

1st WORKSHOP ON CONNECTING THE IOTC SCIENCE AND MANAGEMENT PROCESSES (SMWS01) Data poor approaches

Catch-only methods: a brief review and new developments

Shijie Zhou

MARINE AND ATMOSPHERIC RESEARCH www.csiro.au

Why catch-only methods

- Majority of stocks (> 80% of global catch) have no formal stock assessment.
- Classical assessment requires various data.
- Most fisheries have catch data.
- Most fisheries have catch data only.
- Catch data are easier to collect than other types of data.
- Until now it has been impossible to use catch data alone for sound fisheries management.

Assessed

Un-assessed

Existing catch-only methods

- Depletion-corrected average catch (DCAC)
- Depletion-Based Stock Reduction Analysis (DB-SRA)
- Stock Synthesis using only a time series of catches (SS-CO)
- Stochastic stock reduction analysis
- Catch-MSY
- Catch-based method for classifying stock status
- Feasible stock trajectories

Additional methods

- XDB-SRA—Depletion-Based Stock Reduction Analysis extended using survey index data.
- SS-CL—Simple implementation of the Stock Synthesis platform that uses catch and a time series of length composition data.
- SS-CI—Simple implementation of the Stock Synthesis platform that uses catch and a time series of survey indices.

Some references

- Bentley, N. and Langley, A.D. 2012. Feasible stock trajectories: a flexible and efficient sequential estimator for use in fisheries management procedures. Canadian Journal of Fisheries and Aquatic Sciences 69: 161-177.
- Dick, E.J., and MacCall, A.D. 2011. Depletion-Based Stock Reduction Analysis: A catch-based method for determining sustainable yields for data-poor fish stocks. Fisheries Research 110: 331-341.
- MacCall, A.D. 2009. Depletion-corrected average catch: a simple formula for estimating sustainable yields in data-poor situations. ICES Journal of Marine Science 66: 2267–2271.
- Martell, S., and Froese Rainer. 2013. A simple method for estimating MSY from catch andresilience. Fish and Fisheries.
- Walters, C.J., Martell, S.J.D., Korman, J., 2006. A stochastic approach to stock reduction analysis. Canadian Journal of Fisheries and Aquatic Sciences 63: 212–223.
- Wetzel, C.R. and Punt, A.E. 2011. Model performance for the determination of appropriate harvest levels in the case of data-poor stocks. Fisheries Research 110: 342–355.
- NMFS. 2011 (May). Calculating acceptable biological catch for stocks that have reliable catch data only (only reliable catch stocks ORCS).
- NMFS. 2011 (June). Assessment Methods for Data-Poor Stocks Report of the Review Panel Meeting.
- Numerous papers on classifying global stock status

NMFS assessments

- 1. What are the data requirements of the method?
- What are the conditions under which the method is applicable?
- What are the assumptions of the method?
- Is the method correct from a technical perspective?
- How robust are model results to departures from model assumptions and atypical data inputs?
- Does the model provide estimates of uncertainty? How comprehensive are those estimates?
- What level of review is appropriate for assessments conducted using the method?

Data requirement for existing methods

- Time series of catch over a reasonably extended period (>10) years).
- Priors:
 - natural mortality M
 - F_{MSY}/M
 - B_{MSY}/B_0
 - steepness *h*
 - depletion level $D = B_{cur}/K$,
 - age-at-maturity T_{mat}
 - growth rate *r*
 - carrying capacity K.

General procedure for stochastic stock reduction analysis

- 1. Specify priors (including depletion level) and a population model.
- 2. Randomly drawn initial biomass in year 1 from assumed distribution and range.
- 3. Draw a parameter set from the prior distributions (r, K, M, F_{msy}/M , B_{msy}/B_0 , etc).
- 4. Apply all these values into a population model and subtract the know annual catch.
- 5. If the biomass trajectory ends within specified range of the depletion level, keep the iteration and all the parameters. Otherwise, discard the iteration.
- 6. Repeat these steps many times.
- 7. Use the retained iterations for parameter inference.

Stochastic stock reduction

General comments for existing methods

- Priors, particularly the assumed depletion level, can have substantial effect on the results.
- Requires more than catch data. Prior information may be difficult to get.
- Additional quantities (e.g., ending biomass, depletion level etc.) are assumed, not estimated from the method itself.
- Low efficiency of stochastic method (difficult in "thread the needle").

New development

- Estimate B_{cur} , no other priors
- Optimised catch-only method

Estimate B_{cur}

- Estimate biomass based on fishery catch or survey data.
- Assume no other priors (r, K, M, F_{msv}/M, etc.).
- Instead of assuming a depletion level, try to estimate biomass in one recent year.

Limitations

- Results depend on how good is the estimated one year biomass.
- Estimating one year biomass may be impossible in many fisheries.

OCOM—optimized catch-only method

Default method

- Use a simple biomass dynamics model with parameters K and r.
- Define a large range of K and a series of assumed depletion levels **d**, including all possible values.
- Use optimization algorithm to search for r that corresponds to each assumed K and d.
- Derive basic parameters: K, r, MSY: Determine the linear section of the $\log(r)^{\sim}\log(K)$ plot for each **d** level, narrow down possible **d** range from **MSY~***d* plot.
- Rerun the model using these parameters to obtain biomass trajectories, ending biomass B_{cur} , and depletion D.
- Project to future biomass to explore alternative harvest policies.

Improvement with auxiliary life history data

- Life history parameters: growth parameters (L_{inf} , κ), maximum age, age at maturity, natural mortality.
- Estimate **M** from other life history parameters.
- Estimate r range from M.
- Feed this r range into OCOM model.

Life history parameters are available for most fish species.

Step 1: model and priors

Simple biomass dynamics model

$$B_{t+1} = B_t + rB_t \left(1 - \frac{B_t}{B_0} \right) - C_t$$

Set up wide parameter ranges:

Theoretically:
$$0 < K < \infty$$
; $0 < r < \infty$; $0 < D < 1$

In practice:
$$C_{\text{max}} < K < 100 * C_{\text{Max}}; \quad 0 < r < 3; \quad 0 < D < 0.8$$

Step 2: search for feasible solutions

- Set up series of equally spaced Ks (100 to 1000) from min to max.
- Set up series of equally spaced ds (10 to 100) from min to max.
- Search through all Ks and ds for feasible r values using optimization function by minimizing $|B_{cur} - d^*K|$.

Step 3: excluding unlikely values

- Method 1: keep [K, r, d] pairs with objective < alpha*K
- True value

$$K = 10,000$$

$$D = 0.38$$

Step 3: excluding unlikely values

• Method 2: biologically feasible [K, r, d] pairs

Testing and comparing OCOM with data-rich methods

Robustness

- The default method is robust when the stock has a modest population growth rate **r** and depletion level **D**.
- When r or d is very low or very high, the default method should include information regarding the productivity and depletion.
- Catch patterns and the initial depletion have little impact.
- Errors in catch data cause similar bias in the estimated K, MSY, $B_{\rm End}$, but have little impact on r and D.

- Use life history parameters
 - L_{inf} , κ , T_{mat} , T_{max} ,
 - M.
 - $r = 2 F_{msy} = 2*0.87*M$

• *C*_{future} = MSY

• **C**_{future} = **C**₂₀₁₂

Application

- The method allows quantitative assessment for stocks with catchonly data.
- This method is very low-cost and quick.

Thank you

Shijie Zhou, Ph.D.
Marine and Atmospheric Research
Commonwealth Scientific and Industrial Research Organization
Brisbane, Australia

Phone: +61 7 38335968

Email: shijie.zhou@csiro.au

Depletion-corrected average catch

$$Y_{sust} = \frac{\sum C}{n + \frac{1 - B_{LYR} / B_0}{0.4cM}}$$

$$\frac{1 - B_{LYR} / B_0}{0.4cM}$$

$$\frac{1 - B_{LYR} / B_0}{0.4cM} \qquad F_{msy} = M = \frac{MSY}{B_{msy}}$$

$$\Delta = 1 - B_{LYR}/B_0$$

