Improved growth estimates from integrated analysis of age-at-length and tag-recapture data for BET and YFT and their impact on stock assessment results

Alexandre Aires-da-Silva, Mark Maunder, Kurt Schaefer and Dan Fuller

Indian Ocean Tuna Tagging Symposium 30<sup>th</sup> October – 2<sup>nd</sup> November, 2012





# Topics



- Background:
  - Challenges with growth estimation for EPO tropical tuna (BET and YFT)
  - Approaches available to integrate direct age-at-length readings and tag-recapture data
- Results from integrated growth analysis for BET
  - Comparisons among 3 estimation methods (random effects, penalized likelihood and Bayesian approaches)
- Results from integrated growth analysis for YFT
  - One estimation method (penalized likelihood)
  - Impact of new estimates on YFT assessment
- Conclusions and future research



# Challenges with EPO tuna growth

L max observed (close to virgin population)

Background



CLAT

0

400

300

200

100

0

Length (cm)

Kume and Joseph (1966)

#### Background

#### Challenges with EPO tuna growth «



Suda and Schaefer (1965)



#### Impact of *L*<sub>max</sub> on BET management





Background

BET-01-03 (External Review 2010)

#### Impact of L<sub>max</sub> on YFT management



Background



#### Tag-recapture data could help...



Background



- Two most common ways of estimating fish growth
  - Age-at-length data (direct readings of skeletal parts)

$$L = L_{\infty} \left[ 1 - e^{-K(t-t_0)} \right]$$

Length increment data from tag-recapture experiments (Fabens 1965)

$$\Delta L = (L_{\infty} - L)(1 - e^{-K\Delta T})$$

- Growth parameters generated from both methods are not comparable (Sainsbury 1980; Francis 1988)
  - Curves are fitted using different error structures
  - L@A: residuals between observed L@A and expected L@A
  - Tagging: residuals between observed size increments and expected at different time intervals





- Maximum likelihood approaches exist that can model the joint density of the release and recapture lengths (Laslett et al. 2002; Eveson et al. 2004)
- Treat unknown ages of tagged fish as parameters to estimate in the model (random effects)
- For example, if we use the VB the assumed growth curve for the fish is:

$$L_t = L_{\infty} \left[ 1 - e^{-K(\mathbf{A} - t_0)} \right]$$

A = t, is the age of each fish and treated as a random variable with density p(.) and whose parameters will be estimated in the model





 For a fish *i* tagged at time t<sub>1</sub> with released length L<sub>1</sub> and recaptured at t<sub>2</sub> with L<sub>2</sub>

$$L_{1,i} = L_{\infty} \left[ 1 - e^{-K(A_i - t_0)} \right]$$

$$L_{2,i} = L_{\infty} \left[ 1 - e^{-K(\mathbf{A}_{i} + \mathbf{t}_{2,i} - \mathbf{t}_{1,i} - \mathbf{t}_{0})} \right]$$

• The joint distribution of  $L_{1,i}$  and  $L_{2,i}$  can be integrated over A:

$$h(L_{1,i}, L_{2,i}) = \int h(L_{1,i}, L_{2,i}|a)p(a)da$$

We used AD Model Builder





# **BET** analysis

- Three estimation methods
  - Random effects ("Laslett-Eveson-Polacheck" method)
  - Penalized likelihood method
  - Bayesian (MCMC)



# Integrated model (LEP) - BET



Fit otolith only

Age(years)





#### Estimation methods - BET





CIAT

# Likelihood profile on L<sub>max</sub> - BET

PL

RE

200

200

Fork length (cm)

PL-Otolith only

220

220

240

Bayes

240

PL

RE



160

180



# IM and SS growth curves - BET



#### Lessons from BET analysis



CIAT

- Integrated analysis helped to reduce the uncertainty on growth
  - Average size of the oldest fish (L<sub>max</sub>) and variability of L@A
- Growth estimates were similar among 3 methods
- Penalized likelihood approach
  - Less computationally intensive, integrate in SS
  - But simulation study is needed to investigate bias
- *L*<sub>max</sub> assumption in stock assessment may be low
- Variability of length at age (L<sub>SD</sub>) similar to Stock
  Synthesis but around different mean length-at-age
- Evaluate impact in next assessment



## YFT analysis

- Penalized likelihood approach
- Impact of new estimates on stock assessment results and management



#### Integrated model - YFT







## IM and fit to otolith only





# Likelihood profile on L<sub>max</sub> - YFT







## YFT analysis

- Penalized likelihood approach
- Impact of new estimates on stock assessment results and management



#### YFT base case – growth assumptions «

- Richards growth curve
  - Growth parameters fixed to estimates derived internally from early assessment (Maunder and Aires-da-Silva, 2009)

Results

- L<sub>max</sub> fixed at 182.3 cm
- Variability of length-at-age (L<sub>SD</sub>) fixed
- *L*<sub>SD</sub> linear function of SD(*L*)



# IM and SS growth assumptions - YFT



# Impact on Stock assessment



- Preliminary work during External Review of IATTC YFT assessment in October
- SS model fit got worse with new growth estimates
  - Conflict with length-composition data needs to be resolved

|             | Base case | IM     |            |
|-------------|-----------|--------|------------|
| TOTAL       | 8289.5    | 8415.7 | +126 units |
| Survey      | -148.9    | -155.5 |            |
| Length_comp | 8443.8    | 8604.5 | +161 units |
| Recruitment | -5.4      | -33.2  |            |



| quant        | Base case | Growth IM |   |
|--------------|-----------|-----------|---|
| msy          | 262,642   | 286,750   |   |
| Bmsy         | 356,682   | 396,187   |   |
| Smsy         | 3,334     | 3,052     |   |
| Bmsy/Bzero   | 0.31      | 0.31      | _ |
| Smsy/Szero   | 0.26      | 0.22      | ļ |
| Crecent/msy  | 0.79      | 0.72      |   |
| Brecent/Bmsy | 1.0       | 1.04      |   |
| Srecent/Smsy | 1.0       | 1.13      | Í |
| Fmultiplier  | 1.15      | 1.46      | Û |

# Lessons from YFT analysis



- Minimal benefits from YFT integrated model
- Growth parameters from IM are very similar to those produced by fitting to otolith data only:
  - Average size of the older fish (L<sub>max</sub>)
  - Variability of the length-at-age ( $L_{SD}$ )  $\frac{10}{10}$



 Need to increase tag-recapture sample sizes for larger (older) fish



### Lessons from YFT analysis (cont.)



- Estimates of variability of L@A by IM are lower than SS assumptions
- Relationships differ:
  - A-SCALA: SD=F(A)
  - Integrated model: SD=F(L)
- SD=F(L) is more appropriate for tropical tuna and should be revised in assessment





# Lessons from YFT analysis (cont.)



- Fmultiplier increases
- Srecent/Smsy increases
- But other issues will be improved in the assessment (YFT External Review):
  - Appropriate weighting of different datasets (CPUE, size compositions and age at length data)



**Methods** 



#### Longline expansion in EPO



 Length of the largest fish observed (close to virgin population)



FIGURE 1. Geographical expansion of the Japanese longline fishery (solid curves) and the surface fishery in the eastern Pacific (dotted curves). Numerals denote calendar year.



#### Suzuki, Tomlinson and Honma (1978)



#### Kume and Joseph (1966)

each nanel



#### Distribution of age at release params.

BET





**Results** 

## Residual plots - BET





CLAT







## Residual plots - YFT



ATT



#### YFT recruitiments





#### Biomasses





SBR



