DRAFT: EXECUTIVE SUMMARY: STRIPED MARLIN

Status of the Indian Ocean striped marlin (MLS: Tetrapturus audax) resource

TABLE 1. Striped marlin: Status of striped marlin (Tetrapturus audax) in the Indian Ocean

	Area ¹		Indica	itors	2013 stock status determination		
			Catch 2012:	4,833 t			
	Indian Ocean	Average	catch 2008–2012:	3,011 t			
			MSY (range):	4,408 (3,539-4,5	578)		
		1	$F_{2011/}F_{MSY}$ (range):	1.28 (0.95-1.92))		
		E	B ₂₀₁₁ /B _{MSY} (range):	0.416 (0.2-0.42))		
			B_{2011}/B_0 (range):	0.18			
	¹ Boundaries for the Indian Ocea	an = IOTC area	of competence				
	Colour key		Stock overfished	$(B_{\text{year}}/B_{\text{MSY}} < 1)$	< 1) Stock not overfished $(B_{vear}/B_{MSY} \ge 1)$		
	Stock subject to overfishing(Fyea	$r/F_{\rm MSY} > 1)$					
S	tock not subject to overfishing (F	$_{year}/F_{MSY} \le 1$)					

INDIAN OCEAN STOCK – MANAGEMENT ADVICE

Stock status. The standardised CPUE series suggest that there was a sharp decline in the early 1980s, followed by slower decline since 1990. In 2013, an ASPIC stock assessment confirmed the preliminary assessment results from 2012 that indicates the stock is currently subject to overfishing and that biomass is below the level which would produce MSY. Two other approaches examined in 2013 came to similar conclusions, namely a Bayesian State Space model, and a data poor stock assessment method, Stock Reduction Analysis using only catch data. The Kobe plot (Fig. 1) from the ASPIC model indicates that the stock has been subject to overfishing for some years, and that as a result, the stock biomass is well below the B_{MSY} level and shows little signs of rebuilding despite the declining effort trend. Thus, on the weight-of-evidence available to the WPB, the stock is determined to be **overfished** and **subject to overfishing** (Table 1; Fig. 1).

Outlook. The decrease in longline catch and effort in recent years has lowered the pressure on the Indian Ocean stock as a whole, however there is insufficient information to evaluate the effect this will have on the resource. Given the concerning results obtained from the preliminary stock assessments carried out in 2013 for striped marlin, the data and other inputs for stock assessment urgently needs to be revised so that a new assessment may be carried out. The following key points should be noted:

- the Maximum Sustainable Yield estimate for the whole Indian Ocean is 4,408 t (3,539–4,578).
- improvement in data collection and reporting is required to further assess the stock.
- research emphasis on improving indicators and further exploration of stock assessment approaches for data poor fisheries are warranted.

Fig. 1. Striped marlin: ASPIC Aggregated Indian Ocean assessment Kobe plots for striped marlin (90% bootstrap confidence surfaces shown around 2011 estimate – white dot). Blue line indicates the trajectory of the point estimates for the total biomass (B) ratio (shown as S) and F ratio for each year 1950–2011. Note: The MSY is close to the upper limit of the confidence intervals, as the bootstrap mean and ASPIC mean results are slightly different.

SUPPORTING INFORMATION

(Information collated from reports of the Working Party on Billfish and other sources as cited)

CONSERVATION AND MANAGEMENT MEASURES

Striped marlin (*Tetrapturus audax*) in the Indian Ocean is currently subject to a number of Conservation and Management Measures adopted by the Commission, although none are species specific:

- Resolution 13/03 on the recording of catch and effort by fishing vessels in the IOTC area of competence
- Resolution 13/07 concerning a record of licensed foreign vessels fishing for IOTC species in the IOTC area of competence and access agreement information
- Resolution 12/11 on the implementation of a limitation of fishing capacity of Contracting Parties and Cooperating Non-Contracting Parties
- Resolution 11/04 on a regional observer scheme
- Resolution 10/02 mandatory statistical requirements for IOTC Members and Cooperating non-Contracting Parties (CPC's)
- Resolution 10/08 concerning a record of active vessels fishing for tunas and swordfish in the IOTC area

FISHERIES INDICATORS

Striped marlin: General

Striped marlin (*Tetrapturus audax*) is a large oceanic apex predator that inhabits tropical and subtropical Indo-Pacific oceans (Fig. 2). Table 2 outlines some key life history parameters relevant for management. There is limited reliable information on the catches of this species and no information on the stock structure or growth and mortality in the Indian Ocean.

Fig. 2. Striped marlin: The worldwide distribution of striped marlin (Source: Nakamura, 1984)

ABLE 2. Surped marmin. Biology of metan Ocean surped marmin (<i>Tetrapiurus audus</i>)						
Parameter	Description					
Range and stock structure	A large oceanic apex predator that inhabits tropical and sub-tropical waters of the Indian and Pacific oceans. Some rare individuals have been reported in the Atlantic Ocean but there is no information to indicate the presence of a breeding stock in this area. Its distribution is different from other marlins in that it prefers more temperate or cooler waters however in the Indian Ocean it is common in tropical zone: off the east African coast (0-10°S), the south and western Arabian Sea, the Bay of Bengal, and north-western Australian waters. Several transoceanic migrations were reported in the Indian Ocean (the longest is from Kenya to Australia). Therefore a single stock hypothesis apparently is most appropriate for stock assessement and management.					
Longevity	~10 years. Females and males n.a.					
Maturity (50%)	Age: 2–3 years. Females and males n.a.					
Spawning season	Highly fecund batch spawner. Females may produce up to 20 million eggs. Usually spawn in the vicinity of oceanic islands, seamounts or coastal areas, associated with local increases in primary productivity. In the Indian Ocean larvae of this species was recorded off the Somalian coast, around Reunion and Mauritius and off north-western Australia.					
Size (length and weight)	In the Indian Ocean documented maximum size for females 314 cm LJFL and 330 kg TW, for males 292 cm LJFL, 185 kg TW. However males longer than 260 cm LJFL are rare. Young fish grow very quickly in length then put on weight later in life. Striped marlin is the smallest of the marlin species; but unlike the other marlin species, striped marlin males and females grow to a similar size. L-W relationships for the Indian Ocean are: females TW=0.00000009*LJFL**3.76598 males TW=0.00005174*LJFL**2.59633, both sexes mixed TW=0.00000039*LJFL**3.50024, TW in kg, LJFL in cm.					

n.a. = not available. Sources: Nakamura 1985, Gonzalez-Armas et al. 1999, Hyde et al. 2006, Froese & Pauly 2009, Kadagi et al. 2011, Romanov & Romanova 2012

Striped marlin: Catch trends

TADIE 3

Striped marlin are caught almost exclusively by drifting longlines, which in previous years have accounted for as much as 98% of the catch. The remaining catches are recorded by gillnets and troll lines (Table 3, Fig. 3). Striped marlin are generally considered to be a bycatch of industrial fisheries. Catch trends for striped marlin are variable, ranging from 2000 t to 8000 t per year (Fig. 4); however, this may reflect the level of reporting. Similarly, catches reported by drifting longlines are highly variable, with recent falls since 2009 largely due to declining catches reported by Taiwan, China, deep-freezing and fresh-tuna longliners.

Catches under drifting longlines have been recorded by Taiwan, China, Japan, Rep. of Korea fleets and, recently, Indonesia and several NEI fleets. Taiwan, China and Japan have reported large drops in the catches of striped marlin for its longline fleets since the mid-1980's and mid-1990's, respectively. The reason for such decreases in catches is not fully understood. Between the early-50s and the late-80s part of the Japanese fleet was licensed to operate within the EEZ of Australia, reporting relatively high catches of striped marlin in the area, in particular in waters off northwest Australia. High catches of the species were also reported in the Bay of Bengal during this period, by both Taiwan, China and Japanese longliners. The distribution of striped marlin catches has changed since the 1980's with most of the catch now taken in the western areas of the Indian Ocean (Fig. 5). These changes of fishing area and catches over the years are thought to be related to changes in the type of access agreements to EEZs of coastal countries in the Indian Ocean, rather than changes in the distribution of the species over time. However, since 2007, catches in the northwest Indian Ocean have dropped markedly, in tandem with a reduction of longline effort in the area as a consequence of maritime piracy off Somalia (Fig. 6).

Discards are believed to be low although they are unknown for most industrial fisheries, mainly longliners. Discards of striped marlin may also occur in the driftnet fishery of the I.R of Iran, as this species has no commercial value in this country.

IOTC-2013-SC16-ES14[E]

Fig. 3. Striped marlin: Catches of Striped marlin by gear and year recorded in the IOTC Database (1950–2012) (Data as of October 2013).

Fig. 4. Striped marlin: Average catches in the Indian Ocean over the period 2009–11, by country. Countries are ordered from left to right, according to the importance of catches of striped marlin reported. The red line indicates the (cumulative) proportion of catches of striped marlin for the countries concerned, over the total combined catches of this species reported from all countries and fisheries (Data as of October 2013).

Fig. 5a–b. Striped marlin: Time-area catches (in number of fish) of striped marlin as reported for the longline fisheries of Japan (JPN) and Taiwan, China (TWN) for 2011 and 2012 by fleet. Red lines represent the boundaries of the marlin hot spots identified by the WPB.

TABLE 3. Striped marlin: Best scientific estimates of the catches of striped marlin by type of fishery for the period 1950–2012 (in metric tons). Data as of October 2013.

Eich enn	By decade (average)						By year (last ten years)									
Fishery	1950s	1960s	1970s	1980s	1990s	2000s	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
LL	1,024	3,077	3,607	5,033	4,990	2,956	3,122	3,112	3,713	2,976	3,087	2,435	2,327	1,854	1,940	1,867
GN	5	8	16	22	139	245	225	237	331	235	280	198	196	163	188	450
HL	3	5	10	32	69	130	80	84	102	92	129	134	223	272	284	297
OT	0	0	0	6	10	19	12	13	15	14	19	19	33	40	42	44
Total	1,032	3,090	3,634	5,093	5,208	3,350	3,440	3,445	4,161	3,317	3,516	2,786	2,779	2,329	2,454	2,658

Fisheries: Gillnet (GN); Longline (LL); Hook-and-Line (HL), including handline, trolling, baitboat, and sport fisheries; Other gears (OT)

Uncertainty of time-area catches

Retained catches are reasonably well known (Fig. 6) although they remain uncertain for some fleets:

- Catch reports refer to total catches of all three marlin species; catches by species have to be estimated by the IOTC Secretariat for some industrial fisheries (longliners of Indonesia and Philippines).
- Catches of non-reporting industrial longliners (India, NEI) estimated by the IOTC Secretariat using alternative information. As they are not reported by the countries concerned, catches are likely to be incomplete for some industrial fisheries for which the striped marlin is seldom the target species.
- **Conflicting catch reports**: The catches for longliners flagged to the Republic of Korea, reported as nominal catches and catches and effort, are conflicting with higher catches recorded in the catch and effort table. For this reason, the IOTC Secretariat revised the catches of striped marlin over the time-series using both datasets. Although the new catches estimated by the IOTC Secretariat are thought to be more accurate, catches of striped marlin remain uncertain for this fleet.
- **Discards** thought to be low although they are unknown for most industrial fisheries, mainly longliners. Discards of striped marlin may also occur in the driftnet fishery of Iran, as this species has no commercial value in this country.
- Changes to the catch series: Relatively minor revisions have been made to catches of striped marlin, which have been largely unchanged by reviews of the data series for Iran, Pakistan, Indonesia, Sri Lanka and Indonesia which have been used to adjust the catches of the other billfish species.

Fig. 6. Striped marlin: Uncertainty of annual catch estimates for striped marlin (Data as of October 2013). Catches below the zero-line (Type B) refer to fleets that do not report catch data to the IOTC (estimated by the IOTC Secretariat), do not report catch data by gear and/or species (broken by gear and species by the IOTC Secretariat) or any of the other reasons provided in the document. Catches over the zero-line (Type A) refer to fleets for which no major inconsistencies have been found to exist. Light bars represent data for artisanal fleets and dark bars represent data for industrial fleets.

Striped marlin: Effort trends

Total effort from longline vessels flagged to Japan, Taiwan, China and EU, Spain by five degree square grid in 2010 and 2011 are provided in Fig. 7, and total effort from purse seine vessels flagged to the EU and Seychelles (operating

IOTC-2013-SC16-ES14[E]

under flags of EU countries, Seychelles and other flags), and others, by five degree square grid and main fleets, for the years 2010 and 2011are provided in Fig. 8.

Fig. 7. Number of hooks set (millions) from longline vessels by five degree square grid and main fleets, for the years 2011 (left) and 2012(right) (Data as of October 2013)

LLJP (light green): deep-freezing longliners from Japan

LLTW (dark green): deep-freezing longliners from Taiwan, China

SWLL (turquoise): swordfish longliners (Australia, EU, Mauritius, Seychelles and other fleets)

FTLL (red) : fresh-tuna longliners (China, Taiwan, China and other fleets)

OTLL (blue): Longliners from other fleets (includes Belize, China, Philippines, Seychelles, South Africa, Rep. of Korea and various other fleets)

Fig. 8. Number of hours of fishing (Fhours) from purse seine vessels by 5 degree square grid and main fleets, for the years 2011 (left) and 2012 (right) (Data as of October 2013)

PS-EU (red): Industrial purse seiners monitored by the EU and Seychelles (operating under flags of EU countries, Seychelles and other flags)

PS-OTHER (green): Industrial purse seiners from other fleets (includes Japan, Mauritius and purse seiners of Soviet origin) (excludes effort data for purse seiners of Iran and Thailand)

Striped marlin: Catch-per-unit-effort (CPUE) trends

The sharp decline between 1952 and 1960 in the Japanese striped marlin CPUE series does not reflect the trend in abundance, although the gradual decline identified since 1960 until 2011 is more likely to represent actual declines in stock abundance (Fig. 9).

The catches and CPUE series estimated for striped marlin were very similar between the longline fleets of Japan and Taiwan, China although there were two peaks in the Taiwan, China data series. In particular the longline fleet data for Taiwan, China was highly variable and warranted further investigation and documentation.

Fig. 9. Striped marlin: Standardised catch rates of striped marlin for Japan (JPN) and Taiwan, China (TWN) as calculated based on the IOTC catch and effort aggregated dataset. Values were scaled with respect to the mean of 1970–1979 period.

Both Japan and Taiwan, China should undertake a historical review of their longline data and to document the changes in fleet dynamics for presentation and the next WPB meeting. The historical review should include as much explanatory information as possible regarding changes in fishing areas, species targeting, gear changes and other fleet characteristics to assist the WPB understand the current fluctuations observed in the data.

Of the striped marlin CPUE series available for assessment purposes, the separate Japan and Taiwan, China series were used in the stock assessment model for 2013 (Fig. 10).

Fig. 10. Striped marlin: Comparison of the CPUE series for the longline fleets of Japan and Taiwan, China. Scaling was carried out using the average of the overlapped years.

Striped marlin: Fish size or age trends (e.g. by length, weight, sex and/or maturity)

Fish size or age trends (e.g. by length, weight, sex and/or maturity)

Average fish weight can only be assessed for the longline fishery of Japan since 1970 and Taiwan, China since 1980 (Fig. 11). However, the number of specimens measured on Japanese longliners in recent years is very low and missidentification of striped and blue marlin may be occurring in the Taiwanese longline fishery; the length frequency distributions derived from samples collected on Taiwanese longliners differ greatly from those collected on longliners flagged in Japan.

IOTC-2013-SC16-ES14[E]

Catch-at-Size(**Age**) tables have not been built for this species due to a lack of information reported by CPCs. Fish size is derived from various length and weight information, however the reliability of the size data is reduced when relatively few fish out of the total catch are measured.

Sex ratio data have not been provided to the Secretariat by CPCs.

Fig. 11. Striped marlin: Average weight of striped marlin (kg) estimated from the size samples available for longliners of Japan (1970–2012) and Taiwan, China (1980–2012). Note: Average weights are shown only for years in which 300 or more specimens were sampled for length.

STOCK ASSESSMENT

A range of quantitative modelling methods (ASPIC, Bayesian Production Model, and Stock Reduction Analysis) were applied to the striped marlin in 2013. The models explored did not perform well as far as the residual diagnostics, or other were concerned, denoting high uncertainties. However, these models showed similar stock trajectories, and based on the weight-of-evidence approach, the WPB agreed to use the results from the ASPIC model for stock status advice. Further work needs to be conducted in future years to improve these assessments.

The standardised CPUE series suggest that there was a sharp decline in the early 1980s, followed by slower decline since 1990. In 2013, an ASPIC stock assessment confirmed the preliminary assessment results from 2012 that indicates the stock is currently subject to overfishing and that biomass is below the level which would produce MSY. Two other approaches examined in 2013 came to similar conclusions, namely a Bayesian State Space model, and a data poor stock assessment method, Stock Reduction Analysis using only catch data. The Kobe plot (Fig. 1) from the ASPIC model indicates that the stock has been subject to overfishing for some years, and that as a result, the stock biomass is well below the B_{MSY} level and shows little signs of rebuilding despite the declining effort trend. Thus, on the weight-of-evidence available to the WPB, the stock is determined to be **overfished** and **subject to overfishing** (Table 1, 4; Fig. 1).

T /	ABLE 4.	Striped	marlin	(Tetrapturus	audax)	stock s	tatus	summary	Į

Management Quantity	Aggregate Indian Ocean
2012 catch estimate	4,833 t
Mean catch from 2007–2011	3,011 t
MSY (80% CI)	4,408 (3,539–4,578)
Data period used in assessment	1950–2011
F ₂₀₁₁ /F _{MSY} (80% CI)	1.28 (0.95–1.92)
B ₂₀₁₁ /B _{MSY} (80% CI)	0.416 (0.2–0.42)
SB_{2011}/SB_{MSY}	_
B ₂₀₁₁ /B ₁₉₅₀ (80% CI)	0.18 (n.a.)
SB_{2011}/SB_{1950}	_
$B_{2011}/B_{1950, F=0}$	_
$SB_{2011}/SB_{1950} = 0$	_

LITERATURE CITED

Froese R, Pauly DE (2009) FishBase, version 02/2009, FishBase Consortium, <www.fishbase.org>

Gonzalez-Armas R, Sosa-Nishizaki O, Rodriguez F, Levy Perez VA (1999) Confirmation of the spawning area of the striped marlin, *Tetrapturus audax*, in the so-called core area of the eastern tropical Pacific off Mexico. Fish Oceanog 8(3): 238–242.

- Hyde J, Humphreys RJ, Musyl M, Lynn E, Vetter R (2006) A central North Pacific spawning ground for striped marlin, *Tetrapturus audax*. Bull Mar Sci 79(3), 683–690
- Kadagi NI, Harris T, Conwayn (2011) East Africa billfish Conservation and Research: Marlin, Sailfish and Swordfish Mark-Recapture field studies. IOTC-2011-WPB09-10
- Nakamura I (1985) FAO species catalogue. Billfish of the world. An annotated and illustrated catalogue of marlins, sailfishes, spearfishes, and swordfishes known to date. FAO Fish. Synop 125(5), 65 p

Romanov EV (2002) Bycatch in the tuna purse-seine fisheries of the western Indian Ocean. Fish Bull 100(1):90-105

Romanov E, Romanova N (2012) Size distribution and length-weight relationships of some billfish (marlins, spearfish and swordfish) in the Indian Ocean. IOTC-2012-WPB10-18, 12 p