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Principle

Making profit from:
I Tagging data from RTTP-IO (2002-2012)
I Catch data from several fishing fleets (2001-2011)
I Reporting rates from former IOTC studies

to estimate mortality rates using a Brownie-Petersen modelling (Polacheck et
al. 2006)

Bayesian statistical framework: Parameters (natural/fishing mortality rates,
abundances of tagged population, real reporting rates) are randomized

Rationale:
I accounting for uncertainties when classical (asymptotic) statistical theory

fails
I theoretical issues when the number of parameters increases with the

number of data (e.g., fishing rates)
I constraining parameters



Basics on Brownie-Petersen modelling (1/2)

Denote Na,t the number of fish tagged at age a at time t

Given Na,t , the observed number of returns after j time steps by the fishery s is

Rs
a+j,t+j ∼ Binom

(
Na,t , π

s
a+j,t+j

)
assuming the fate of each fish is independent

πs
a+j,t+j = conditional probability of return at time t + j , product of

I the tag shedding/tag-induced survival probability until time t + j

I Gaertner & Hallier (2008, 2009)

I the probability to be harvested at time t + j
I the probability of tag recovery given a tagged fish has been caught

Then, for one release event, the joint distribution of all returns after time steps
j = 1, . . . ,T is multinomial with probability vector
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Basics on Brownie-Petersen modelling (2/2)

Mortality rates M and F are parameters of the two first probabilities

Observed catches-at-age can help to separate both
I Require to define cohort abundances as parameters to estimate
I A truncated Gaussian distribution is assumed for observed catches
I For identifiability, the observational noise must be fixed (CV = 25%)
I Results were found little sensitive to this value (tested between 20% and

35%)

A period of mixing must be accounted for after tagging to avoid biased
estimates



Specificities of this exploratory work

Main differences with past modelling in the IOTC context (Eveson 2011):

I Bayesian context
I Accounting for tagging / recapture misspecification error

I Mutifleet context with reestimated selectivities
I 5 fishing fleets

I Quarterly time-step (trimesters)
I Mixing is assumed after one time step (IOTC 2009, Langley et al. 2010)

I Tags removed from the study:
I recaptured within the mixing period
I recaptured by other fisheries than those considered here
I ∈ cohorts with too small numbers of release

In fine:

YFT BET SKJ
number of cohorts 24 17 25
number of release events 89 57 87
number of release tags 59,675 40,135 93,752
number of recoveries 4,959 3,136 5,718







Accounting for interspecies confusion

Let N`,t and N̂(k)
`,t be the true and observed numbers of fish of size ` tagged at

time t

Observed frequency of species k: κ̂(k)
`,t =

N̂(k)
`,t

N`,t

I Non-recovered tags : tagging error

I debiased frequency:
{
κ̂

(k)
`,t

}T

k∈{1,2,3}
= Ψ ·

{
κ

(k)
`,t

}T

k∈{1,2,3}

I Recovered tags: attribution error at recapture

I debiased recovery rate:
{
λ̂

s(k)
t

}T

k∈{1,2,3}
= Ψ−1 ·Λ ·

{
λ̃

s(k)
t

}T

k∈{1,2,3}

Ψ Λ
B Y S B Y S

B 97.92 1.85 0.23 B 97.33 1.93 0.73
Y 1.68 97.92 0.40 Y 1.84 97.33 0.83
S 0.39 1.69 97.92 S 1.25 1.42 97.33



Requirement: age-length keys under uncertainty

Von Bertalanffy curve for SKJ and VB-log K curve (2-stanza) for BET and
YFT

`(a) = L∞

{
1− exp (−k2[a− a0])

[
1 + exp(−β′Y (a− a0 − α′Y ))

1 + exp(βYα′Y )

]−(k2−k1)/β′Y
}

I ω
(k)
a,`∗ = frequency of age a for species k in an infinite population of

observed length `∗

`∗(a) = `(a) + εa with εa ∼ N (0, φ2)

I φ was estimated to 3 cm from multiple tagging data
I Growth parameters are given random distributions from previous

assessments
I Then the ω(k)

a,`∗ were estimated by simulation using a length scale

The most probable age is estimated by

amp(`∗) = arg max
x∈{0,...,A}

ω
(k)
x,`∗



Randomized growth curves SKJ (Gaertner et al. 2011)
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Selectivities-at-age

Separability assumption: Fa,t = ςa · Ft

Being identifiable requires to differentiate fishing fleets by their selectivities ς

Estimated using catches-at-age frequencies and cubic spline regression

Selectivity-at-age for FLL chosen similar to ALL



Incorporating estimated recovery rates (1/2)

(2006-2010)



Incorporating estimated recovery rates (2/2)

For the fishing fleet s, an approximation of the distribution of λ̂t , defining a
likelihood of tag reporting rates, is

λ̂s
t |λs

t ∼ N (λs
t , σ̂

s
t )

where λs
t is the true reporting rate

I distribution truncated on [0, 1]

I alternative to the binomial approach by Polacheck et al. (2006)

We don’t want to estimate λs
t but to incorporate the uncertainty on λs

t in the
assessment of mortality rates

A way of doing it is :

1. fixing σ̂s
t

2. assuming a non-informative uniform distribution for λs
t

3. add the likelihood of reporting rates “data" (estimates) to the sampling
model



Bayesian estimation

Prior distribution on parameters:
I uniform distributions on initial cohort abundances (at first age of tagging)
I conditional uniform distributions on M = M(a) for each age a

(time-independent mortality)

I hierarchized distributions on fishing rates
I sample F s

t ∼ G(αs , 1)
I αs = % of total catch weight from fishery s
I consequently,

∑
s F (s)

t ∼ E(1) and p(t) = 1− exp(−
∑

s F (s)
t ) ∼ U [0, 1]

I p(t) = total probability of being harvested at time t

Posterior computation (given the observed datasets)
I Monte Carlo Markov Chains (MCMC)
I Block Gibbs algorithm, standard Gibbs monitoring using

JAGS/OpenBUGS
I Exploration: several dozens of thousands iterations often required (huge

computational work!)



The case for Skipjack (1/4)

Modifying the MDV RR: 80% (Carruthers 2012) MULTIFAN-CL (Langley et al.

2011)



The case for Skipjack (2/4): annual rates

Kolody et al. (2011)



The case for Skipjack (3/4)

Fishing rates

I Lack of differentiation among fishing rates per time step, even though
their magnitudes seem reasonable

I Uncertainty underestimated in general: not enough parameter space
exploration (need more runs)



The case for Skipjack (4/4): importance of prior assumptions

Impact of “naive" uniform priors (without hierarchizing) on fishing parameters

Very slow chain mixing ⇔ uncertainty underestimated



Yellowfin (1/2)

Eveson (2012) : RTTP-IO data,

PS fishery, mixing period = 6 months Langley et al. (MULTIFAN-CL, 2010)



Yellowfin (2/2)

Fishing rates



Bigeye (1/2)



Bigeye (2/2)



Temporary conclusions

I A multifleet context was used to account for different dispersions among
the data

I High parameter dimension

I Can provide relevant results in the SKJ case
I Faster growth than YFT/BET, more contrasted fishing dynamics
I Results are however exploratory steps, must be took with great

caution
I More questionable results for other species
I Strong impact of the period chosen for the mixing
I Numerical sampling issues due to the dimension: waiting for convergence

(clusterizing/parallelizing the computation)



Immediate needs and perspectives

Short-term
I More runs!
I Simulation study

I Sensitivity studies
I to the mixing period (cf. Paige’s speech)
I to prior choices
I to the selection of data (e.g., removing tags)

I Testing the coherence of fishing and abundance estimates with other
assessments (e.g., MULTIFAN-CL)

I Can the hypothesis that natural mortality of small tunas follow similar
patterns be statistically tested?

Middle-term
I Accounting for sexual dimorphism
I Updating using a two-stanza growth curve for SKJ (?)
I Comparing growth and natural mortality curves
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