National Report of the Republic of Korea

Soon-Song Kim, Dae-Yeon Moon and Jeong-Rack Koh National Fisheries Research and Development Institute Republic of Korea

Abstract

The Korean tuna longline fishery has shown a decreasing trend from the late 1970s to recent years in both number of fishing vessels and annual catches. In 2003, total catch amounted to 3,840 mt by 25 longliners, which is the record high in Korean longline fishery in this area as compared to 2002. Catch consists of 221 mt of southern bluefin tuna, 2,100 mt of yellowfin tuna, 1,121 mt of bigeye tuna, 194 mt of other tunas and 204 mt of billfishes. This was mainly due to the shift of longliners from the Pacific to the Indian Ocean 2002. The National Fisheries Research and Development Institute (NFRDI) has maintained a small scale tagging project through which it encourages fishermen to have voluntary tagging practices during their fishing operation. This voluntary tagging program will be continued until a bigger-scale tagging program has been initiated in the future. NFRDI began to operate fisheries observer program in 2004 to monitor Korean distant-water fisheries including those for tunas and to meet the requirements of regional fisheries bodies. At the initiated stage, size of the observer program is fairly small to cover for the longliner fisheries to be urgently implemented but will be gradually developed to cover all required areas of the fisheries.

General Fishery Statistics

Catch

Korean tuna fishery has operated its longline fleet in the Indian Ocean since the mid-1960s. Major target species of tunas include yellowfin, bigeye and albacore tunas. However, in recent years albacore tuna remains as a minor species whereas southern bluefin tuna was enlisted in one of the target species of Korean longliners.

Catches by longline fishery has shown a decreasing trend from a peak at 71,000 tons in 1978 to recent years (Table 1). In 2003, annual total catch amounted to 3,840 mt, which is the record low in Korean longline fishery in this area. Catch consists of 221 mt of southern bluefin tuna, 2,100 mt of yellowfin tuna, 1,121 mt of bigeye tuna and 194 mt of other tunas and 204 mt of billfish species (Table 2). Catch of southern bluefin tuna decreased by more than 66% to the previous year but yellowfin tuna, bigeye tuna and albacore increased to 2002 but remained similar to 2001. This was mainly due to the shift of longliners from the Pacific to the Indian Ocean.

The traditional fishing grounds of Korean tuna longline fishery were mainly formed in the central tropical area between 20°N and 20°S. From 1991 onward some longliners moved to the south of the Indian Ocean where they target southern bluefin tuna, yellowfin tuna, bigeye tuna and albacore catch were also recorded. (Fig. 1).

Size composition data

Fishermen on board are encouraged to collect size data of main target species, bigeye and yellowfin tuna (Fig. 2). However, usually the quantity of sampled tunas is relatively small and therefore those data should be used with caution.

Fleet structure

Number of Korean tuna longline fishing vessel in the Indian Ocean has shown a decreasing trend from a peak at 185 in 1975 to about 50 to 60 from 1995 onward. In 2003, only 25 vessels were active in the Indian Ocean, which is a increase by 14 vessels compared to 2002. This is the main cause of the increase in total annual catch for the year 2003. The size of Korean tuna longliners ranges from 298 to 525 gross tonnage classes.

National data collection system

Korean longline fisheries in the Indian Ocean usually have operated in all year round since the fishery started. Thus, fisheries statistics are collected and reported for a calendar year. Coverage rate in catch of all species was 52 to 69% during the 1981-1985 period, but it increased to the highest level of 91% in 1987. In recent years, the coverage rates maintained over 50% reaching at around 70% in certain years.

There are two systems for the collection of Korean tuna fisheries data. The first system has been operated by the Korean Deep-Sea Fisheries Association to collect total catch by species. All Korean distant-water fishing vessels report their catch records in terms of weight by species to their companies once a week or at 10-day intervals. The Association compiles the data by month and by FAO fishing area to submit to the Ministry of Maritime Affairs and Fisheries for the final review and publication. Both the Association and the Ministry publish the catch statistics for official use annually.

The second data collection system is to sample catch and effort data based on the logbooks. This system was lawful in 1977 by the Ministry of Agriculture and Fisheries. According to this domestic regulation, distant-water fishing vessels have to submit the reports of their fishing operations within 30 days (homebased) or 60 days (foreign-based) after completion of their operations to the National Fisheries Research and Development Institute (NFRDI).

Implementation of recommendations

As a responsible fishing nation, Korea has implemented recommendations and resolutions adopted by regional fisheries organizations. Legislation of domestic regulations, initiation of observer program, and submission of fisheries statistics are among its efforts to meet the requirements by various fisheries bodies including IOTC.

National Research Program

The NFRDI has responsibility for the collection of catch, effort, and size data for the Indian tunas and tuna-like species from Korean tuna longliners. Those data have been submitted annually to the IOTC secretariat after statistical analyses.

In addition to this effort on fisheries statistics, NFRDI maintains a small scale tagging project through which it encourages fishermen to have voluntary tagging

practices during their fishing operation. However, due to budgetary constraints this project has shown little success, although a few recovery reports have been received from the eastern Pacific. This voluntary tagging program will be continued until a bigger-scale tagging program has been initiated in the future.

Other relevant information

The National Fisheries Research and Development Institute (NFRDI) began to operate fisheries observer program in 2004 to monitor Korean distant-water fisheries including those for tunas and to meet the requirements of regional fisheries bodies. At the initial stage, the size of observer program will be fairly small to cover only for the fisheries to be urgently implemented such as SBT longline fishery in CCSBT Convention Area but will be gradually developed to a bigger scale to cover all required areas of fisheries. The goal of the first stage of observer program development from 2004 to 2006 is to establish a domestic training system to educate national observers. In 2004, a total of 5 observer candidates received a trainship from Korean longline observer program provided by NFRDI. Among those 5 trainees, two joined 2-months on-board Korean commercial fishing vessels in 2004, as part of the on-board training practices that will be continued in 2005.

Table	1.	Nun	ıber	of	vessel,	cat	ch ((ton)	and	CPU	Έ	(no.	of	fish/100	hooks)	by
	Koı	rean	longl	ine	fishery	in	the	India	n O	cean,	19	966	200	3		

Year	No. of	*Catch	**	Year	No. of	Catch	CPUE
	vessei	(ton)	CPUE		vessel	(ton)	
1966	3	761		1991	19	6,317	1.38
1967	46	6,594		1992	50	10,311	1.42
1968	33	11,596		1993	50	14,198	1.20
1969	41	18,612		1994	52	14,581	1.08
1970	36	8,808		1995	52	10,905	1.15
1971	52	16,786		1996	62	18,432	1.34
1972	75	20,967		1997	58	18,100	1.30
1973	112	29,799		1998	59	8,411	0.88
1974	173	41,958		1999	31	3,836	0.82
1975	185	47,908	1.64	2000	38	6,888	0.83
1976	128	43,497	1.86	2001	23	4,033	0.92
1977	165	66,015	2.48	2002	11	1,259	0.47
1978	151	71,123	2.37	2003	25	3,840	1.12
1979	169	46,176	1.66				
1980	174	38,085	1.28				
1981	142	36,138	1.47				
1982	146	42,531	1.60				
1983	115	36,975	1.38				
1984	75	24,613	1.32				
1985	62	28,185	1.49				

1986	66	30,639	1.73		
1987	81	30,904	1.78		
1988	112	34,469	1.49		
1989	87	23,610	1.00		
1990	77	20,335	1.00		

* Catch included FAO 58 area (FAO areas 51, 57 and 58) ** CPUE : Number in catch / 100 hooks Data source : Ministry of Maritime Affairs and Fisheries (MOMAF)

Table2. Annual catch by species and FAO statistical are for Korean longline fishery in the Indian Ocean, 1991-2003

	FAO area	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Southern	51		15		98	216	314	1,402	1,415	463	328	363	513	215
	57					99	597	181	147	210	112	347	136	6
Bluefin tuna	58									563	456			
	sub-tot							1,583	1,562	1,236	896	710	649	221
	51	2,891	3,861	4,681	3,608	2,426	3,426	3,607	2,218	718	991	1,240	242	1,679
Yellowfin	57	113	224		14	18	17	35	47	85	73	161	90	421
tuna	58									105	747			
	sub-tot	3,004	4,085	4,681	3,622	2,444	3,443	3,642	2,265	908	1,811	1,401	332	2,100
	51	221	5	4	9	3	14	102	118	26	85	31	7	56
Albacore	5/	231			4	3			4	1	10		3	39
	38	221	=	4	12	C	14	102	100	27	10	21	10	05
	SUD-LOL	1.046	3	4	15 8 170	6 106	10 727	10.120	2 154	608	95	31	178	95 854
	57	200	4,362	7,140	60	0,100	10,737	77	22	470	1,077	256	170 Q	267
Bigeye tuna	58	209	134		00	40	40	11	33	258	129	230	0	207
	sub-tot	2 155	4 536	7 146	8 239	6 154	10 785	10.206	3 187	1 345	3 220	1 401	186	1 1 2 1
	51	2,135	464	796	584	577	1.036	1.199	705	182	171	294	22	99
	57		58		201	011	46	5	19	18		29		
Other tunas	58									44	358			
	sub-tot	222	522	796	584	577	1,082	1,204	724	244	529	323	22	99
	51	17	60	20	17	74	51	196	147	8	42	18	9	50
Swordfish	57	15				2		8	2	14		19	3	35
	58									7	21			
	sub-tot	32	60	20	17	76	51	204	149	29	63	37	12	85
	51	11	32		3	7	1	75	101	10	79	16		11
Blue marine	57								2	6				
Dide marine	58													
	sub-tot	11	32		3	7	1	75	103	16	79	16		11
	51	9		3	2	38		65	43		12	2		3
Striped	57									1	8	1		3
marine	58								10		• •			
	sub-tot	9	6	3	2	38	2	65	43	1	20	3		6
	51		6				3	5						
Sailfish	50													
	Jo sub_tot		6				2	5						
	51		2			21	8	40	20	2	12	10	4	16
Black	57		2			21	0	40	20	7	12	13	2	20
marine	58									4	13			
	sub-tot		2			21	8	40	20	13	25	23	6	36
	51	623	978	1,548	2,003	1,242	2,125	939	217	4	124	74	38	30
Other	57	30	58			25	9	22	15	8	1	4	4	36
billfishes	58									5	23			
	sub-tot	653	1,036	1,548	2,003	1,267	2,134	961	232	17	148	78	42	66
	51							13	4			10		
Sharka	57		12											
Snarks	58										2			
	sub-tot		12					13	4		2	10		
	51	5,719	9,805	14,198	14,503	10,710	17,715	17,772	8,142	2,021	3,521	3,203	1,013	3,013
Total	57	598	506	0	78	195	717	328	269	829	323	830	246	827
10141	58									986	3,044			
	total	6,317	10,311	14,198	14,581	10,905	18,432	18,100	8,411	3,836	6,888	4,033	1,259	3,840

Fig. 1. Korean tuna longline fishery operation area in 2002 and 2003.

Fig. 2. Length frequency distribution of yellowfin tuna(YF) and bigeye tuna(BE) caught

by Korean longliners from 2002 to 2003 in the Indian Ocean.