Incorporating electronic tagging in stock assessment

Spatially-explicit integrated assessment models and experimental design

Indian Ocean Tuna Tagging Symposium – IOTC November 2012 - Mauritius

*Tim Sippel*¹, Simon Nicol², Mark Maunder³, Pierre Kleiber⁴ 1) NOAA-SWFSC; 2) SPC; 3) IATTC; 4) NOAA-PIRO

NATIONAL OC.

NOAA

ARTMENT OF CO

NOAA

FISHERIES

Presentation Structure:

Current state of spatially explicit integrated assessment models and electronic tagging

- Spatially-explicit integrated assessments
- Tagging of HMS
- ET movement analysis
- Assumptions
- Experimental design
- Conclusions and opportunities

Stock Assessment (SA) models

- Integrated models
 - Composite likelihoods
 - Maximize information content of data
 - Many examples
- Spatially-explicit integrated models
 - Composite likelihoods, maximize info content
 - Allows for spatial stratification & movement
 - Inspection of spatial domain subsets
 - MULTIFAN-CL, Stock Synthesis, CASAL, etc.

Decades of tagging data for HMS assessment *

- Skipjack Survey and Assessment Programme (SSAP, 1977-1981)
 - Conventional tagging (CT)
 - Ground-breaking for HMS
- Regional Tuna Tagging Programme (RTTP, 1989-1992)
 - CT
 - Underpinned development of MULTIFAN-CL
- Pacific Tuna Tagging Programme (PTTP, 2006-present)
 - Both CT and electronic tagging (ET)
- Indian Ocean Tuna Tagging Programme (IOTTP)
- ICCAT GBYP
- Other examples, including sub-projects of above programmes

* Source: SPC Pacific Tuna Tagging (http://www.spc.int/tagging/en/programs)

Top: RTTP - yellowfin recaptures * Bottom: Growth rates *

Electronic tagging (ET)

Electrically powered (battery, solar, etc), multiple sensors (temperature, light, etc), flash memory

- Extensive datasets
- Information content per tag much higher than CT
- Movement & behavior (spawning)
- Many, many millions already spent
- Not currently used in SA, why?
 - SA frameworks built for CT, not ET
 - Unbalanced experimental design
 - Proprietary and not accessible
 - Assumptions

Block et al. 2011. Nature (475) 86-90

Examples of ET and S.A. – Pop. Dy.

- Outside SA model block transfer, PSAT and CT (Evans et al. 2012)
 - Testing 3 hypotheses about swordfish movement process (bounded & unbounded diffusion, site fidelity)
- Integrated: Spatial Brownie-Peterson (hybrid abundance-mortality model)
 - Designed with CT in mind (Eveson et al. 2009)
 - Adapted for IAT (Eveson et al. 2012)
 - Instantaneous block-transfer (end of each quarter)
 - Assumes fish move independently of one another
- Integrated: MAST (Taylor et al. 2011)
 - IAT, PSAT, CT plus CPUE, age, etc.
 - Instantaneous block-transfer (end of each quarter)
- Integrated: SEAPODYM (Lehody et al. 2008, Senina et al. 2008)
 - Ecosystem model
 - Continuous space-time
 - Probability densities, not trajectories

Tagging data - movement

- Individual base models (Sibert et al. 2003, etc.)
 - Intermediate positions
- Scaling up from individuals to populations
 - Advection-diffusion-reaction (ADR) models (Sibert et al. 1999)
- Population-level movement models
 - Block-transfer (Beverton & Holt 1957)
 - Straight-forward, but can rapidly become highly parameterized
 - Continuous space-time (Skelam 1951)
 - Movement process...

Lagrangian

- focus on individual path
- state variables: latitude / longitude

- focus on collective
- state variables: abundance field

Movement and process models

- Movement models (Patterson et al. 2009, Nathan et al. 2009)
 - Biological states (eg. spawning, migrating, foraging)
 - Correlated random-walks (default), Levy-walk (scale-free), attraction point (Orenstein-Uhlenbeck)
- Process models
 - Markov process
 - Bayesian
- Underpins incorporation of movement dynamics important to stock assessment (eg. spawning) inside or outside SA model?
- Challenging...

Problems and Questions

- Modeling movement outside model useful, but misses value of full integration
- Movement is a continuous process, are block-transfer models sufficient?
- Movement process: not a one-solution fits all problems situation
 - Independence: schooling vs. non-schooling fish
 - Fidelity: regular or irregular movement patterns
 - Requires SA model flexibility
- What processes are germane to SA?
- Stratifying and scaling models with tagging data

Mixing and behavior assumptions

- Assumption: tagged fish mix randomly with and behave like untagged population
- Behavior modification
 - Free-tagged striped marlin behaved differently than hook & line caught (Sippel et al. 2011)
 - Experimental control
 - Observed across multiple taxa (Hoolihan et al. 2011)
- Fish condition factors
 - SBT (Hampton 1986)
 - Initially diminished condition post-tagging
 - Feeding probability effected by tagging
 - SBT Bestley et al. 2008
 - Striped marlin Sippel et al. 2011

Controlling for capture effects (Sippel et al 2011)

Perturbed behaviour scores - Hoolihan et al. 2011

Experimental design

- ET seldom conducted with SA in mind
 - Opportunistic deployments
 - Unbalanced sampling
 - Inadequate sample size
 - Data gaps
- Consequences
 - Movement parameters imprecise, biased, or not estimable
 - Costly to collect more data to fill in gaps (under/over sampling)

* Sample size requirements increase geometrically (not arithmatically) with more SA space-time strata

Hypothetical probability of recapturing a tagged fish (or tag transmitting) with respect to time at liberty, assuming quarterly time strata (denoted by numbers and vertical lines).

ET data management and access

- Problems
 - Data volumes
 - Many different data formats
 - Long-term legacy data availability
 - Access to data
- Data management solutions
 - Tagbase (Lam and Tsontos 2011, open-access <u>http://code.google.com/p/tagbase/</u>)
 - CSIRO (Hartog et al. 2009, proprietary development)
 - IOTTP (Julien Barde)
- Data access still challenging...
 - Existing data widely distributed and proprietary

Conclusions

- ET and integrated spatial assessments evolving in parallel, but independently
- Opportunities
 - Expand upon ET research designed for SA
 - More balanced deployments (better for ecology too)
 - Ideal vs. practical simulate ideal and modify based on experience (SEAPODYM functionality being developed for this)
 - Experimental controls in tagging
 - New tags designed for needs of SA (pop-off CT)
 - Movement and process models appropriate to SA with ET
 - Tagging data shared more like fishery data for SA

Acknowledgments

Contributors: Participants in IATTC Electronic Tagging and Stock Assessment Symposium 2011

Paige Eveson, Ben Galuardi, Tim Lam, Vardis Tsontos, Felipe Carvalho, Alex Aires-da-Silva, Simon Hoyle

Funding:

FRP Pelagic Fisheries Research Program

Methods and data repositories

- Method development environments (open-source)
 - ADMB: well suited to non-linear and highly parameterized problems (<u>www.admb-project.org</u>)
 - Already underpins SS3, MULTIFAN-CL
 - R: good for data manipulation and visualisation (<u>www.r-project.org</u>)
 - Packages: R2admb, PBSadmb, etc.
- 'Holotype' reference datasets (both real and simulated)
 - Reference to characteristics of important behavior (spawning)
 - Simulate 'ideal' and 'realistic' data
- Propose central locale for reference methods and data
 - <u>www.fisheriesstockassessment.com</u> (Mark Maunder's page) ???

Model inputs and structure

- Biological data
 - Growth-curves and size data, aging, sex, etc.
- Fishery data
 - Catches, abundance indices (CPUE)
 - Generally longest time-series
 - Abundance indices problematic (difficult to standardize)
- Tagging data
 - Estimate abundance, mortality, growth, movement
 - Not commonly used, particularly movement (sample size, movement process)
 - Shorter, but less confounded time-series than CPUE
 - Key assumptions: random mixing, survivorship/behavior not impacted by tag, independent movement, 100% reporting
- Stratification: commonly quarterly over multiple spatial domains

Movement Models

- focus on individual path
- state variables: latitude / longitude

- focus on collective
- state variables: abundance field

Stock assessment models

Decades of using tagging data for HMS population dynamics

- Skipjack Survey and Assessment Programme (SSAP, 1977-1981)
 - Conventional tagging
 - Ground-breaking for HMS assessment
- Regional Tuna Tagging Program (RTTP, 1989-1992)
 - Conventional tagging
 - Underpinned development of MULTIFAN-CL
- Pacific Tuna Tagging Programme (PTTP, 2006-present)
 - Both conventional and electronic tagging
- Other examples, including sub-projects of above programmes
- Diffusion models, continuous time-space (Skellam 1951)
- Bulk-transfer (Beverton & Holt 1957)

Slide Title

- List item 1
 - List item 2

Sample Title

NOAA FISHERIES

Sample Subhead

Sample Title

NOAA FISHERIES

Sample Subhead

Sample Title

NOAA FISHERIES

Sample Subhead

Divider Title

Additional Divider Information

