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Executive Summary

In May and June 2018 a collaborative study was conducted between national scientists with expertise
in Japanese, Korean, Seychelles, and Taiwanese longline fleets, an independent scientist, and an I0OTC
scientist. The meetings addressed Terms of Reference covering several important issues related to
yellowfin and albacore tuna CPUE indices in the Indian Ocean. The study was funded by the Indian
Ocean Tuna Commission (IOTC).

Terms of Reference

1. Validate and improve current methods for developing indices of abundance for the main IOTC
species.

2. Provide indices of abundance for selected IOTC species to be presented at the IOTC Working Parties
in 2018.

3. Provide support and training to national scientists in their analyses of catch and effort data.

4. The analyses will consider data to be provided by key industrial fisheries operating in the Indian
Ocean, including data from Japanese, Taiwanese, and Korean longline fleet.

5. Analyses will be carried out in a series of meetings scheduled during 2018. After preliminary
discussions/meetings between the consultant and participating data providers, preparations will
be carried out for each dataset and methods for CPUE standardization developed (or further
elaborated upon), which will be followed by a joint CPUE meeting between all participating
countries and the consultant.

Tasks will include the following, to the extent possible in the available time:

6. Work with the I0TC Stock Assessment Officer to coordinate meetings between data holders and
the consultant.

7. Load, prepare, and check each dataset, given that data formats and pre-processing often change
between years and data extracts, and important changes to fleets and reporting sometimes occur
in new data.

8. Conduct the following analyses to improve CPUE methods and prepare indices:

0 Apply cluster analyses or alternative methods for identifying targeting. Develop CPUE
standardizations for main IOTC species using reliable data from each CPC, with priorities given
to yellowfin and albacore tunas in 2018. Prepare separate indices for each fleet, and joint
indices. Thoroughly check all code and results in order to validate the final standardized
indices series.

o Explore alternative modelling and data transformation methods in order to normalise residuals
and to accommodate strata with no zero catches.

o Explore residual patterns spatially and among clusters, fleets and vessels through time, and
change models where necessary to address any problems identified.

o Apply methods for estimating relative regional weights, so as to apportion relative abundance
among regions.

o Explore other distributions to improve model fit.
9. Document the analyses in accordance with the I0TC Guidelines for the presentation of CPUE
standardisations and stock assessment models, adopted by the IOTC Scientific Committee in 2014;
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and to provide draft reports to the IOTC Secretariat no later than 60 days prior to the relevant
IOTC Working Party meeting.

10. Undertake any additional analyses deemed relevant by the IOTC Working Parties, Scientific
Committee, or IOTC Secretariat.

All work is subject to the agreement of the respective fisheries agencies to make the data available.

As in 2017, this document covers only the joint indices of abundance, describing their development
for yellowfin and albacore tunas. Results are reported only for albacore tuna, with yellowfin tuna
results presented previously in a separate document to the Working Party on Tropical Tunas.

Other issues are covered in related papers that describe the data preparation, cluster analyses, and
individual indices for each fleet.

Data for the four fleets were standardized for each region to estimate indices of abundance. Indices
were estimated using two approaches, delta lognormal and lognormal + constant, but the main
approach was the delta lognormal. All models included the explanatory variables year-quarter and 5°
cell as categorical variables, and a cubic spline on hooks as a covariate. Models included either a cubic
spline fitted to hooks between floats or a categorical variable for cluster. Additional models were run
that included both variables. Some models included vessel identity as a categorical variable. Models
were run for the period 1952-1979 without vessel identity, for the later period 1979-2017 with vessel
identity, and for the whole period 1952-2017 both with and without vessel identity.

Figures and tables are provided for each set of indices, including both quarterly and annual indices.
Diagnostic plots are also presented.



Introduction

In May and June 2018 a collaborative study of longline data and CPUE standardization for albacore
and yellowfin tunas was conducted between scientists with expertise in Japanese, Taiwanese, Korean,
and Seychelles fleets, an independent scientist, and an I0TC scientist. The study was funded by the
Indian Ocean Tuna Commission (IOTC). The study addressed the Terms of Reference outlined below,
which cover the most important issues that had previously been highlighted by different Working
Parties. Work was carried out, for those factors relevant to them, for the following:

¢ Area: Indian Ocean
¢ Fleets: Japanese longline; Taiwanese longline, Korean longline, Seychelles longline

e Stocks: yellowfin tuna, albacore tuna.

Terms of Reference

1. Validate and improve current methods for developing indices of abundance for the main I0TC
species.

2. Provide indices of abundance for selected IOTC species to be presented at the IOTC Working Parties
in 2018.

3. Provide support and training to national scientists in their analyses of catch and effort data.

4. The analyses will consider data to be provided by key industrial fisheries operating in the Indian
Ocean, including data from Japanese, Taiwanese, and Korean longline fleets.

5. Analyses will be carried out in a series of meetings scheduled during 2018. After preliminary
discussions/meetings between the consultant and participating data providers, preparations will
be carried out for each dataset and methods for CPUE standardization developed (or further
elaborated upon), which will be followed by a joint CPUE meeting between all participating
countries and the consultant.

Tasks will include the following, to the extent possible in the available time:

6. Work with the I0TC Stock Assessment Officer to coordinate meetings between data holders and
the consultant.

7. Load, prepare, and check each dataset, given that data formats and pre-processing often change
between years and data extracts, and important changes to fleets and reporting sometimes occur
in new data.

8. Conduct the following analyses to improve CPUE methods and prepare indices:

0 Apply cluster analyses or alternative methods for identifying targeting. Develop CPUE
standardizations for main IOTC species using reliable data from each CPC, with priorities given
to yellowfin and albacore tunas in 2018. Prepare separate indices for each fleet, and joint
indices. Thoroughly check all code and results in order to validate the final standardized
indices series.

o Explore alternative modelling and data transformation methods in order to normalise residuals
and to accommodate strata with no zero catches.



o Explore residual patterns spatially and among clusters, fleets and vessels through time, and
change models where necessary to address any problems identified.

o Apply methods for estimating relative regional weights, so as to apportion relative abundance
among regions.

o Explore other distributions to improve model fit.

9. Document the analyses in accordance with the I0TC Guidelines for the presentation of CPUE
standardisations and stock assessment models, adopted by the IOTC Scientific Committee in 2014;
and to provide draft reports to the IOTC Secretariat no later than 60 days prior to the relevant
IOTC Working Party meeting.

10. Undertake any additional analyses deemed relevant by the IOTC Working Parties, Scientific
Committee, or IOTC Secretariat.

All work is subject to the agreement of the respective fisheries agencies to make the data available.

Methods

Data cleaning and preparation

The four datasets had many similarities but also significant differences. The variables differed
somewhat among datasets, as did other aspects such as the sample sizes, the data coverage and the
natures of the fleets.

Data preparation and analyses were carried out by each participant, using a standard set of scripts
developed for this purpose in R version 3.3.0 (R Core Team 2016). The approaches used are described
by Hoyle et al. (2015b) and Hoyle et al. (2016). The datasets and the analyses are described in working
papers by each participant and will not be further reported here. The Japanese data for 2017 are
preliminary.

For more detail about the Japanese, Korean, and Taiwanese fleets, see the descriptive figures in the
following WPTT information papers (Hoyle et al. 2015a, Hoyle and Okamoto 2015, Hoyle et al. 2015c).
For detail about the Seychelles fleet, see the WPTT working paper provided by the Seychelles (ref).

Plotting and data selection

We pooled data from multiple fleets into a single dataset for years 1952-2017. The pooled dataset
included all data from the Japanese (1952-2017) and Korean (1971-2017) fleets. For the Taiwanese
fleet data from 2005-2017 were included. For the Seychelles fleet all data (2000-2017) were included,
except in analyses that included hooks between floats.

Joint analyses included prepared and clustered data from each of the fleets. In some analyses clusters
that caught very few of the species of interest were omitted, because they provide little relevant
information and may cause analysis problems due to large numbers of zeroes, and memory problems
due to large sample sizes. Cluster selection was based on review and discussion of the plots of
covariates and species compositions by cluster.

For standardization of each regional structure and region, data were included in the analysis if they
met a set of selection criteria (Table 2). Selection criteria were based on the minimum number of sets
or substrata per stratum. Vessels needed to have fished for at least N1 quarters in the region. Vessels
were included if they had made at least N2 sets. Each 5° cell was included if it contained at least N3
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sets. A year-quarter was included if there were at least N4 sets. Each year-quarter by 5° cell stratum
was included if there were at least N5 sets.

For datasets with more than 60,000 sets the number of sets in each stratum (5° square * year-quarter)
was limited by randomly selecting 30 sets without replacement from strata with more than this
number of sets. Testing suggested that this approach did not cause bias, and the effects on random
variation were reduced to very low levels at 30 sets per stratum (Hoyle and Okamoto 2011).

CPUE standardization

CPUE standardization methods generally followed the approaches used by Hoyle and Okamoto (2011)
with some modifications. The operational data were standardized using generalized linear models in
R. Indices were prepared for each species and region using several approaches, summarised in Table
1 and further described below.

Table 1: Species, regions, distributions and variables used in CPUE analyses.

Species | Regions Fleets Target | Vessel ID | Period Distribution
variable
YFT 2,3,4,5,2n,2s | All Cluster |VY,N 1952-2017 | logC, bin, logN
N 1952-1979
Y 1979-2017
All except SY | HBF Y, N 1952-2017
N 1952-1979
Y 1979-2017
ALB 1,2,3,4 All Cluster |Y,N 1952-2017
N 1952-1979
Y 1979-2017
All except SY | HBF Y,N 1952-2017
N 1952-1979
Y 1979-2017

Distributions

Lognormal constant analyses were carried out using generalized linear models that assumed a
lognormal distribution. In this approach the response variable log(CPUE + k) was used, and a
normal distribution assumed. The constant k, added to allow for modelling sets with zero catches of
the species of interest, was 10% of the mean CPUE across all sets.
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Delta lognormal analyses (Lo et al. 1992, Maunder and Punt 2004) used a binomial distribution for the
probability w of catch rate being zero and a probability distribution f(y) , where y was log(catch/hooks
set), for non-zero (positive) catch rates. The index estimated for each year-quarter was the product of
the year effects for the two model components, (1 — w).E(y|y # 0).

w y=0

Pr(Y =y) = {(1 - w')f(y) otherwise

g(w) = (CPUE = 0) ~ covariates + €, where g is the logistic function.
f(y) = CPUE ~ covariates + €

In each case the covariates included year-quarter (yrgtr), and 5° cell (latlong5) fitted as categorical
variables, and a cubic spline function h with 10 degrees of freedom applied to the continuous variable
hooks. Analyses including the vessel identifier (vessid) fitted it as a categorical variable. Analyses
including hooks between floats (hbf) fitted it as a continuous variable using a cubic spline ¢, while
those including cluster (c/) fitted it as a categorical variable.

Data in all models except the binomial model were ‘area-weighted’, with the weights of the sets
adjusted so that the total weight per year-quarter in each 5° square would sum to 1. This method was
based on the approach identified using simulation by Punsly (1987) and Campbell (2004), that for set
J in area i and year-quarter t, the weighting function that gave the least average bias was: w;;; =
M. Given the relatively low variation in number of hooks between sets in a stratum, we
Y7, log(hjr+1)
hije
Yoy hije

simplified this to w;;; =

Data periods

Vessel identity information for Japan was only available from 1979, and most of the data before 1979
was Japanese. The Korean dataset started in 1971 and had vessel IDs throughout, but covered a
limited area with relatively low effort, so its influence was small in some analyses. The full Taiwanese
dataset started in 1979, and in any case Taiwanese data before 2005 were omitted.

Overlap between vessels with the same ID across years is required to avoid confounding between year
effects and vessel IDs. Thus we could not apply a consistent approach across all years when including
vessel ids in the model.

The discontinuity in vessel 1979 could be addressed in several different ways. We therefore analysed
the data in several ways so as to provide the assessment scientists with appropriate data.

First, we standardized the full dataset from 1952 to the present without including vessel effects.

Next we standardized the full dataset with vessel effects, assigning an identical dummy vessel ID to all
sets that lacked vessel identity information. However, using a dummy value introduces several
problems. First, most Japanese vessels begin to report their callsign in 1979, but a few do not, and
these are presumably self-selected and not randomly selected from the vessel population. We
therefore omitted all sets without vessels IDs starting in 1979. This mostly restricted the overlap
between dummy and real vessel IDs to one year —1979. However, there was a little overlap between
the pre and post-1979 periods in some cases due to Korean vessel IDs, which start in 1971. The limited
overlap resulted in some indices showing a discontinuity in 1979. A second problem was that residuals
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may be more variable before 1979, without a true vessel ID in the model, which can introduce bias
into the standardization.

The solution was to estimate two time series: 1952-1979 without vessel effects, and a second time
series 1979-2017 with vessel effects (omitting all sets without vessel IDs). Subsequently the analyst
may use the two time series as desired, either as separate indices in the assessment, or the
recommended approach of concatenating them after adjusting the averages so that the estimates for
1979 are the same. This approach also has the advantage that it allows covariate estimates such as
spatial effects to differ by time period.

Covariate effects

The effects of covariates were examined by plotting the predicted effects, with 95% confidence
intervals, of each parameter at observed values of the explanatory variables. Spatial effects with 95%
confidence intervals were plotted by latitude. The cumulative vessel effects through time were
examined by plotting each vessel’s effect at every time that vessel made a set. An average vessel effect
over time was examined by calculating the mean of the vessel effects for all sets made by the fleet
during each time period, and this was also plotted. There is insufficient space to include all plots in the
report, but these are available on request.

Changes in catchability through time were investigated by fitting to the operational data both with
and without a term for individual vessel. The two models were designated respectively the ‘base
model’ and the ‘vessel-effects model’. Abundance indices were calculated for each model, and
normalized to average 1.

For all model comparisons, the indices estimated for each year-quarter were compared by dividing
the base model by the vessel effects model, plotting the time series of ratios, and fitting a log-linear
regression. The slope of the regression represented the average annual compounding rate of change
in fishing power attributable to changes in the vessel identities; i.e. the introduction of new vessels
and retirement of old vessels. Gradients are shown on the figures, together with confidence intervals.

Model diagnostics

Residual distributions and Q-Q plots were produced for all but the binomial analyses. For the
lognormal positive analyses that included cluster in the model, median residuals were plotted by
cluster. For all lognormal positive analyses, residuals by year-quarter were plotted by flag; median
residuals by year-quarter were plotted by flag; and median residuals by 5° cell were mapped onto a
contour plot for each flag.

The effects of covariates were examined using influence plots, using the R package influ (Bentley et
al. 2011).

Indices of abundance

Indices of abundance were obtained by applying the R function predict.glm to model objects. The
datasets used for prediction included all year-quarter values, with all other variables fixed at either
the median for continuous variables, or the mode for categorical variables. Binomial time effects were
obtained by a) generating logit time effects from the glm, and b) adding a constant to these logit time
effects so that the mean of the back-transformed proportions was equal to the proportion of positive
sets across the whole dataset. The main aim with this approach is to obtain a CPUE that varies
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appropriately, since variability for a binomial is greater when the mean is at 0.5 than at 0.02 or 0.98,
and the multiplicative effect of the variability is greater when the mean is lower. The outcomes were
normalised and reported as relative CPUE with mean of 1.

Uncertainty estimates were provided by applying the R function predict.glm with type = “terms” and
se.fit=TRUE, and taking the standard error of the year-quarter effect. For the delta lognormal models
we used only the uncertainty in the positive component. Uncertainty estimates from standardizing
commercial logbook data are in general biased low and often ignored by assessment scientists, since
they assume independence and ignore autocorrelation associated with (for example) consecutive sets
by the same vessels in the same areas. There may be a very large mismatch between the observation
error in CPUE indices and the process error in the indices that is estimated in the assessment. This is
particularly true for distant water longline CPUE, where very large sample sizes generate small
observation errors.

Annualized indices were developed from the year-quarter indices. For each time series, the year-
guarter estimates were modelled with a linear regression with normally distributed residuals, fitting
year-quarter as a function of year + quarter. The year effects were then predicted in the second
quarter of the year, and normalized to average 1.

Time-area interactions

We did not explicitly model time-area interactions, but explored the potential for them to occur in the
1979-2017 analyses for each region. We modelled the long term trends in median residuals for each
5° cell year-quarter stratum. We determined the median residual for each 5° cell year-quarter, and
then fitted a regression of median residuals versus year-quarter for each 5° cell. We extracted the
slope of each regression and plotted them on a map, with darker red representing decline and lighter
yellow representing increase.

Results

We estimated delta lognormal indices for all regions of albacore regional structures A4 and A5 (Figures
2-6). We also estimated annualized indices (Figures 7-11). Diagnostics for the lognormal positive
distribution indicated some negative skewness in the distributions of residuals (Figures 12-14), with
better fits for the indices that included vessel effects.

We estimated a number of other indices, but here present figures for only the indices likely to be used
in assessments, so as to conserve space. In all areas we selected figures from the analysis that omits
low-target clusters from the dataset, and includes cluster but not HBF in the model. This is because
there are known differences in fishing behaviour among vessels targeting different species, and these
differences are reflected in the species composition, making it appropriate to use cluster in the
standardization model. For example, the Japanese southern bluefin tuna fishery takes largely SBT,
with some catch of albacore. The Taiwanese oilfish fishery is also a clear example, with a very high
representation of species ‘other’.

For tropical tunas in tropical areas we often omit clusters from the standardization model because,
although there have been changes in targeting through time, vessels are believed to target bigeye and
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yellowfin at the same time and using similar methods. For albacore tuna, however, this concern is not
relevant.

In reporting results we focus mainly on the two shorter sets of indices in the lower half of each set of
figures. These cover the 1952 — 1979 period without vessel effects, and the 1979 — 2017 period with
vessel effects.

Indices for the subtropical areas were characterized by increase or variability before 1960 followed by
very steep declines in standardized CPUE until about 1975-1980. After a short-lived increase in the
mid-1980s, catch rates were relatively stable until the present. Since 2010 there has been some
decline in catch rate in the western subtropical area (Figure 2). In contrast, the eastern subtropical
region 2 has seen a slight increase in catch rates since 2005 (Figure 3).

Albacore in western temperate region 3 followed a similar pattern to the western subtropical indices,
with a decline until about 1980 followed by an increase in the early 1980s, followed by a decline until
1990 (Figure 4). Catch rates subsequently increased somewhat to peak in the mid-2000s, and have
since declined. In eastern temperate region 4 the patterns have been quite different from the western
temperate area (Figure 5). There was a similar decline until about 1990, but since that time catch rates
have increased substantially.

The annual indices are derived from the quarterly indices but show the long term trend more clearly
by removing some of the seasonal noise and random variation (Figure 7-11).

Residuals for these analyses were reasonably normally distributed (Figures 12-14), with the residuals
for the subtropical indices tending to be more left skewed.

The effects of the standardization process on the indices are shown in Figures 15 to 19. Most indices
saw substantial reduction in variability, due to standardization of the effects of spatial movements of
the fleets, and changes in targeting. These figures were not available for the models with cluster, so
instead we present the models with HBF.

Median residuals were also reported by year-quarter (Figures 20-21) and by 5° cell (Figures 22-24),
with additional grouping by cluster.

Patterns by year are affected by the introduction of different fleets and changes in the number of
vessels, which affect the variability of the medians by fleet and by cluster. Changes in the trends of
the medians, however, may indicate problems in the modelling such as changes in fishing power by
part of the fleet that are not explained by the available data.

In the median residuals by year-quarter for 1979-2017 (Figures 20-21) the Japanese residuals become
more variable after 2005 when the Taiwanese data are introduced, and a similar pattern occurs after
the arrival of Korean vessels in 1975. In region 2 the Japanese residuals trend negative after about
2000.

These plots show that the Taiwanese data has been accidentally omitted pre-2005. This will need to
be corrected.
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The influence plots for the western subtropical area (Region 1, Figure 25) show relatively little
influence from most variables, with spatial patterns having the strongest effects.

In the western temperate area (region 3, regA4 R3) spatial effects were influential, showing the
expected greater seasonality further south. There was evidence of movement to areas with lower
albacore catch rates in the period after 1970, but post-1979 a shift to areas with higher catch rates.

In the eastern temperate region 4 (regA4_R4, Figure 26) there was a move of effort to areas with
lower catch rates after about 1973.

The regAS5 indices showed a decrease between 1958 and 1979 in the proportion of effort in areas with
higher albacore catch rates (Figure 29). However this was reversed in the late 1980s.

Trends through time in temporal residuals from the 1979-2017 models in western subtropical region
1 show no clear patterns in catch rate decline. In the eastern tropical region 2 there appears to be
more decline in the west, while catch rates increase in the northeast. In both temperate regions 3 and
4 the trends are more positive in areas south of 35S than further north. In eastern temperate region
4 where catch rates have increased, the increases are greater to the east of 95 degrees.

The residual trends for region A5 show similar patterns, with much more positive trends to the south
of 35S and to the east of 95 than further north and west.

Discussion

The CPUE indices presented in this paper are derived from joint analysis of Japanese, Korean,
Seychelles, and Taiwanese data. In 2015 and 2016 this joint paper included analyses of data from
individual fleets, but in 2017 and this year the methods and results for the individual fleets, including
cluster analyses, are provided in separate papers.

The general approach was to run separate models for different areas, so that parameter estimates
and uncertainty distributions could differ among areas (Chang et al. 2011). The models used 5° cell
area effects, as recommended by the 2013 IOTC CPUE workshop (Anon 2013) to account for changes
in effort distribution, and adjusted statistical weights to allow for changing effort concentration
(Punsly 1987, Campbell 2004). The models included vessel effects where available, to account for
some effects of changing fishing power and targeting within the fleet (Hoyle and Okamoto 2011). They
also used cluster analysis based on species composition in order to identify target change, and to
separate out effort using different fishing strategies (He et al. 1997).

Temporal trends post-1979 appear to vary within regions, with the most notable feature the more
positive trend in residuals indicating more increase in CPUE to the south of 35S and east of 95. This
factor should be explored further. We should check whether a reporting issue is involved, because
some vessels have in the past reported only southern bluefin tuna, despite probably having caught
other species.

It should be noted that in these analyses Taiwanese data was not included for the period prior to 2005.
These analyses data should be redone with all Taiwanese data included. In addition, diagnostics and
influence plots should be prepared for all analyses, including those that include both cluster and HBF
in the models.
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The joint data were only available for one week, and this time was also occupied by training,
presentations, and discussions during the joint CPUE workshop. This limited data access was a
constraint on testing and development.

The analyses presented here used an R package ‘cpue.rfmo’, which the first author of this report is
developing for the standardization of pelagic longline data used by tuna RFMOs.

CPUE indices are very influential components of stock assessment models, and further work to
improve and validate indices is a high priority. We suggest the following priorities for further work:

1) Explore options for extending the Japanese time series of vessel effects into the pre-1979
period.

2) Increase understanding of the fisheries that provide the CPUE by a) further exploring the size
data associated with each fleet, if possible with size data at the vessel set level; and b)
exploring vessel movement patterns through time.

3) Explore alternative modelling and data transformation methods in order to normalise
residuals and to accommodate strata with no zero catches.

4) Explore alternative subarea-time interactions to the standardization models, to address
differences in trends among areas. Continue to explore residual patterns spatially and among
clusters, fleets and vessels through time, and change models where necessary to address any
problems identified. Develop additional residual and exploratory plots to explore possible
confounding effects, such as maps of residuals by season to explore seasonal catchability
changes.

5) Test alternative methods for identifying and accounting for targeting.
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Tables

Table 2: Criteria defining the minimum numbers of strata by region and regional structure, for 5 different types of strata.

Regional Number Min Min vessel sets | Min latlong | Min  yr-qtr | Min vq

structure | of regions | vessel (N2) sets (N3) sets (N4) latlong
quarters sets (N5)
(N1)

Y 6 2,5,5,2, | 40, 100, 100, 40, | 20, 50, 50, |20, 50, 50, |3,5,5,3,5,
5,2 100, 40 20, 50, 20 20, 50, 20 3

Y2 7 2,5,5,2, | 40, 100, 100, 40, | 20, 50, 50, |20, 50, 50, |3,5,5,3,5,
52,5 100, 40, 100 20, 50, 20, 50 | 20, 50,20,50 | 3,5

A4 4 3,2,5,5 | 60, 40, 100, 100 | 30, 20, 50,50 | 30, 20,50,50 | 3,3,5,5

A5 1 5 100 50 50 5
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Figure 1: Maps of the regional structures used to estimate albacore CPUE indices for the versions in which the western
subtropical region is contiguous (Y, above) and split (Y2, below).
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Figure 2: Quarterly CPUE series for albacore region 1 (western subtropical, regA4_R1), including time series for all years (top)
both with (right) and without (left) vessel effects, and time series for 1952-79 without vessel effects, and 1979-2017 with

vessel effects
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Figure 3: Quarterly CPUE series for albacore region 2 (eastern subtropical, regA4_R2) in regional structure A4. The plots
include time series for all years (top) both with (right) and without (left) vessel effects, and time series for 1952-79 without
vessel effects, and 1979-2017 with vessel effects.
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Figure 4: Quarterly CPUE series for albacore region 3 (western temperate, regA4_R3), including time series for all years (top)
both with (right) and without (left) vessel effects, and time series for 1952-79 without vessel effects, and 1979-2017 with
vessel effects.
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Figure 5: Quarterly CPUE series for albacore region 4 (eastern temperate, regA4_R4), including time series for all years (top)
both with (right) and without (left) vessel effects, and time series for 1952-79 without vessel effects, and 1979-2017 with
vessel effects.
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Figure 6: Quarterly CPUE series for albacore regional structure A5 (regA5_R1), including time series for all years (top) both
with (right) and without (left) vessel effects, and time series for 1952-79 without vessel effects, and 1979-2017 with vessel
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Figure 7: Annual CPUE series for albacore region 1 (western subtropical, regA4_R1), including time series for all years (top)
both with (right) and without (left) vessel effects, and time series for 1952-79 without vessel effects, and 1979-2017 with
vessel effects.
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Figure 8: Annual CPUE series for albacore region 2 (eastern subtropical, regA4_R2), including time series for all years (top)
both with (right) and without (left) vessel effects, and time series for 1952-79 without vessel effects, and 1979-2017 with
vessel effects.
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Figure 9: Annual CPUE series for albacore region 3 (western temperate, regA4_R3), including time series for all years (top)
both with (right) and without (left) vessel effects, and time series for 1952-79 without vessel effects, and 1979-2017 with
vessel effects.
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Figure 10: Annual CPUE series for albacore region 4 (eastern temperate, regA4_R4), including time series for all years (top)
both with (right) and without (left) vessel effects, and time series for 1952-79 without vessel effects, and 1979-2017 with
vessel effects.
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Figure 11: Annual CPUE series for albacore regional structure A5 (regA5_R1), including time series for all years (top) both with
(right) and without (left) vessel effects, and time series for 1952-79 without vessel effects, and 1979-2017 with vessel effects.
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Figure 12: Diagnostic plots for albacore lognormal positive models in subtropical regions 2 and 5 (regA4_R2 and regA4_R5),
for 1952-79 without vessel effects (left) and for 1979-2017 with vessel effects (right).
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Figure 13: Diagnostic plots for albacore lognormal positive models in temperate regions 3 and 4 (regA4_R3 and regA4_R4),
for1952-79 without vessel effects (left) and for 1979-2017 with vessel effects (right).

31



Joint_regA5_R1 dellog_novess_5279

Joint_regA5_R1 dellog_vessid_79nd

~ ~
o o
= =
@ @
5 5
[SR ] o o
o o
o o
< T T T T | = T T T 1
4 2 0 2 4 4 -2 0 2
Residuals Residuals
<
<«
@ @
° o o
A g
@ ]
] S o
g o o =]
o @
= g o
E 9 4 E '
@ ®
T 4 Al

T T T T T
4 -2 0 2 4

Theoretical Quantiles

Figure 14: Diagnostic plots for albacore lognormal positive models in
vessel effects (left) and for 1979-2017 with vessel effects (right).
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Figure 15: Comparison plot of unstandardised and standardised indices for albacore tuna in region 1 (western subtropical,
regA4_R1) in the periods 1952-1979 (left) and 1979-2017 (right). NB. this plot comes from the model with HBF and not cluster.
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Figure 16: Comparison plot of unstandardised and standardised indices for albacore tuna in region 2 (eastern subtropical,
regA4_R2) in the periods 1952-1979 (left) and 1979-2017 (right). NB. this plot comes from the model with HBF and not cluster.
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Figure 17: Comparison plot of unstandardised and standardised indices for albacore tuna in region 3 (western temperate,
regA4_R3) in the periods 1952-1979 (left) and 1979-2017 (right). NB. this plot comes from the model with HBF and not cluster.
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Figure 18: Comparison plot of unstandardised and standardised indices for albacore tuna in region 4 (eastern temperate,
regA4_R4) in the periods 1952-1979 (left) and 1979-2017 (right). NB. this plot comes from the model with HBF and not cluster.
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Figure 19: Comparison plot of unstandardized and standardised indices for albacore tuna in regional structure A5 (regA5_R1)
in the periods 1952-1979 (left) and 1979-2017 (right). NB. this plot comes from the model with HBF and not cluster.
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Figure 20: Median residuals from the lognormal constant model per year-quarter (x-axis), by flag (subplots), for albacore in
region 1 (western subtropics, regA4_R1, above), and 2 (eastern subtropics, regA4_R2, below). Residuals are shown for 2
models: 1952-2017 without vessel effects (left), and 1979-2017 with vessel effects (right).
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Figure 21: Median residuals from the lognormal constant model per year-quarter (x-axis), by cluster (subplots), for albacore
in regions 3 (western temperate, regA4_R3, above) and 4 (eastern temperate, regA4_R4, below). Residuals are shown for 2
models: 1952-1979 without vessel effects (left), and 1979-2017 with vessel effects (right).
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Figure 22: Albacore residuals for subtropical regions 1 (regA4_R1, above) and 2 (regA4_R2, below), by flag. Median residuals
are mapped by 5° cell for the periods 1952-1979 without vessel effects (left), and 1979-2017 with vessel effects (right).
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Figure 23: Albacore residuals for temperate regions 3 (regA4_R3, above) and 4 (regA4_R4, below), by cluster. Median
residuals are mapped by 5° cell for the periods 1952-1979 without vessel effects (left), and 1979-2017 with vessel effects

(right).
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Figure 24: Albacore residuals for temperate regional structure A5 (regA5_R1) by cluster. Median residuals are mapped by 5°
cell for the periods 1952-1979 without vessel effects (left), and 1979-2017 with vessel effects (right).
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Figure 25: Influence plot for albacore region R1 (western subtropical, regA4_R1) in the periods 1952-1979 (left) and 1979-
2017 (right), showing the multiplicative effect (y axis) of each variable on the standardized index. NB. This plot comes from
the model with HBF and not cluster.
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Figure 26: Influence plot for albacore region 2 (eastern subtropical, regA4_R2) in the periods 1952-1979 (left) and 1979-2017
(right), showing the multiplicative effect (y axis) of each variable on the standardized index. NB. This plot comes from the
model with HBF and not cluster.
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Figure 27: Influence plot for albacore region 3 (western temperate, regA4_R3) in the periods 1952-1979 (left) and 1979-2017
(right), showing the multiplicative effect (y axis) of each variable on the standardized index. NB. This plot comes from the
model with HBF and not cluster.
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Figure 29: Influence plot for albacore regional structure A5 (regA5_R1) in the periods 1952-1979 (left) and 1979-2017 (right),
showing the multiplicative effect (y axis) of each variable on the standardized index. NB. This plot comes from the model with
HBF and not cluster.
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Figure 30: Trends in temporal residuals by grid cell for subtropical albacore regions 1 (western, regA4_R1) and 2 (eastern,
regA4_R5) from the model for 1979 to 2017 with vessel effects. The trends in each cell are estimated by regressing the
residuals against year-quarter. Darker red represents decline and lighter yellow represents increase relative to the model
average.
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Figure 31: Trends in temporal residuals by grid cell for temperate albacore regions 3 (western, regA4_R3) and 4 (eastern,
regA4_R4) from the model for 1979 to 2017 with vessel effects. The trends in each cell are estimated by regressing the
residuals against year-quarter. Darker red represents decline and lighter yellow represents increase relative to the model
average.
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Figure 32: Trends in temporal residuals by grid cell for albacore regional structure A5 (regA5_R1) from the model for 1979 to
2017 with vessel effects. The trends in each cell are estimated by regressing the residuals against year-quarter. Darker red
represents decline and lighter yellow represents increase relative to the model average.
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