every set with small YFT catch > 0. Because the ratio of positive sets remains 
practically stable and greater than 90% throughout the time series, the CPUE was simplified to catch 
per set conditional to catch > 0 (i.e. catch per positive set, the second sub-model of the Delta-
lognormal GLMM approach). The full model included the following fixed effects: fleet country, 
vessel capacity category, year that the vessel started its activity, year, month, quarter, time at sea, time 
fishing, fishing set duration, mixed layer depth, vertical current shear, chlorophyll-a concentration, 
latitude, longitude, distance from a dFAD hotspot, dFAD density at a 1º buffer, dFAD density at a 2o 
buffer, searching time, vessel length, vessel horsepower, vessel storage capacity, proportion of FOB 
sets per trip, interaction between year and month and interaction between geographical coordinates. If 
the residuals indicated non-linear relationships, polynomials were used to describe them. The random 
structure of the model includes the Exclusive Economic Zone, the T3 area used for logbook catch 
correction, a vessel unique identifier, a trip unique identifier and the interaction between year and 
1ºx1º grid cell.  

Model selection involved the use of the LASSO regression (Tibshirani 1996, 2011), using algorithms 
that handle continuous explanatory variables (R package: glmnet; Friedman et al. 2009, 2010) and 
grouped covariates (R package: grpreg; Breheny and Breheny, 2018). Given a linear regression with 
standardized predictors xi and centred response values yi for i=1,2, …, N and j=1,2, …, p, the glmnet 
algorithm estimates the regression coefficients b={bj} to minimize:  

  

where λ covers a range of values, l(y,η) is the negative log-likelihood contribution for observation i 
and a controls the elastic-net penalty (for lasso α=1). The tuning parameter λ is chosen through cross-
validation. 

The LASSO procedure was followed by backward model selection for both the random and fixed 
effects of the mixed models using AIC and BIC. Finally, the selected model was refitted as an 
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unrestricted GLMM (R-package: lme4; Bates et al., 2014) but not with LASSO, as LASSO estimated 
coefficients are known to be biased (Friedman et al., 2001). Finally, the standardized CPUEs were 
fitted using estimated marginal means (R package: emmeans; Lenth, 2018).   

Residuals were tested for patterns including spatial/temporal autocorrelation (R package: DHARMa; 
Hartig, 2017). All the statistical analyses were computed using the software R (v3.4.3; R Core Team, 
2017). 

Results 

FSC SETS (1986-2017 PERIOD) 

Binomial GLMM (probability of large-size YFT catch > 0) 

The model selection methods (Figs 1-2) gave the following model: i. the fixed effects included vessel 
capacity category (p-value < 0.001), year (p-value < 0.001), month (p-value < 0.001), longitude (p-
value < 0.001) and a 2nd degree polynomial for latitude (p-value < 0.001) and ii. the random effects 
included a trip unique identifier and the interaction between year and 1ºx1º square. All fixed and 
random effects were statistically significant with 99% confidence. There was no obvious trend in 
residuals (Figs 3-4). Estimated marginal means time series of probability catch > 0 at an annual scale 
is shown in Fig 5. GLMM tables and results are presented in appendices. 

 

Figure 1 FSC sets – probability (catch > 0): cross-validation estimation of lambda for group Lasso (grpreg). 
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Figure 2 FSC sets – probability (catch > 0): cross-validation estimation of lambda for Lasso with glmnet. 

 

Figure 3 FSC sets – probability (catch > 0): testing residuals for normality (left) and homogeneity (right) 
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Figure 4 FSC sets – probability (catch > 0): Residuals versus fixed effects. 

 

Figure 5 FSC sets – predicted probability (catch > 0): standardised time series (by year) with 95% confidence intervals. 

 

Log-Normal GLMM (catch per hour conditional to YFT catch > 0) 

The model selection methods (Figs 6-8) gave the following model: i. the fixed effects included fleet 
country (p-value = 0.16), vessel capacity category (p-value = 0.09), the interaction between year and 
month (p-value < 0.001) , mixed layer depth (p-value = 0.005), vertical current shear (p-value = 0.1) , 
year that the vessel started its activity (p-value < 0.001) and ii. the random effects included the 
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Exclusive Economic Zone, the T3 area of logbook catch correction, a vessel unique identifier, a trip 
unique identifier and the interaction between year and 1ºx1º square. The residuals (Figs 9-10) show a 
reasonable fit of the model (Fig 11) with a negligible divergence from normality and homogeneity. 
GLMM tables and results are presented in appendices. 

 

Figure 6 FSC sets – catch per hour | catch > 0: cross-validation estimation of lambda for group Lasso (grpreg) 

 

Figure 7 FSC sets – catch per hour | catch > 0: visualisation of the path of the coefficients against l1-norm for glmnet 

 



 IOTC–2018–WPTT20–36_Rev 

 

 

 

Figure 8 FSC sets – catch per hour | catch > 0: cross-validation estimation of lambda for glmnet 

 

Figure 9 FSC sets – catch per set | catch > 0: testing residuals for normality (left) and homogeneity (right) 
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Figure 10 FSC sets – catch per set | catch > 0: Residuals versus fixed effects. 
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Figure 11 FSC sets – catch per set | catch > 0: standardised time series (by year) with 95% confidence intervals. 

DELTA LOGNORMAL GLMM  APPROACH 

The product of the two sub-models described above provided the standardised CPUE time series for 
free school sets (Fig 12). 

 

 

Figure 12 standardised CPUE (catch per hour) for free school sets with 95% CIs (top) and compared to nominal CPUE 
(bottom). Time series on an annual basis. 
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FOB-RELATED SETS (2007-2017 PERIOD) 

Log-Normal GLMM (catch per set conditional to YFT catch > 0) 

The model selection methods (Figs 13-15) gave the following final model: i. the fixed effects included 
vessel capacity category, the interaction between year and month (p-value < 0.0001), mixed layer 
depth (p-value < 0.0001), vertical current shear (p-value = 0.08), the interaction between latitude and 
longitude (p-value < 0.0001), vessel horsepower (p-value = 0.005), vessel storage capacity (p-value = 
0.2), proportion of FOB sets per trip (p-value = 0.03), fleet country (p-value = 0.0005) and ii. the 
random effects included the Exclusive Economic Zone, the T3 area of logbook catch correction, a 
vessel unique identifier, a trip unique identifier and the interaction between year and 1ºx1º square. The 
residuals (Figs 16-17) show a reasonable fit of the model (Fig 18) with a slight divergence from 
normality and homogeneity that can be considered negligible due to the robustness of the model. 
GLMM tables and results are presented in appendices 

 

Figure 13 FOB-related catch per set| catch > 0: cross-validation estimation of lambda for group LASSO (grpreg). 

 

Figure 14 FOB-related catch per set| catch > 0: visualisation of the path of the coefficients against l1-norm for the Lasso 
regression (glmnet). 
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Figure 15 FOB-related catch per set| catch > 0: cross-validation estimation of lambda for Lasso with glmnet. 

 

 

Figure 16 FOB-related catch per set| catch > 0: testing residuals for normality (left) and homogeneity (right) 
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Figure 17 FOB-related catch per set| catch > 0: Residuals versus fixed effects 
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Figure 18 Catch of YFT < 10 kg per set for FOB related sets. Nominal and standardised CPUE with 95% confidence 
intervals. Time series on an annual basis. 

Discussion 

As mentioned in the Method section, we followed the framework for CPUE standardization for the 
tropical tuna purse seine fisheries described in Katara et al. (2016) to account for the hierarchical 
structure of the data, for the non-randomised sampling and the numerous candidate variables linked to 
technological developments and evolving fishing strategies. A step forward compared to previous 
years was the inclusion of environmental variables known to affect catchability. Another major 
improvement is the availability of information on dFAD densities, i.e. densities of FOBs with 
transmitting buoys. Indeed, this study of the standardization of yellowfin tunas CPUE for the 
European purse seiners operating in the Indian Ocean represents to our knowledge the most extensive 
effort to include data nontraditional explanatory factors, particularly on dFAD densities. 

Environmental variables, primarily mixed layer and, to a lesser extent, vertical current shear, were 
important variables for predicting catch per hour on free schools and catch per FOB.  

It has been theorized that dFAD densities should affect catch per FOB set via, for example, disruption 
of tuna schooling behaviour at high FOBs densities (Fonteneau and Marsac, 2016). In this preliminary 
analysis, dFAD densities were not informative for models of catch on FOB sets. There are a number 
of possible explanations for this. Though to our knowledge this study represents the most thorough 
effort to collect dFAD position and density information in any tropical ocean, incomplete data 
coverage is a potential explanatory factor for the lack of an observed dFAD density effect. Whereas 
complete data on French buoys have been used in this analysis, Spanish buoy densities were estimated 
from partial data for which the coverage rate over time (i.e. by month) has not been quantified yet. As 
buoy densities are estimated on the relatively fine scale of 1° months, this could lead to bias in buoy 
density estimates over space and time. One indication that this might be the case is that the proportion 
of EU dFADs that are French as estimated from our buoy density data is considerably higher than a 
previous estimate in the Indian Ocean of 10.4% for 2013 based on random encounters with dFADs 
noted by observers aboard EU purse seiners (Maufroy et al., 2017; Figure 19). It is also noteworthy 
that although Spanish and French data look very similar after ~2014, suggesting that the Spanish data 
is a reasonable representation of the true spatial distribution of dFADs after this time, the larger 
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differences observed between data from the two fleets prior to 2014 may be indicative of potential 
problems requiring further exploration (Figure 20; other explanations, such as differences in fishing 
strategy, are also quite possible). As data coverage has greatly improved over time and continues to 
improve, it is likely that these concerns regarding data coverage will diminish in future studies. 

 

Figure 19: Proportion of EU (French and Spanish) dFADs that are French as estimated from our buoy density data. French 
data have been limited to the same data domain as Spanish data. Mean proportions for 2013 for our data and from Maufroy 
et al. (2017) are shown be horizontal dashed black and gray lines, respectively. 
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Figure 20: Adjusted R2 of the linear relationship between French and Spanish buoy densities. Models were calculated by 
month using ordinary least squares based on the data for all cells for which either the Spanish or the French buoy density 
estimates were non-zero. 

In the western central Pacific, dFAD density was found to significantly impact catch rates on FOBs 
despite the fraction of dFAD trajectory data coverage being only 30-40% (Escalle et al., 2018). 
Nevertheless, dFAD density explained less deviance than the coordinate variables with the overall 
model explaining only 6-17% of the deviance (Escalle et al., 2018). Furthermore, the range of dFAD 
densities observed in Escalle et al. (2018) was far superior to that in our study (>3000 per  1º month 
maximum density in their study versus a maximum of 170 per 1º month in ours) and the authors noted 
that decreases in CPUE were only observed above a dFAD density of 250 per 1º month. It is, 
therefore, plausible that dFAD densities observed in our study may be too low for disruption of 
schooling behaviour (the theorized mechanism by which total FOBs densities affect FOB CPUE) to 
be occurring or measureable. 

Numerous other explanations for the lack of an impact of dFAD densities on CPUE rates are possible. 
Transmitting buoy density estimates may not accurately represent FOB densities because they do not 
include FOBs without a buoy or with an inactive buoy. However, it has been estimated that the vast 
majority of FOBs in the Indian Ocean are currently dFADs with buoys (Maufroy et al. 2015) and 
inactive transmitting buoys were considered a relatively rare phenomenon until the implementation of 
dFAD management plans in 2016. Furthermore, it may be that the 1ox1o grid cell size and the 1-month 
temporal resolution used for dFAD densities may be too large to accurately represent the impact of 
local dFAD densities on smaller spatial and temporal scales on tuna behaviour and skipper decision 
making in the Indian Ocean. In addition, the decision of a skipper to set on a particular dFAD does not 
directly depend on the overall density of that strata, but rather depends on the distribution and 
predicted biomass associated with the boats “own” dFADs in the region (owned density/aggregation). 
In other words, skipper choice is driven by information available to the skipper at the time of fishing, 
not the total dFAD density, which is not generally known by fishers. Though this does not address the 
potential of total dFAD density to disrupt schooling behaviour, it may explain fishers setting on 
schools in areas with a variety of total dFAD densities. Furthermore, based on the high rate of buoy 
ownership change (Snouck-Hurgronje et al. 2017), skippers may make sets on accessible dFADs with 
low aggregated biomass underneath to avoid losing fishing opportunities (this has been already 
described in 2017 WPTT report), independently of the dFAD density. Buoy density may also be 
impacting the decision of whether or not to fish in a zone at a given time (particularly since the advent 
of echosounder buoys that remotely estimate fishable biomass), as opposed to impacting how much is 
caught in a given set. Ideally, future studies should include variables representing the local density of 
dFADs owned by the individual fishing boat conducting the set (i.e., the dFAD density information 
directly available to the skipper) and examine the impact of dFAD density on the decision to fish in 
addition to the amount of fish caught to more fully explore the suite of potential mechanisms 
impacting purse-seine CPUE rates on FOBs. 

Acknowledgements  

The authors are thankful to the French purse seiner association (ORTHONGEL) and tuna owner 
compagnies (Compagnie Française du Thon Océanique, Saupiquet, Sapmer) and Spanish tuna purse 
seiner association (OPAGAC) for providing the tracking and the identification of the buoys. The 
workshop and this study were supported by the EU project CECOFAD2 (EASME/EMFF/2016/008). 
Also, thanks to the Fmort project of IATTC, who supported the attendance of one of their scientists to 
the workshop.  



 IOTC–2018–WPTT20–36_Rev 

 

 

References 

Bates, D., Maechler, M., Bolker, B. and Walker, S., 2014. lme4: Linear mixed-effects models using Eigen and 
S4. R package version, 1(7), pp.1-23. 

Bertrand, A., Josse, E., Bach, P., Gros, P., and Dagorn, L.. 2002. Hydrological and trophic characteristics of 
tuna habitat: consequences on tuna distribution and longline catchability. Can J Fish Aquat Sci, 59: 1002–1013 

Bigelow, K., Musyl, M.K., Poisson, F., Kleiber, P. 2006. Pelagic longline gear depth and shoaling. Fish. Res. 
77: 173-183 

Breheny, P. and Breheny, M.P., 2018. Package ‘grpreg’. 

Cayré, P., Marsac, F., 1993.  Modelling the yellowfin tuna (Thunnus albacares) vertical distribution using sonic 
tagging results and local environmental parameters. Aquat Living Resour, 6: 1–14. 

Chassot E, Guillotreau P, Kaplan DM, Vallée T (2012) The tuna fishery and piracy. In: Norchi CH, Proutière-
Maulion G (eds) Piracy in comparative perspective: Problems, strategies, law. Editions A. Pedone & Hart 
Publishing, Oxford, United Kingdom, p 51–72 

Duparc A., Cauquil P., Depetris M., Floch L., Gaertner D., Lebranchu J., Marsac F., Bach P., 2018. Assessment 
of accuracy in processing purse seine tropical tuna catches with the T3 methodology. IOTC-2018-WPTT-16 

Escalle, L., Brouwer, S., Pilling, G., (2018) Estimates of the number of FADs active and FAD deployments per 
vessel in the WCPO. ECPFC-SC14-2018/MI-WP-10 
 
Fonteneau, A., Lucas, V., Tew-Kai, E., Delgado, A., Demarcq, H., 2008. Mesoscale exploitation of a major tuna 
concentration in the Indian Ocean. Aquat. Living Resour., 21: 109-121c 

Fonteneau, A., Marsac, F. (2016). Fishery indicators suggest symptoms of overfishing for the Indian Ocean 
skipjack stock. IOTC-2016-WPTT18-INF02, 15p. 

Friedman, J., Hastie, T. and Tibshirani, R., 2009. glmnet: Lasso and elastic-net regularized generalized linear 
models. R package version, 1(4). 

Friedman, J., Hastie, T. and Tibshirani, R., 2010. Regularization paths for generalized linear models via 
coordinate descent. Journal of statistical software, 33(1), p.1. 

Gaertner, D., Katara, I., Billet, N., Fonteneau, A., Lopez, J., Murua, H. and Daniel, P., 2017. Workshop for the 
development of Skipjack indices of abundance for the EU tropical tuna purse seine fishery operating in the 
Indian Ocean. 

Getis, A. and Ord, J.K., 1992. The analysis of spatial association by use of distance statistics. Geographical 
analysis, 24(3), pp.189-206. 

Green, R.E., 1967. Relationship of the thermocline to success of purse seining for tuna. Trans. Am. Fish. Soc. 
96(2): 126-130 

Guillotreau P, Vallée T, Chassot E, Kaplan DM (2012) The economic impact of piracy on the EU purse-seine 
tuna fishery in the West Indian Ocean. International Workshop on “The impacts of piracy on fisheries in the 
Indian Ocean", 28-29 February. European Bureau for Conservation & Development, Mahé, Republic of 
Seychelles. February 28 

Hartig, F., 2017. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R 
package version 0.1. 5. 

Katara, I., Gaertner, D., Chassot, E., Soto, M., Abascal, F., Fonteneau, A., Floch, L., Lopez, J. and Cervantes, 
A., 2016. A framework for the standardisation of tropical tuna purse seine CPUE: application to the yellowfin 
tuna in the Indian Ocean. IOTC-2016-WPTT18-24. 



 IOTC–2018–WPTT20–36_Rev 

 

 

Katara, I., Gaertner, D., Billet, N., Lopez, J., Fonteneau, A., Murua, H., Daniel, P. and Báez, J.C., 2017. 
Standardisation of skipjack tuna CPUE for the EU purse seine fleet operating in the Indian Ocean. IOTC-2017-
WPTT19. 

Lenth, R., 2018. Emmeans: Estimated marginal means, aka least-squares means. R Package Version, 1(2). 

Marsac, F, 2008. Outlook of ocean climate variability in the West tropical Indian Ocean, 1997-2008. IOTC-
2008-WPTT-27, 9p. 

Maufroy A, Chassot E, Joo R, Kaplan DM (2015) Large-Scale Examination of Spatio-Temporal Patterns of 
Drifting Fish Aggregating Devices (dFADs) from Tropical Tuna Fisheries of the Indian and Atlantic Oceans. 
PLoS ONE 10:e0128023. doi:10.1371/journal.pone.0128023 

Maufroy A, Kaplan DM, Bez N, Molina D, Delgado A, Murua H, Floch L, Chassot E (2017) Massive increase 
in the use of drifting Fish Aggregating Devices (dFADs) by tropical tuna purse seine fisheries in the Atlantic 
and Indian oceans. ICES J Mar Sci 74:215–225. doi:10.1093/icesjms/fsw175 

Okamoto H (2011) Preliminary analysis of the effect of piracy activity in the northwestern Indian Ocean on the 
CPUE trend on bigeye and yellowfin. IOTC–2011–WPTT13–44. Indian Ocean Tuna Commission, Malé, 
Maldives Available from http://www.iotc.org/files/proceedings/2011/wptt/IOTC-2011-WPTT13-44.pdf 

Pallarès P., and Hallier J.P. 1997. Analyse du schéma d'échantillonnage multi-spécifiques des thonidés 
tropicaux. Rapport scientifique. IEO/ORSTOM, Programme N°95/37. 

Potier, M., Marsac, F., Cherel, Y., Lucas, V., Sabatié, R., Maury, O., Ménard, F., 2007. Forage fauna in the diet 
of three large pelagic fishes (lancetfish, swordfish and yellowfin tuna) in the western equatorial Indian Ocean. 
Fish. Res 83: 60-72. 

R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical 
Computing, Vienna, Austria. URL https://www.R-project.org/. 

Tibshirani, R., 2011. Regression shrinkage and selection via the lasso: a retrospective. J. R. Stat. Soc. Ser. B 
Stat. Methodol. 73, 273–282. 

Tibshirani, R., 1996. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Methodol. 267–
288. 

  



 IOTC–2018–WPTT20–36_Rev 

 

 

APPENDICES 

FSC SETS (1986-2017 PERIOD) 

Binomial GLMM (probability of large-size YFT catch > 0) 
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Log-Normal GLMM (catch per hour conditional to YFT catch > 0) 
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FOB-RELATED SETS (2007-2017 PERIOD) 

Log-Normal GLMM (catch per set conditional to YFT catch > 0) 

 

 


