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Abstract 

 
Advanced age-structured models and synthesis analyses are getting common in the fishery stock 

assessment, but these are sometimes sensitive to assumptions made. Meanwhile, simple and 

traditional production models such as Schaefer and Fox models require a few assumptions and 

therefore they inherently tend to be robust but might be less informative though. This is an 

important feature when not so much information/data are available for a target stock, in which 

cases even selection of a better production model has uncertainty to some extent. In this paper, an 

attempt of model averaging is introduced to address the model uncertainty. Among possible 

procedures of such an attempt, Bayesian model averaging is employed. The posterior probabilities 

of models, which are used as weights to respective models, are derived through a Sampling and 

Importance Resampling (SIR) method. The results based on the Japanese CPUE series showed 

that the whole Indian stock is in a state of healthy; the total biomass ratio is significantly greater 

than 1 and the F ratio is clearly less than 1. It should be noted that the results are still preliminary 

and more evaluation might be necessary.  

 

Note. During the meeting, the analysis was updated based on revised and additional CPUE series. 

The results are given in the Addendum.  
 
Introduction 
 

In fishery stock assessment, it is now common to use age-structured (or length-based) models and/or stock 

synthesis approaches like SS3. In these approaches, in addition to some reliable abundance indices, extra 

information and assumptions are required. Adding such information and assumptions could improve the 

estimation performance and hence the fishery resource management, but it might not be the case if the 

assumptions are inappropriate or results are quite sensitive to alternative assumptions. In this sense, 

traditional but less complicated production models have not lost their reputes although there is also 
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uncertainty in the choice of appropriate models.  

 

In this paper, an attempt of model averaging is introduced to address the model uncertainty. Before this 

exercise, some initial considerations on statistical analysis will be made through likelihood inference. And 

then, Bayesian model averaging is employed although there might be room to improve.  

 

Data 
 

The following data set were employed in this exercise.  

1. Swordfish catch statistics 1950-2009  

(“New Estimated Catch” in “NC_ALL.zip” downloaded from the IOTC website).  

2. A series of standardized CPUE for 1980-2009 estimated with a GLM analysis (scaled to make the 

average 1.0) and their associated standard errors (from Nishida et al. 2011). 

 

  
Figure 1. Catch statistics and a series of standardized CPUE series for swordfish. 

 

Basic population dynamics 
 
In this paper, we assume only the two different production models, Schaefer and Fox models. Here, let tP  

and tC  denote the population biomass at the beginning of year t and catch in year t, respectively. Then, 

あ the following basic recursive formula is supposed to hold.  

1 1 1 1( )t t t t tP P P f P C− − − −= + − .    (1) 

Schaefer and Fox models respectively have ( ) (1 / )t tf P r P K= −  and ( ) (log log )t tf P r K P= − . With 
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the depletion rate, which is a ratio of tP  relative to the carrying capacity K and denoted as /t tD P K= , 

the formula above is re-expressed as  

1 1 1 1

1 1 1 1

(Schafer) (1 ) / ,
(Fox) log / .

t t t t t

t t t t t

D D rD D C K
D D rD D C K

− − − −

− − − −

= + − −
= − −

       (2) 

The deterministic recursive formula is sometimes extended to a model with the process error like below: 

{ } 2
1 1 1 1( ) , ~ (0, )tu

t t t t t tP P P f P C e u N τ− − − −= + −       (3) 

where tu  is so-called a process error term, which accounts for stochasticity in the dynamics. The process 

error can be further extended to have auto-correlation, which can be sometimes occurred due to serial 

correlation of environmental conditions.  

 

Initial considerations through “likelihood inference” 
 

1. Observation errors other than sampling errors in standardized CPUE estimates (data) 

 

The standardized CPUEs are employed as data for the estimation of production model. These standardized 

CPUEs, of course, have uncertainty and therefore the standard errors are associated with the estimates. Let 

tI and tcv respectively be estimated standardized CPUE index and its coefficient of variation in year t. Let 

tI be the true abundance index in year t.  

      
2e , ~ (0, )tu

t t t tI I u N cv=  .           (4) 

However, there should be another stochasticity expressing the model error,   

       2, ~ (0, )tv
t t t addI qKD e v N cv=              (5) 

and therefore  

      
2 2log ~ (log , )t t t addI N qKD cv cv+ .            (6) 

Comparison of results in the runs “sc0” and “sc0ad”, which difference is in presence/absence of the 

additional variance, clearly showed that the incorporation of the additional cv dramatically decreases the 

AIC value although the point estimates were almost same (see Table 1). The difference in the fitness was 

reflected in the values of standard errors (assessed by the inverse of Hessian matrix). This simple exercise 

justifies the assumption of additional variance.  

 

2. Depletion level in the initial year considered 

 

According to the catch history of the Indian Ocean swordfish, the amounts of catch during and before 
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1950’s seems negligible, which implies a rationale to assume the total biomass being the carrying capacity 

in 1950, the initial year of the catch record.  

 

Three different assumptions are made in run sets “sc0ad”, “sc1ad” and “sc2ad” for the Schaefer production 

model (see Table 1). Only “sc2ad” include a specific parameter expressing an initial depletion in the initial 

year, so it has an additional parameter for that. The results in “sc0ad” and “sc1ad” showed the 

determination of the initial year gave a little impact on estimates and AIC as far as assuming the population 

stayed at its carrying capacity (see Table 1 and Figure 2). This result is consistent with the fact of less catch 

before 1980 although the depletion level in 1980 should be less than 1. However, in the best-fitted model 

“sc2ad”, the depletion level in 1980 was estimated at about the half of carrying capacity because the model 

explained an increasing trend in CPUE in early 1980’s although it does not make sense because the stock 

was far from over-exploitation.  

 

One possible reason for such CPUE trend is due to some difficulty in the original catch and effort data. In 

addition, change in catchability and/or carrying capacity around those years is other possible reason. This 

problem warrants further investigation, but in this paper we will try to capture the dynamics from 1950, 

when the stock was considered virgin. It should be noted that the standard error for the estimate of carrying 

capacity is quite large.  

 

 

Table 1. Summaries of estimation results for justifying the use of additional cv and also investigating the 

sensitivity to the assumption of initial depletion.  

 
 

Run
Production

Additional CV
Initial year

Initial depletion
Estimate SE Estimate SE Estimate SE Estimate SE

r 0.348 0.027 0.373 0.282 0.407 0.307 0.393 0.110
K 33.679 2.108 31.75 19.55 29.67 18.80 28.56 6.20
q 0.036 0.002 0.039 0.025 0.041 0.028 0.048 0.011

D1950 1.000
D1980 0.980 0.000 0.981 0.002 1.000 0.561 0.085
D2009 0.580 0.008 0.581 0.074 0.589 0.075 0.511 0.058

cv_add 0.000 0.214 0.028 0.216 0.028 0.179 0.023

loglike
#parameters

AIC
5443

-62.83-53.68-54.233097.02

36.4130.8431.12-1545.51

sc2adsc0
SC

1950
B1980 = KB1950 = K

1980

SC
sc0ad sc1ad

B1950 = K

SC

1980
B1980 < K

SC

1950
None Yes Yes Yes
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Figure 2. Fitness of the CPUE data to the models and estimated population trajectories for the three 

different assumptions for initial depletion. 

 

3. Variants in the production model 

 

As introduced earlier, the two alternative production models are employed in this study. Under the 

likelihood framework, a well-known model selection criterion is usually used. The Table 2 and Figure 3 

show that analyses based on these two models provided different consequences in the trajectories and 

future projection although the AIC values between the two models are rather similar. This fact urges us to 

consider some model uncertainty (even model selection uncertainty) and motivates to attempt the “model 

averaging” for the stock assessment.  

 

Table 2. Estimation of results based on two different production models. 

 

Run
Production

Additional CV
Initial year

Initial depletion
Estimate SE Estimate SE

r 0.373 0.282 0.234 0.149
K 31.75 19.55 38.03 18.99
q 0.039 0.025 0.033 0.017

D1950
D1980 0.981 0.002 0.975 0.003
D2009 0.581 0.074 0.570 0.069

cv_add 0.214 0.028 0.213 0.028

loglike
#parameters

AIC

31.2431.12
4

-54.23
4

-54.48

sc0ad
SC
Yes
1950

B1950 = K

fx0ad

B1950 = K

FX

1950
Yes
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Figure 3. Estimated trajectories of the total biomass (1950-2009) and future projection (2010-2019) by five 

catch scenarios (-20%, -10%, 0%, 10% and 20% changes from the 2009 catch level) under the two different 

production models.  

 

 

4. Incorporation of process errors 

 

As shown in Equation (3), the process errors are further potential stochasticity to be considered. The errors 

are random quantities and therefore those should be integrated out from the likelihood according to their 

distribution assumption. Here, the maximization of the integrated likelihood was conducted via ADMB-RE 

(Skaug and Fournier 2006).  

 

The results are summarized in Table 3 and Figure 4. The results indicated that the models with the process 

errors dramatically improved the fitting. More interestingly and importantly,  

 

1) the standard errors for the population parameters were decreased by incorporation of process errors 

because the models with only the additional variance assigned the deviations to the parameter’s 

standard errors while the those with both the process errors could share the deviation with the 

observation errors;  

2) the depletion in 1980 was a somewhat reasonable level (not to be so close to 1.0) in process error 

models;  

3) the process error models provide too well fits (it might be difficult to distinguish the additional cv 

and the extent of process error in this case) and high variation in the population size.; 
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4) the process error models give chances of overshoot in the population trajectories, which means that 

the depletion level can exceed the carrying capacity;  

5) incorporation of auto-correlation into the process error distribution made the convergence difficult 

and also brought quite different biomass levels (we will not pursue this model any further in this 

paper).  

 

Here, the model with only the additional cv will be employed because of highly stochastic nature in 

population size for the process error models and difficulty in separation of the additional cv and process 

error. 

 

Table 3. Comparison of results based on different error assumptions. 

 

 
Figure 4. Estimated CPUEs and Population trajectories for the five alternative models with different error 

assumptions.  

Run
Additional CV
Process error

Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE

r 0.348 0.027 0.373 0.282 0.427 0.187 0.414 0.127 0.617 0.252
K 33.679 2.108 31.75 19.55 34.54 17.98 35.61 15.15 25.64 13.09
q 0.036 0.002 0.039 0.025 0.035 0.020 0.034 0.016 0.047 0.027

D1950 1.000 1.000 1.000 1.000 1.000
D1980 0.980 0.000 0.981 0.002 0.803 0.114 0.805 0.096 0.806 0.105
D2009 0.580 0.008 0.581 0.074 0.667 0.420 0.670 0.425 0.671 0.496

cv_add 0.214 0.028 0.018 0.038 0.000 0.000
tau (process) 0.152 0.020 0.152 0.020 0.145 0.019

auto-correlation 0.396 0.248

loglike
#parameters

AIC

94.74
5

-179.49
3 4 4

3097.02 -54.23 -181.41

-1545.51 31.12 94.71

None None Yes Yes

sc0adpr
YesNone Yes None

sc0 sc0ad sc0pr

-180.20

sc0adau
Yes

Auto-correlated

96.10
6
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Bayesian estimation and attempt of Bayesian model averaging 
 

Bayesian inference is especially promising when the information of data is poor but some auxiliary or past 

information on parameters are available. Bayesian inference is also useful to construct flexible models, 

express hierarchical structures, avoid difficult optimization by using simulation procedures such as a 

Markov Chain Monte Carlo (MCMC) and Sampling and Importance Resampling (SIR), and let the data tell 

probabilistically about parameters, important quantities and validity of models etc through their posterior 

distributions.  

 

When it comes to getting posterior distribution of models, things are not straightforwards even when using 

MCMC because computation of marginal likelihood based on MCMC outputs tends to be unstable. To 

overcome this difficulty, several approaches have been developed (e.g. Chib’s method and a reversible 

jump method).  

 

Bayesian estimation 

 

In this paper, we employ the SIR for the model without assuming the prcoess errors. Also, we only consider 

flat priors for all the parameters as a non-informative prior. It should be remarked that choice of appropriate 

prior distributions is one of key issues (including better parameterization of models). In the absence of any 

positive reasons, such non-information prior is used although the definition of it is sometimes ambiguous. 

 

For a proposal distribution in the initial sampling in the SIR, a multivariate normal distribution with the 

maximum likelihood (ML) estimates (in log-scale) as the mean and their associated errors as the covariance 

is assumed. This might be a good approximation of the posterior distribution. The initial samples are 

randomly sampled with replacement according to the weight, which consider the Jacobian for the 

log-transformation. We set at 200,000 and 10,000 for the initial and secondary sample sizes, respectively.  

 

Estimation results with the future projection are given in Figure 5. The two different models provided 

comparable but a little different results as in the case of ML estimation. For example, the median biomass 

in late 1990’s was below the MSY level for the Schaefer model while that for the Fox model was above the 

MSY level. Also, the credible interval for the Fox model is wider than that for the Schaefer model. These 

two different outcomes are averaged in the next subsection. 
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(a) Schaefer model                            (b) Fox model 

  

 
 

Figure 5. Results of Bayesian inference. (a) Schaefer model; (b) Fox model. Biomass levels in 2010-2019 

were computed under the assumption of the same catch level as in 2009. The solid and shaded lines show 

the median and 90% CI and the blue solid line shows the posterior mean.  

 

Model averaging 

 

The posterior probability of each model (Schaefer or Fox) is evaluated by the Importance Sampling (IS) 

given below: 
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      (7) 

For a proposal distribution of the IS, ( )g θ , we use the asymptotic distribution of the ML estimates of in 

log-scale and assess the marginal distribution with importance weights with consideration of parameter 

transformation. The sample size was set at 1,000,000. Then, the posterior model probabilities are estimated 

as  

( | )( | )
( | ) ( | )

( | ) 1 ( | )

SC
SC

SC FX

FX SC

f Data ModelP Model Data
f Data Model f Data Model

P Model Data P Model Data

=
+

= −
    (8) 

 

The estimated posterior probabilities of the Schaefer and Fox models were 0.488 and 0.512, which were 

almost even. This result is fairly consistent with so-called Akaike weights, 0.469 and 0.531, which is 

defined based on AIC values. Summaries for the averaging exercise are shown in Table 4 and Figures 6 and 

7. 

 

 

Table 4. Comparison of model specific and model averaging results.  

 

Model
Estimate SE Estimate SE Estimate SE

r 0.580 0.404 0.372 0.290 0.474 0.248
K 30.97 18.23 36.70 20.76 33.90 14.06

MSY 3.093 0.445 3.534 0.727 3.319 0.433
Bmsy 15.48 9.12 13.50 7.64 14.47 6.010
Fmsy 0.290 0.202 0.372 0.290 0.332 0.179

B2009 19.05 11.50 22.31 13.60 20.72 9.08
F2009 0.148 0.075 0.123 0.062 0.135 0.049

B2009/Bmsy 1.264 0.175 1.689 0.234 1.420 0.270
F2009/Fmsy 0.581 0.161 0.391 0.131 0.484 0.104

AveragingFoxSchaefer
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Figure 6. Results of Bayesian model averaging. The top panel shows the population trajectory and future 

projection given the same catch level with 2009 (solid and shaded lines show the median and 90% credible 

interval and the red horizontal line shows the MSY level). The bottom panel shows mean future projections 

under the different catch level (the red and shaded lines are respectively for the MSY level and carrying 

capacity).  
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Figure 7. KOBE I for the results of Bayesian model averaging.  
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Figure 8. Future projection of probabilities for KOBE II, P(B<BMSY) and P(F>FMSY), basd on the results 

of Bayesian model averaging. The values of probabilities change according to their definition. The upper 

two figures are for the case of fixed BMSY and FMSY (as the posterior means) while the bottom ones are 

computed as the average of chances B<BMSY and F>FMSY in posterior outputs (this might be better) .  

 
 
Discussion  
 

This paper dealt with an issue of model uncertainty through a model averaging approach. As shown in this 

paper, the approach has potential to take the model uncertainty into account when considering the 
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management advice.  

 

However, we admit that our work might be preliminary because 1) we consider averaging of only “two 

models”; 2) impact of choice of priors are not discussed; 3) only Japanese CPUE series are used; etc.  

 

1) The assumption of initial depletion can also be considered in averaging if necessary. And, in theory, 

further models can also be taken into account. 

 

2) Assumption of prior distributions may be influential when information of the data is really poor. We 

avoid any discussion about this, but the resultant estimates are not so different from the ML estimation 

(except for the intrinsic rate of increase in the Schaefer model), and therefore the flat priors are not so 

problematic.  

 

3) The anaylysis conducted here can be extend to use other CPUE series. It should be noted that, even 

when using only the CPUE series from Japanese fisheries, the range of years should be carefully 

considered because of smaller CPUE values in early 1980’s than in late 1980’s. Consideration of 

change in catchability in the assessment is one possible ways (change point is chosen using AIC), but it 

introduces an additional parameter. Another way is just to delete the CPUE data in early 1980’s (but 

only as a sensitivity test).  

 
Finally, regarding the model averaging, a frequentist method, bootstrapped weight, is an alternative 

possible approach if we need to avoid the discussion about prior choice although a better bias correction 

should be invented. Even in Bayesian framework, a reversible jump is another possible way. More 

comprehensive analyses will be conducted by us in the near future.  
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ADDENDUM 
 

The analysis was for the putative stock in SW region and for the whole stock in the Indian Ocean. The 

CPUE series employed in these studies are given below. 

 

SW region only: 

1) from Japan (1980-2009, spatial effects with 5 degree bands) 

2) from Taiwan (1995-2009, spatial effects with 5 degree bands) 

3) from Spain (2001-2009, Run 5 in WPB09-23) 

4) from Re Union (1994-2000) 

 

Whole Indian Ocean 

1) from Japan (1980-2009, spatial effects with 5 degree bands) 

2) from Taiwan (1995-2009, spatial effects with 5 degree bands) 

3) from Spain (2001-2009, Run 1 in WPB09-23) 

 

The variance of model error was assumed to be constant across the CPUE series above although different 

catchability coffeficients were incorporated. The results are given in the following slides.  

 

 



Results for SW RegionResults for SW Region

Results for SW (1) Model specific

( | ) 0.308Schaefer SCP Model Data  

2

( | ) 0.692Fox FXP Model Data  
T. Kitakado and T. Nishida, IOTC Billfish Working Party  June 2011 at Seychelles 

Results for SW (2) Model averaging

3
T. Kitakado and T. Nishida, IOTC Billfish Working Party  June 2011 at Seychelles 

Results for SW (3) Reference points
Management Quantity SW Region Only
Most recent catch estimate

Mean catch over last 5 years

MSY (1000 t) 7.91 (SE=0.199)

Current Data Period
Catch:1954‐2009
CPUE:1980‐2009

(C )/ ( S ) 0 88 (S 0 0 )F(Current)/F(MSY) 0.884 (SE=0.071)

B(Current)/B(MSY) 0.942 (SE=0.071)

SB(Current)/SB(MSY) NASB(Current)/SB(MSY) NA

B(Current)/B(0) 0.375 (SE=0.028)

SB(Current)/SB(0) NAS ( u e )/S (0)

B(Current)/B(Current, F=0) what?

SB(Current)/SB(Current, F=0) NA

4
T. Kitakado and T. Nishida, IOTC Billfish Working Party  June 2011 at Seychelles 

Results for SW (4) KOBE (by model)

(a)Schaefer model   (b) Fox model

TB/TBmsy TB/TBmsy

5
T. Kitakado and T. Nishida, IOTC Billfish Working Party  June 2011 at Seychelles 

Results for SW (5) KOBE (averaged)

6

TB/TBmsy

T. Kitakado and T. Nishida, IOTC Billfish Working Party  June 2011 at Seychelles 



Results for SW (7) Future catch

7
T. Kitakado and T. Nishida, IOTC Billfish Working Party  June 2011 at Seychelles 

Results for SW (8) Risk Assessment 

P(B<BMSY) P(F>FMSY)

8
T. Kitakado and T. Nishida, IOTC Billfish Working Party  June 2011 at Seychelles 

Results for SW (9) KOBE II matrix

Constant Catch Level (relative to 2009)( )

Probability 60% 80% 100% 120% 140%

B(2012) <B(MSY) 0.011 0.083 0.264 0.567 0.915

F(2012) >F(MSY) 0.000 0.000 0.060 0.597 0.989

B(2019) <B(MSY) 0.000 0.000 0.025 0.606 1.000

F(2019) >F(MSY) 0.000 0.000 0.010 0.609 1.000

9
T. Kitakado and T. Nishida, IOTC Billfish Working Party  June 2011 at Seychelles 

Results for Aggregated Indian OceanResults for Aggregated Indian Ocean

Results for IO (1) Model specific

( | ) 0.699Schaefer SCP Model Data  

11
T. Kitakado and T. Nishida, IOTC Billfish Working Party  June 2011 at Seychelles 

( | ) 0.301Fox FXP Model Data  

Results for IO (2) Model averaging

12
T. Kitakado and T. Nishida, IOTC Billfish Working Party  June 2011 at Seychelles 



Results for IO (3) Reference points
Management Quantity Aggregate Indian 

Ocean
SW Region Only

Most recent catch estimate
Mean catch over last 5 years

MSY (1000 t) 30 77 (SE=0 880) 7 91 (SE=0 199)MSY (1000 t) 30.77 (SE=0.880) 7.91 (SE=0.199)

Current Data Period
Catch:1950‐2009
CPUE:1980‐2009

Catch:1954‐2009
CPUE:1980‐2009

F(Current)/F(MSY) 0.615 (SE=0.053) 0.884 (SE=0.071)
B(Current)/B(MSY) 1.073 (SE=0.090) 0.942 (SE=0.071)
SB(Current)/SB(MSY) NA NASB(Current)/SB(MSY) NA NA

B(Current)/B(0) 0.481 (SE=0.043) 0.375 (SE=0.028)
SB(Current)/SB(0) NA NA

B(Current)/B(Current, F=0)
SB(Current)/SB(Current, F=0) NA NA
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T. Kitakado and T. Nishida, IOTC Billfish Working Party  June 2011 at Seychelles 

Results for IO (4) KOBE (by model)

(a)Schaefer model   (b) Fox model

TB/TBmsy
TB/TBmsy

14
T. Kitakado and T. Nishida, IOTC Billfish Working Party  June 2011 at Seychelles 

y

Results for IO (5) KOBE (averaged)

TB/TBmsy
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T. Kitakado and T. Nishida, IOTC Billfish Working Party  June 2011 at Seychelles 

Results for IO (6) Future catch
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T. Kitakado and T. Nishida, IOTC Billfish Working Party  June 2011 at Seychelles 

Results for IO (7) Risk Assessment 

P(B<BMSY) P(F>FMSY)

17
T. Kitakado and T. Nishida, IOTC Billfish Working Party  June 2011 at Seychelles 

Results for IO (8) KOBE II matrix

Constant Catch Level (relative to 2009)

Probability 60% 80% 100% 120% 140%

B(2012) <B(MSY) 0.000 0.000 0.001 0.024 0.157

F(2012) >F(MSY) 0 000 0 000 0 000 0 011 0 171F(2012) >F(MSY) 0.000 0.000 0.000 0.011 0.171

B(2019) <B(MSY) 0.000 0.000 0.000 0.002 0.178

F(2019) >F(MSY) 0.000 0.000 0.000 0.011 0.188

18
T. Kitakado and T. Nishida, IOTC Billfish Working Party  June 2011 at Seychelles 


