

Tuna tagging: an unique opportunity to investigate further research on trophic ecology, energy allocation and chemical bioaccumulation

N Bodin^{1,3}, V Lucas², P Dewals³, M Adeline^{2,3}, J Esparon^{2,3}, C Vialard¹, Emmanuel Chassot^{1,3}

> ¹ IRD UMR 212 EME - France ² SFA - Seychelles

³ IRD UMR 212 EME - Seychelles

Main scientific and management results expected from tagging programs... and more...

Tagging programs widely recognized as important tools for understanding population dynamics of fisheries resources:

- Stock structure and migrations;
- •Growth, natural mortality as a function of age and sex;
- •Fish behavior as a function of their environment (e.g., impact of FADs)
- Fishing mortality, interactions between fisheries

➡No information on the physiological, chemical or energetic causes, consequences, costs or constraints associated with patterns of behavior or distribution

To collect a multitude of interdisciplinary data both at tagging and recapture would allow to test hypotheses about mechanisms affecting fish life history

Improvement of the fish stock assessment methods

Fish tagging combined with non-invasive sampling method: past experiences

Fish	Tracking method	Non-invasive sampling method	References
Salmon	 Conventional tags & tattoos 	•caudal fin clip	Cunjak et al 2005
Salmon & sculpin	 Passive integrated transponder tags 	•caudal fin clip	Gray et al 2004 ; Cunjak et al 2005
Tuna, shark & marlin	Conventional tagsTelemetric tags	 blood from heart (5mL) 	Skomal & Chase 2002
Salmon	 Radio transmitter (gastric implants) 	 muscle / biopsy punch (0.1g) blood from caudal vein (3mL) gills / surgical tools (0.03g) 	Cooke et al 2005
Barracuda	Telemetric tagsBiologging	 muscle / biopsy punch (0.1g) blood from caudal vein (3mL) 	O'Toole et al 2012

Insights from non-invasive sampling methods

Lipids

Population structure & connectivity

Migration patterns

Foraging behaviour Trophic ecology

Sex determination Reproductive success

Growth / Ageing

Energetic / Condition Contaminant exposure

Non-lethal sampling on a practical point of view

	Muscle Biopsy needle or punch	Blood Caudal vein or heart puncture with a needle on a heparinized syringe	
Genetic/genomic	200-500mg (Kocan et al 2003)	1-5mL (SPC 1980; IATTC 1983; Wessel et al 2012)	
Stable isotopes	1mg (Cunjak et al 2005)	1mL (Kline et al 2000)	
Contaminants	200-800mg (Baker et al 2004; Schmitt & Brumbaugh 2007)	1-3mL (Schmitt & Brumbaugh 2007)	
Lipids, fatty acids, reproductive proteins, hormones	200mg (Reprodott, 2002)	3mL (Skomal and Chase 1997 & 2002; Corriero et al 2004; Scoot et al 2006)	

Are tunas at recapture still good for biological and chemical analyses ?

➢Rapid freezing of fish followed by frozen storage prevent from cell damage and allow to retain fish sensory and nutritional properties

Salt treatment such as brine immersion followed by cooling treatment provides a rapid convection freezing:

Advantages

(Toledo-Flores & Zall 1992)

Decrease in water activity
Less availability to microbial attack
Enhancement of functional properties
Increase of the shelf-life time

Inconvenients

(Aubourg & Ugliano 2002)

•Oxidation process leading to a modification of amino and fatty acid composition in muscle tissue, especially for fat fish

<u>Reminder</u>: Tuna recapture mainly depends on purse-seining that use brine freezing preservation to keep fish at -20 C or even lower for long trips......

Objectives of the pilot study

1- To investigate the effects of brine freezing on four specific tracers:

- Fatty acids
- Lipids
- Stable isotopes
- Lipophilic chemicals

2- To examine the influence of the biopsy position on these tracers

The fatty acids

Fatty acids act as building blocks of lipids:

- Saturated fatty acids (SFAs)
- Monounsaturated fatty acids (MUFAs)

Polyunsaturated fatty acids (PUFAs) = Essential fatty acids (EFAs)
Cannot be synthesized in animal tissues and must be taken thought the diet

Lipids as energetic tracers

Lipids are biological molecules that are insoluble in water but soluble in organic solvents

Structure lipids (SL): Mainly phospholipids and sterols

- •Essential constituents of cell membrane and nervous system
- •Components of steroid hormones that are critical intercellular messengers, and precursors for prostaglandin synthesis
- <u>Reserve lipids (RL)</u>: mainly triacylglycerols and waxes
 - •As an energy source \rightarrow high-energy value providing more energy per gram than carbohydrates and proteins (9 kcal.g⁻¹)
 - •Supply the fat-soluble vitamins (A, D, E and K)
 - Supply the essential fatty acids that cannot be synthesized

Trophic ecology and stable isotopes

Stable isotopes determined on predators and preys to improve our understanding of trophic structure:

- •Carbon stable isotopes (δ^{13} C, 13 C/ 12 C): identification of diet sources
- •Nitrogen stable isotopes ($\delta^{15}N$, $^{15}N/^{14}N$): determination of trophic level

Basic information on lipophilic chemicals: not only indicators of contamination

Chemicals of interest :

- Lipophilic or "fat-soluble" compounds with low volatility, high chemical stability
- Mainly from anthropogenic sources (industrial, urban and agricultural), the marine environment being the ultimate receptacle!
- \rightarrow Omnipresent and persistent in marine ecosystems
- → Bioaccumulation in marine organisms: uptake through diet and storage in lipid-rich tissues
- → Biomagnification in marine foodwebs leading to high levels in top predators

Lipophilic chemicals as novel and promising tools for research in fish biology and ecology:

- Trophic tracers to understand foodweb structure (Borga et al 2004)
- Population structure and migration biology (Dickut et al 2010)
- Growth and sexual dimorphism (Bodiguel et al 2010)
- Reproductive success (Wells et al 2005) → endocrine disrupting chemicals

Experimental design

Brine freezing on tuna purse-seiners = Saturated sodium chlorine (~300g/L) brine immersion tank with a propeller maintained at -20 C for 6-weeks max.

• Targeted fish = small tunas with thin skin

Species	Sp Code	n	RWt (kg)	FL (cm)
Skipjack	SKJ	6	2.3±1.3	46±8
Yellowfin	YFT	6	2.2±0.3	49±3

• $Ma \rightarrow$ samples from the dorsal musculature adjacent to the first dorsal fin

- Mb → samples from the dorsal musculature adjacent to the second dorsal fin
- $Mc \rightarrow$ samples from the ventral musculature

Analytical methodology

Objective 1

Is there any influence of brine storage on trophic, bioenergetic and chemical tracers determined in small tuna muscles?

Brine effect on tracers: (1) fatty acid & lipid patterns

Brine effect on tracers: (2) lipophilic chemicals & stable isotopes

PCBs: Polychlorinated biphenyls (industrial compounds)

DDTs: Organochlorine pesticides used against malaria

 δ^{15} N: Nitrogen isotopes

δ¹³C: Carbon isotopes

Objective 2

Is there any influence of muscle sample position on tracer's determination?

Effect of muscle position on lipid distribution

Effect of muscle position on isotopic signatures

Conclusions

1- Non-invasive tissue biopsies and blood sampling have been successfully realized on various tagged fish, including tunas and billfishes

2- The studied tracers (fatty acids, lipids and lipophilic chemicals) can be determined on the muscle of tagged fish whereas stable isotopes should be analysed on blood samples

3- Efforts must be done to establish a standardised protocol to collect muscle samples in tunas due to its heterogeneous biochemical composition

Next step... Waiting for the future tagging program to conduct such researches and improve knowledge on the biology, ecology and contamination of tunas

AGENCE NATIONALE DE LA RECHERCH