IOTC-2014-WPB12-21 Rev_1

CPUE standardization of swordfish (*Xiphias gladius*) exploited by Japanese tuna longline fisheries in the Indian Ocean using cluster analysis for targeting effect

Tom Nishida

National Research Institute of Far Seas Fisheries (NRIFSF) Fisheries Research Agency (FRA), Shimizu, Shizuoka, Japan

Sheng-Ping Wang Department of Environmental Biology and Fisheries Science, National Taiwan Ocean University, Keelung, Taiwan

October, 2014

Abstract

We conducted to standardize CPUE (STD_CPUE) of swordfish exploited by Japanese tuna longline fishery in the Indian Ocean using 43 years of the set by set catch and effort data (1971-2013). For this time we attempted to use SWO cluster derived from the cluster analyses as targeting correction factor and compared with the traditional one (number of hooks between floats) (NHBF). We also compared STD_CPUE with and without SWO cluster data. As a result, it was suggested that STD_CPUE with SWO cluster data and with SWO clusters produced the best performance. This best STD_CPUE further suggested that STD_CPUE (SWO abundance) continuously decreased from 1971 to 2005 and then increased to 2013, consequently the higher level have been kept in recent 8 years (2006-2013), while there are a lot of noises (ups and downs) throughout the whole period (1971-2013).

Con	tents									
1.	Introduction	()2							
2.	2. Catch and effort data 0									
3.	. STD_CPUE									
	3.1 Clu	ster analyses								
	(1)	K-means method (03-04							
(2) Hierarchical Cluster Analyses										
3.2 GLM										
	(1)	Covariates	10							
	(2)	GLM formation	11							
	(3)	Adjustment by area size	11							
(4) Results										
Refe	References15									

Submitted to the IOTC 12th WPB meeting, Oct. 21-25, 2014, Yokohama, Japan

1. Introduction

We attempted to standardize nominal CPUE (STD_CPUE) of swordfish (*Xiphias gladius*) (SWO) caught by Japanese tuna longline fishery (LL) in the Indian Ocean incorporating cluster analysis to reduce biases caused by targeting effect. We used the set by set catch and effort data to conduct the cluster analyses effectively.

2. Catch and effort data

We used daily set by set catch and effort data (1971-2013) available in the database of the National Research Institute of Far Seas Fisheries, Fisheries Research Agency, Japan. Set by set data are represented by $1^{\circ}x1^{\circ}$ area (Fig. 1).

Fig. 1 Definition of the set by set fine scale data which are presented by 1°x1° area in the database of National Research Institute of Far Seas Fisheries (NRIFSF).

3. STD_CPUE

In the past, we used the number of hooks between floats (NHBF) to reduce targeting biases. Recently, "cluster (targeting sets)" evaluated by cluster analysis was reported as effective for targeting effect correction factor in STD_CPUE. In this paper we used both NHBF and Cluster in STD_CPUE and compared their effectiveness.

3.1 Cluster analysis

Cluster analysis was conducted based on species composition of the catches. Eight species groups were used including Albacore (ALB), Bigeye tuna (BET), Yellowfin tuna (YFT), swordfish (SWO), southern Bluefin tuna (SBT), billfish (BIL), sharks (SHK) and other species (OTH) (Fig. 1).

He *et al.* (1997) suggested cluster analysis with two steps to classify the data sets because the large number of data sets make it difficult to conduct direct hierarchical cluster analysis, i.e., 1st step: Non-hierarchical K-means method and 2nd method: Hierarchical Cluster analysis. Both non-hierarchical and hierarchical cluster analyses were conducted using R functions *kmeans* and *hclust* (The R Foundation for Statistical Computing Platform, 2014).

Fig.1 Species compositions of Japanese tuna longline fisheries in the Indian Ocean (1971-2013)

(1) K-means method

As a first step, non-hierarchical cluster analysis (K-means method) was used to group all data sets into 28 clusters for taking the mixture of fishing operations into account into ($C_2^8 = 28$ ways in which 2 species can be chosen from 8 species groups). Table 1 shows average proportions SWO catches for 28 K-means clusters. Cluster 1 consist large average proportions of SWO catches, which are 39.9%.

Table 1 Average proportion catches of swordfish of Japanese longline fishery for 28 non-hierarchical (K-means) clusters.

Cluster	SBT	ALB	BET	YFT	SWO	SHK	ОТН	BIL
1	0.008	0.044	0.216	0.135	0.399	0.029	0.020	0.045
2	0.001	0.267	0.070	0.539	0.024	0.015	0.029	0.029
3	0.000	0.015	0.239	0.636	0.029	0.012	0.010	0.030
4	0.001	0.011	0.424	0.136	0.052	0.035	0.021	0.263
5	0.344	0.473	0.069	0.007	0.022	0.016	0.029	0.001
6	0.004	0.493	0.085	0.280	0.024	0.021	0.032	0.033
7	0.004	0.045	0.094	0.109	0.047	0.053	0.026	0.539
8	0.001	0.008	0.884	0.024	0.014	0.004	0.005	0.010
9	0.000	0.012	0.035	0.891	0.013	0.004	0.005	0.014
10	0.002	0.031	0.107	0.466	0.049	0.053	0.031	0.206
11	0.000	0.046	0.069	0.730	0.030	0.018	0.029	0.047
12	0.009	0.302	0.552	0.030	0.023	0.014	0.026	0.006
13	0.003	0.260	0.322	0.256	0.037	0.029	0.030	0.029
14	0.507	0.016	0.002	0.000	0.002	0.024	0.365	0.000
15	0.846	0.007	0.005	0.000	0.003	0.003	0.018	0.000
16	0.001	0.016	0.372	0.460	0.037	0.018	0.015	0.046
17	0.001	0.016	0.531	0.319	0.034	0.012	0.013	0.040
18	0.563	0.157	0.093	0.006	0.030	0.022	0.024	0.001
19	0.000	0.011	0.690	0.183	0.028	0.008	0.009	0.036
20	0.055	0.072	0.116	0.066	0.022	0.498	0.084	0.030
21	0.145	0.026	0.031	0.016	0.004	0.034	0.669	0.005
22	0.040	0.282	0.079	0.038	0.019	0.056	0.238	0.017
23	0.005	0.054	0.730	0.029	0.040	0.016	0.037	0.032
24	0.000	0.061	0.082	0.395	0.025	0.036	0.308	0.062
25	0.003	0.041	0.452	0.038	0.017	0.023	0.361	0.013
26	0.021	0.036	0.524	0.064	0.097	0.110	0.035	0.036
27	0.029	0.758	0.079	0.029	0.015	0.018	0.043	0.005
28	0.015	0.519	0.315	0.030	0.027	0.021	0.030	0.008

(2) Hierarchical Cluster analysis

Secondly, hierarchical cluster analysis with Ward minimum variance method was applied to the squared Euclidean distances calculated from 28 non-hierarchical clusters.

He *et al.* (1997) indicated that the choice for the number of clusters to produce was largely subjective. At least two clusters (tuna sets and swordfish sets) were expected. More than two clusters were produced to allow other possible categories to emerge.

The selection for number of clusters of hierarchical cluster analysis was based on the average proportions of SWO catches obtained from K-means method (Table 1). Various fishing types were also assigned to each data set based on the results of hierarchical cluster analysis. Finally, 10 clusters were chosen. Then clusters 1 and 3 were selected as the SWO cluster because they are neighbors each other in dendrogram (Fig. 3) and they contain much more average proportions of SWO catches than other clusters (Table 2 and Figs. 4-5).

Table 2 Average proportions catches of swordfish and assigned fishing types of Japanese longline fishery for 10 hierarchical clusters

Cluster	SBT	ALB	BET	YFT	SWO	SHK	ОТН	BIL	Data sets	%	Fishing type
1	0.008	0.044	0.216	0.135	0.399	0.029	0.020	0.045	6383	1	SWO+BET
2	0.001	0.064	0.218	0.518	0.033	0.022	0.046	0.063	125531	17	YFT+BET
3	0.003	0.023	0.672	0.117	0.034	0.020	0.038	0.043	222774	29	BET
4	0.134	0.663	0.076	0.022	0.018	0.017	0.038	0.003	60175	8	ALB
5	0.013	0.384	0.319	0.102	0.026	0.024	0.056	0.016	107269	14	ALB+BET
6	0.004	0.045	0.094	0.109	0.047	0.053	0.026	0.539	8957	1	BIL
7	0.000	0.029	0.052	0.812	0.021	0.011	0.016	0.030	91469	12	YFT
8	0.726	0.037	0.021	0.002	0.008	0.010	0.087	0.000	105372	14	SBT
9	0.055	0.072	0.116	0.066	0.022	0.498	0.084	0.030	12279	2	SHK
10	0.145	0.026	0.031	0.016	0.004	0.034	0.669	0.005	17204	2	ОТН

Cluster Dendrogram

Fig. 3. The dendrogram of hierarchical cluster analysis for classifying the data sets of Japanese longline fishery in the Indian Ocean.

Figs. 4 and 5 show the historical catches by species and species compositions respectively. It is obvious that <u>Clusters 1 and 3 contain relatively large SWO catches</u> since middle 1970s. Large amounts of data sets of Cluster 1 distributed in entire Indian Ocean except south central areas (Fig. 6).

Fig. 4. Annual catches by species of Japanese longline fishery in the Indian Ocean for ten clusters.

Fig. 5. Annual catch compositions of Japanese longline fishery in the Indian Ocean for ten clusters.

Fig. 6. The distributions for number of data sets of Japanese tuna longline fishery in the Indian Ocean for ten clusters (above: all data and below: data from SWO cluster 1)

3.2 GLM

(1) Covariates

In this study, General Linear Model (GLM is used to model the logarithm of the nominal CPUE (defined as the number of fish per 1,000 hooks). The main effects considered in this analysis are year, month, area and targeting effect.

Fishing areas used in this study were defined by four areas based on the IOTC statistical area for swordfish in the Indian Ocean (Fig. 7) (Wang and Nishida, 2011). In addition, local area affect is also included in the GLM. The local effect is represented by 10°x10° block which will reduce biases in local events such as oceanographic anomalies. This effect has been recommended by past WPTT and WPB.

Fig. 7 Area stratification for swordfish in the Indian Ocean

Hinton and Maunder (2004) indicated that interactions with the year effect would invalidate the year effect as an index of abundance. For the interaction associated with year effect, therefore, the interaction between year and area effect was only considered in the GLM. All of effects were treated as category variables.

Regarding targeting effect, we tested three types, i.e., (a) no, (b) SWO cluster related to fishing type and (c) number of hooks between floats (NHBF).

(2) GLM formulation

Then GLM is formulated as below:

In (CPUE+c) = (mean) + YR + MO + A + A10 + IAR + (interaction) + (ei
--

where	e mean is mean STD_CPUE											
	CPUE	is the CPUE of sw	vordfish (catch in number/1	000 hooks);								
	С	is the constant value (i.e. 10% of the average nominal CPUE);										
	YR	is the effect of year;										
	МО	is the effect of month;										
	Α	is the effect of a	rea;									
where	A10	is the effect of 10°x10° area										
	TAR	is the effect of targeting (NHBF or cluster related to fishing types:1 and 3);										
		NHBF: class of number of hooks between floats										
			Class 1(shallow)	: 4-7								
			Class 2(regular)	: 8-10								
			Class 3(deep)	:11-13								
			Class 4(deep)	: 14-16								
where r C C Y M J I I I E			Class 5(ultra deep)	: 17-19								
		Class 6(ultra deep) : 20-										
	interactions	is the interaction between effects.										
	error	is the error term,	, ε~N(0, σ²).									

In order to investigate the effectiveness of the effect of cluster related to fishing type when fitting GLM to different data sets, six scenarios with different combination of effects were attempted (Box 1). The model selection is based on the values of the coefficient of determination (r^2) and Akaike information criterion (AIC). The standardized CPUE are calculated based on the estimates of least square means of the interaction between the effects of year and area.

(3) Adjustment by area size

The estimation of annual nominal and standardized CPUE is calculated from the weighted average of the area indices (Punt et al., 2000).

$$U_{y} = \sum_{a} S_{a} U_{y,a}$$

where

```
is CPUE for year y,
```

```
Uy
Uy,a
Sa
```

is CPUE for year y and area a, is the relative size of the area a to the four new areas (*). (*) The relative sizes of nine IOTC statistics areas for swordfish in the Indian Ocean (Nishida and Wang et al., 2006) were used to be aggregated into four areas used in this study (see below)

Area	NW	NE	SW	SE
Relative area size	0.2478	0.2577	0.1638	0.3307

(4) Results

Results of performances of six GLM runs are shown in Box 1. Box 1 suggested that GLM with SWO cluster as targeting effect (scenarios 2 and 5) performed better than GLM with NHBF (scenarios 3 and 6). It also suggested that GLM with SWO cluster 1 and 3 performed better than GLM with all data. Based on r2 and AIC, the scenario 5 with SWO cluster 1+3 data using cluster 1+3 is resulted as the best.

Results of estimated STD_CPUE for 4 areas and the whole Indian Ocean are shown in Table 3 with SE.

NE			NW			SE			SW			ALL area	(area size	weighted)
	case 5	SE		case 5	SE		STD_CPUE	SE		STD_CPUE	SE		STD_CPUE	SE
1971	0.24976	0.0294	1971	0.36945	0.0451	1971	0.70433	0.0611	1971	1.60299	0.2578	1971	0.65263	0.0261
1972	0.31029	0.0373	1972	0.61492	0.0645	1972	0.72794	0.1070	1972	3.18803	0.7110	1972	0.99838	0.05561
1973	0.18687	0.0282	1973	0.54952	0.0605	1973	0.69652	0.0786	1973	1.24136	0.3198	1973	0.62163	0.04096
1974	0.23128	0.0264	1974	0.49129	0.0532	1974	0.5026	0.0568	1974	0.852	0.1466	1974	0.48971	0.02336
1975	0.1641	0.0207	1975	0.64864	0.0675	1975	0.40836	0.0437	1975	0.8681	0.2411	1975	0.4851	0.03369
1976	0.25339	0.0347	1976	0.5635	0.0773	1976	0.74531	0.1210	1976	1.33763	0.3588	1976	0.67362	0.05182
1977	0.25435	0.0377	1977	0.57028	0.0742	1977	1.02804	0.1085	1977	1.01531	0.3814	1977	0.71629	0.06385
1978	0.39913	0.0422	1978	1.06787	0.1033	1978	1.04064	0.0907	1978	1.01751	0.1594	1978	0.88493	0.03318
1979	0.23956	0.0281	1979	0.58428	0.0649	1979	0.73615	0.0742	1979	1.26417	0.2068	1979	0.66048	0.02846
1980	0.30889	0.0333	1980	0.4836	0.0534	1980	0.42142	0.0402	1980	1.26918	0.1779	1980	0.54846	0.02101
1981	0.3146	0.0332	1981	0.47329	0.0485	1981	0.63734	0.0630	1981	0.68024	0.0938	1981	0.52213	0.01873
1982	0.30221	0.0315	1982	0.5972	0.0585	1982	0.48025	0.0588	1982	0.4991	0.0731	1982	0.46937	0.01905
1983	0.28116	0.0288	1983	0.48969	0.0485	1983	0.58083	0.0572	1983	0.77505	0.1173	1983	0.51492	0.01973
1984	0.24993	0.0261	1984	0.54815	0.0542	1984	0.55875	0.0531	1984	2.04457	0.2802	1984	0.72294	0.02314
1985	0.32205	0.0327	1985	0.85274	0.0808	1985	0.64332	0.0656	1985	1.89297	0.2389	1985	0.82244	0.02627
1986	0.29116	0.0301	1986	0.77576	0.0744	1986	0.58769	0.0597	1986	0.98522	0.1315	1986	0.62783	0.02159
1987	0.39068	0.0394	1987	0.74663	0.0718	1987	0.52859	0.0464	1987	0.87688	0.1200	1987	0.60769	0.0205
1988	0.34224	0.0348	1988	0.84319	0.0812	1988	0.81841	0.0909	1988	1.31234	0.1676	1988	0.78775	0.02723
1989	0.2652	0.0306	1989	0.62132	0.0615	1989	0.77444	0.0867	1989	1.53456	0.1909	1989	0.73334	0.02528
1990	0.22385	0.0256	1990	0.57474	0.0580	1990	0.31812	0.0292	1990	1.5358	0.1871	1990	0.5604	0.01637
1991	0.23847	0.0270	1991	0.43039	0.0456	1991	0.36848	0.0303	1991	0.89931	0.1107	1991	0.4392	0.01369
1992	0.21444	0.0286	1992	0.6595	0.0707	1992	0.37887	0.0332	1992	0.78672	0.0968	1992	0.47728	0.01673
1993	0.29079	0.0352	1993	0.84834	0.0866	1993	0.44864	0.0360	1993	0.66082	0.0846	1993	0.54731	0.01772
1994	0.36656	0.0456	1994	0.7634	0.0773	1994	0.36454	0.0293	1994	0.65992	0.0819	1994	0.51624	0.01738
1995	0.24731	0.0291	1995	0.78671	0.0795	1995	0.31664	0.0254	1995	0.40849	0.0533	1995	0.43567	0.01292
1996	0.31879	0.0357	1996	0.68249	0.0679	1996	0.36613	0.0292	1996	0.42173	0.0547	1996	0.44505	0.0133
1997	0.26047	0.0288	1997	0.78738	0.0761	1997	0.56275	0.0436	1997	0.4279	0.0555	1997	0.52366	0.01401
1998	0.29815	0.0316	1998	0.74551	0.0723	1998	0.54137	0.0439	1998	0.35243	0.0469	1998	0.50277	0.01359
1999	0.21563	0.0241	1999	0.67746	0.0688	1999	0.53064	0.0430	1999	0.29675	0.0408	1999	0.45212	0.01243
2000	0.20672	0.0245	2000	0.63615	0.0649	2000	0.38771	0.0321	2000	0.32933	0.0456	2000	0.39734	0.01208
2001	0.13849	0.0173	2001	0.54216	0.0612	2001	0.3642	0.0294	2001	0.28834	0.0406	2001	0.34172	0.01053
2002	0.15312	0.0186	2002	0.48807	0.0499	2002	0.438	0.0353	2002	0.27849	0.0397	2002	0.35419	0.01019
2003	0.16421	0.0203	2003	0.53546	0.0543	2003	0.40421	0.0362	2003	0.30083	0.0419	2003	0.36164	0.01118
2004	0.11848	0.0160	2004	0.50066	0.0511	2004	0.58106	0.0523	2004	0.27838	0.0398	2004	0.39614	0.01157
2005	0.13518	0.0184	2005	0.38899	0.0398	2005	0.35297	0.0373	2005	0.31439	0.0446	2005	0.30197	0.01092
2006	0.16706	0.0194	2006	0.4411	0.0444	2006	0.44831	0.0526	2006	0.41436	0.0691	2006	0.37121	0.01736
2007	0.23266	0.0246	2007	0.63478	0.0610	2007	0.58775	0.0804	2007	0.59456	0.1069	2007	0.51301	0.02504
2008	0.24298	0.0253	2008	0.56522	0.0553	2008	0.5657	0.0696	2008	1.13156	0.2284	2008	0.57833	0.03083
2009	0.20872	0.0225	2009	0.64078	0.0632	2009	0.58003	0.0709	2009	0.56332	0.1126	2009	0.50096	0.02503
2010	0.19751	0.0226	2010	1.05359	0.1292	2010	0.74746	0.1153	2010	0.55892	0.0893	2010	0.65922	0.03036
2011	0.19793	0.0263	2011			2011	0.74878	0.1135	2011	0.30346	0.0526	2011	0.34635	0.02801
2012	0.1854	0.0224	2012	0.85312	0.1015	2012	0.66184	0.1139	2012	0.3641	0.0570	2012	0.54432	0.02565
2013	0.28724	0.0309	2013	0.74561	0.0877	2013	0.70304	0.0882	2013	0.29652	0.0544	2013	0.54439	0.02387

Table 3 Estimated STD_CPUE for 4 areas and whole Indian Ocean

Fig. 8 shows the trend of STD_CPUE of scenario 5 (best one) is suggested that STD_CPUE (SWO abundance) continuously decreased from 1971 to 2005 and then increased to 2013, consequently the higher level have been kept in recent 8 years (2006-2013), while there are a lot of noises (ups and downs) throughout the whole period (1971-2013).

Fig. 8 Trend of the estimated Japanese tuna LL SWO STD_CPUE (1971-201)

We plotted trends of STD_CPUE for scenario 5 and 6 and compare targeting effect between cluster (5) and NHBF (6). STD_CPUE with NHBF show more jumps, while STD_CPUE by cluster effectively smooth out these bumps. This suggests that STD_CPUE with NHBF unlikely standardize nominal CPUE completely. Hence we suggest using STD_CPUE based on SWO cluster for stock assessments.

Fig. 8 Comparison of STD_CPUE based on targeting effect between SWO cluster (scenario 5) and NHBF (scenario 6).

REFERENCE

- Bigelow, K.A., Hoyle, S.D., 2012. Standardized CPUE for South Pacific albacore. WCPFC-SC8-2012/SA-IP-14.
- He, X., Bigelow, K.A., Boggs, C.H., 1997. Cluster analysis of longline sets and fishing strategies within the Hawaii-based fishery. Fish. Res. 31: 147-158.
- Hinton, M.G., Maunder, M.N., 2004. Methods for standardizing CPUE and how to select among them. Col. Vol. Sci. Pap. ICCAT, 56: 169-177.
- Hoyle, S.D., Shono, H., Okamoto, H, and Langley, A.D. 2010. Analyses of Japanese longline catch and effort for bigeye tuna in the WCPO. WCPFC-SC6-2010/SA-WP-02
- Hoyle, S.D., Langley, A.D., Campbell, R.A. (2014). Recommended approaches for standardizing CPUE data from pelagic fisheries. WCPFC-SC10-2014/ SA-IP-10.
- IOTC 2011. Report of the Fifteenth Session of the Indian Ocean Tuna Commission. Colombo, Sri Lanka 18-22 March 2011. IOTC-2011-S15
- Kolody, D., F. Poisson, J. Bourjea. 2010A. Reunion Longline Swordfish Catch Rate Standardization. IOTC-2010-WPB-03.
- Kolody, D., J. Robinson and V. Lucas. 2010B. Swordfish Catch Rate Standardization for the Seychelles Semi-Industrial and Industrial Longline Fleets. IOTC-2010-WPB-04.
- Kolody, D 2011. CPUE Issues for the 2011 Indian Ocean Swordfish Stock Assessment. DRAFT IOTC-2011-WPB09-WP-13, IOTC Secretariat, Seychelles
- Nishida, T., Wang, S.P., 2006. Standardization of swordfish (*Xiphias gladius*) CPUE of the Japanese tuna longline fisheries in the Indian Ocean (1975-2004). The fifth session of the IOTC Working Party on Billfish (WPB), Indian Ocean Tuna Commission (IOTC), March 27–31, 2006. Colombo, Sri Lanka. IOTC-2006-WPB-07, 10 pp.
- Nishida T. 2008. Notes on the standardized swordfish CPUE of tuna longline fisheries (Japan and Taiwan) in WPB6 (1980-2006 and 1992-2006). IOTC-2008-WPB-INF04.
- Nishida, T. and S.P. Wang. 2009. Estimation of the abundance index of swordfish (X. gladius) in the Indian Ocean based on the fine scale catch and effort data in the Japanese tuna longline fisheries (1980-2007).IOTC-2009-WPB-08

- Nishida, T. and S.P. Wang. 2010. Estimation of the Abundance Index (AI) of swordfish (Xiphias gladius) in the Indian Ocean (IO) based on the fine scale catch and effort data in the Japanese tuna longline fisheries (1980-2008). IOTC-2010-WPB-09
- Nishida, T. and Kitakado, T. 2011. Note for discussion on the Indian Ocean (IO) swordfish (SWO) CPUE. IOTC-2011-WPB09-INF04
- Nishida, T., Kitakado, T., Wang,S.P., 2011. Estimation of the Abundance Index (AI) of swordfish (*Xiphias gladius*) in the Indian Ocean (IO) based on the fine scale catch and effort data of the Japanese tuna longline fisheries (1980-2010). The ninth session of the IOTC Working Party on Billfish (WPB), Indian Ocean Tuna Commission (IOTC), July 4-8, 2011. Victoria, Seychelles. IOTC-2011-WPB09-14.
- Oliveira, Vasconcelos, Travassos, Garcia and Aldatz (2005): LENGTH-WEIGHT RELANTIONSHIPS AND LENGTH-LENGTH CONVERSIONS OF TUNAS AND SWORDFISH IN THE NORTHEAST OF BRAZIL, ICCAT/SCRS/2004/153 Col. Vol. Sci. Pap. ICCAT, 58(5): 1724-1728).
- Punt, A.E., Walker, T.I., Taylor, B.L., Pribac, F., 2000. Standardization of catch and effort data in a spatially-structured shark fishery. Fish. Res. 45: 129-145.
- Wang, S.P., Y. Semba, and T. Nishida. 2008. CPUE standardization of swordfish (Xiphias gladius) caught by Taiwanese longline fishery in the Indian Ocean. IOTC-2008-WPB-10
- Wang, S.P. and T. Nishida 2009. CPUE standardization of swordfish (Xiphias gladius) caught by Taiwanese longline fishery in the Indian Ocean for 1980-2007. IOTC-2009-WPB-12.
- Wang, S.P. and T. Nishida 2010. CPUE standardization of swordfish (Xiphias gladius) caught by Taiwanese longline fishery in the Indian Ocean during 1995-2008. IOTC-2010-WPB-11.
- Wang, S. P., Nishida, T., 2011. CPUE standardization of swordfish (*Xiphias gladius*) caught by Taiwanese longline fishery in the Indian Ocean. IOTC-2011-WPB09-16.
- WPB07 2009. Report of the Seventh Session of the IOTC Working Party on Billfish. Seychelles 6-10 July 2009. IOTC-2009-WPB.
- WPB08 2010. Report of the Eighth Session IOTC Working Party on BillfishWorking Party on Billfish. Seychelles 12-16 July 2010. IOTC-2010-WPB.