Received: 11 November 2014
IOTC-2014-WPTT16-16

Some news approaches for standardizing tropical purse seiners CPUEs
Katara |. and Gaertner D.

IRD (UMR EME) CRH BP 171 Av. Jean Monnet, 34203 Sete Cedex, France

Abstract

Indices of CPUE are presented for skipjack tufatguwonus pelamis) for the Indian Ocean

over the period 1980-2013. The analysis was initiated under the framework of the E.U.
research project CECOFAD, whose objectives are to enhance our understanding of fishing
effort units and improve the accuracy of purse-seine CPUE estimates. Skipjack stock
assessments mainly depend on abundance indices derived from purse-seine fleets, thus
standardisation of purse seiner CPUEs for this species is a priority.

We follow a CPUE definition framework where three different types of CPUE are calculated

to describe trends in number of schools, school detectability and catchability and school size.
CPUE standardization is typically achieved with the development of GLM models; these
estimates are often biased because the range of the fishing area changes from one year to the
next. We compare CPUE trends derived from conventional GLMs with trends based on
GLMMs, where the spatial explanatory variables are treated as a random effect. According to
a definition, a variable is random when it constitutes only a part of the entire population:
spatial variables can be considered random since each year fishing vessels sample only a part
of the historically fished area. Exploratory analyses revealed issues of heterogeneity and
autocorrelation, supporting the use of mixed models and the shift towards a Bayesian
approach to CPUE standardization modeling.

Our analysis uses fishing sets targeting free swimming tuna schools for the French purse
seiners operating in the western Indian Ocean. Future work will address the problem of
accounting for the major changes in purse seine fishing strategies and the implementation of
new technology on board (mainly the use of FAD technology) under a Bayesian framework.

I ntroduction

Tropical tuna purse seine fisheries capture different species and sizes of tuna. Large yellowfin
(Thunnus albacores), and in some strata skipja¢Katsuwonus pelamis), are caught in free-
swimming schools, whereas skipjackellowfin juveniles and bigeyeThunnus obesus)
aggregate near natural or artificial floating obgecthe European tropical tuna purse seine
fishery (i.e. France and Spain) began in the early 1980s in the western Indian Ocean. Atrtificial
drifting fish aggregating devices (DFADs) are widely used (Hallier and Parajua, 1999) and
have resulted in a significant increase in skipjack catch and in catches of bigeye and
yellowfin tuna juveniles.
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The implementation of DFAD complicates the defonitiof a fishing effort unit for purse
seiners because it relates to catchability, a petemalready affected by a multitude of
factors. In the absence of suitable standardizadiopurse-seine CPUE indices, most stock
assessments of tropical tunas, worldwide, rely angline CPUE indices. The later rarely
account for changes in technology and only depietidiomass of the older fraction of tuna
populations. Skipjack stock assessments dependynmirthe accuracy of abundance indices
obtained from purse-seine CPUEs and do not acdourihe introduction, onboard, of new
fishing devices (Torres-lIreneo el al, 2014) or élanges in the range of the historically
fished area.

Purse seiner CPUEs standardization is mainly aediewith the implementation of
Generalized Linear Models (GLMs). These models ijoi@a certain degree of flexibility and
at the same time are easy to implement and intefpoe/ever their assumptions are strict and
often violated for spatiotemporal data, collectedier unbalanced and non-random schemes
(as is often the case with fisheries dependent).d@tadeal with such issues other CPUEs
standardization procedures (GLMM, Bayesian metheods) be explored: integrating spatial
correlation in CPUE standardization (Nishida andei©h2004), checking if there is a
correlation between catch and effort and an additispatial correlation (Pereira et al, 2009),
and accounting for the changes in the spatial idigion of the fishing effort over time
(Campbell, 2004, Hoyle et al, 2014). In the lattase — when the spatial range of the fished
area is variable over time - the predicted CPUEgpaifodically “unfished” areas can be
integrated in the calculation of the annual indéalmundance by treating spatial variables as
random effects (Zhang and Holmes, 2010; Cao 04l1; McKechnie et al, 2013).

Increasing fishing efficiency through improvemeatdishing gears is likely the main
factor that strongly modifies the relationship beéw CPUE and abundance over time
(Gaertner and Pallares, 1998; Fonteneau et al,)1@9@ parameter that varies over time — as
a result of fishing strategies, technological imy@ments of fishing efficiency and fish
population dynamics - the spatial distribution loé fishing effort. It is commonly admitted
that the spatial dimension of fishing activitieslaresources has to be accurately accounted
for in the standardization process as it may séydyias the estimates of abundance indices
(Walters, 2003). In this paper we compare the fti@thlly used CPUE standardization
models, namely GLMs, with mixed models that allow to derive standardized CPUE
estimates for “unfished” areas and account forigplagterogeneity in fishing effort.

Materials and Methods

Logbook data on the French purse seine fleet, hawmsistently been collected by the Institut
de Recherche pour le Développement (IRD) for théodel982-2013. Logbooks are records
for each fishing set and include information ore ttate; the geographic position at sea of the
set; indicators of potential presence of tuna skshooatural or artificial floating object (e.qg.,
DFAD), whale, whale-shark, or free school (notecsash when the detection was done by
birds sighting); the weight and the catch composibf the targeted tuna species. For the sake
of simplicity and taking into account similaritiés tuna species composition and size of the
fish, tuna school presence indicators are commolalysified into two main fishing modes:
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free-school (true free school and whale sets) ahid FDFAD, logs and whale-shark sets).
For this analysis the data were aggregated in ardégree grid on a monthly basis.
In the traditional tuna purse seine fishery (ch@mémed by free-swimming schools and
natural floating objects), the fishing effort wagpeessed as searching time, i.e., the daylight
hours devoted to the detection of tuna schools siihe setting times (Fonteneau, 1978). This
simple definition may be criticized even for fregheols sets (e.g., due to the non-random
distribution of fishing effort, the increase in Hiag power over the years, etc). The
implementation of DFAD - progressively equipped hwvélectronic devices (Moreno et al,
2007; Lopez et al, 2014) and assisted by suppadele (Arrizabalaga et al, 2001, Pallares et
al, 2002) - have broken the link between searctimg and effective fishing effort for FAD
sets. Remote detection of satellite-tracked FADgipgmed with echo-sounder buoys often
allows fishers to move directly towards a buoy, sbmes at night, avoiding or significantly
reducing searching time (Fonteneau et al, 199%s@&lthanges have major consequences for
our ability to calculate useful CPUE values for ghefisheries. Consequently, instead of
considering a whole CPUE (e.g., expressed as & @i searching time) in this paper we
will explore different and complementary catch sate
Based on the conclusions of the U.E. Research ®rg8THER (Gaertner and Pallares,
1998), for a better understanding on the speadatiigact of the new technologies introduced on
board, the CPUE can be decomposed into severahdidges. Here we follow the approach
developed by Chassot et al. (2012) for standargi@@dRUEs of yellowfin in free schools in
the Indian Ocean. The first CPUE index (noted thhmut the paper as “CPUE 1”) is defined
as the total number of sets per fishing day angictiethe ability to detect a concentration of
tuna schools. The second CPUE index (CPUE 2) réfetie proportion of successful sets
(sets when skipjack was caught) and describesliti¢yaf catching a school. Finally, the
third CPUE (CPUE 3) is the amount of catch perpasset, an index that combines a proxy
of the size of the school with the ability to makima catch during the setting. The decrease
in skipjack free-schools, observed since the derent of the FAD fishery, likely does not
depict a concomitant change in abundance (Fontesteay2000). However, we assumed that
modeling the different catch rates built from fi@hool data may provide an insight on the
changes in fishing efficiency of the purse seieetl

Purse seiner CPUEs standardization process igitnaally achieved for each fishing
mode separately: free school sets or FAD sets (8btal, 2009a; Soto et al, 2009b,
respectively) with the use of GLM. We compare GLMdaGLMM standardized CPUE
estimates. The spatial explanatory variables in GldViare treated as random effects to
account for spatial heterogeneity in fishing effértquantity is random when it consists of a
number of units/categories, but not all units/catexs are observed. A random effect allows
us to draw conclusions for all possible units/catexs of the variable rather than for the
observed units/categories. In the case of fishelogbooks different areas are fished
(sampled) on an annual basis. By treating spaeerasdom effect we make inference for the
potentially fished area rather than the realizetidd area, thus improving the comparability
of annual standardized CPUE estimates.

The main explanatory variables mentioned in liten@tto fit nominal tropical purse
seine CPUEs using GLMs are: Year, Quarter, Areactor termed CatPais (combining the
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flag and the carrying capacity of the vessel), ¢lge of the vessel, a factor reflecting the
proportion of the species targeted in the catchthadnteractions between the main factors.
We focus on free school sets recorded in logbobkiseoFrench purse seine fleet operating in
the Indian Ocean, therefore the factor CatPaiendered redundant and the variables used are
Year, Monsoon Season, vessel age and spatial legifdyid cell and Longhurst based eco-
geographical areas). The grid cell variable carrbéated as both a factor and a continuous
variable (geographical coordinates of the centrehef cell): GLMs with both types of the
variable were developed and compared; in GLMMsgiti@ cell was treated as a factor. First
order interactions between variables were testedfa Null model was formed according to
our prior knowledge of the system and our reseaa@ds (i.e. the investigation of spatial
heterogeneity and the role of spatial variable€RUE standardization). Model selection was
achieved using Information Criteria (AIC, BIC) ambdel diagnostic plots.

GLMs and GLMMs were developed for all three CPUHIi¢es described above. CPUE 1
(catch per fishing day) follows a zero-inflated dogrmal distribution and was therefore
modeled following the delta-lognormal method (L@kt1992). The index is calculated as the
product of annual estimates derived from a lognémmadel (for the positive CPUES) and a
binomial model (for the proportion of days with @& To account for unbalanced designs,
the Least squares means were computed for eadh.fact

GLMMs were developed using the Ime4 R package B&@05; Bates et al., 2013) and least
squares means estimates were calculated usingrtteahs R package (Lenth, 2014). Maps
were drawn using ArcGIS 10.2 (ESRI, 2011).

Results

Predictions of positive sets per searching day (EBWlerived from GLMs and GLMMs
generally follow the same trend as observed ananetages (Fig 1). The standardized values
derived from the GLM are in general lower than tl@minal values whereas the GLMM
predictions are higher than the nominal valuehatieginning of the time series (1980s) and
lower at the end (after 2008). Contractions andaagns of the fishery could explain the
difference between model predictions and nominélesa At the beginning of the fishery a
very small area is sampled and fishing efficiersyow, therefore lower CPUE values might
be observed than those expected. As efficiencyeasas and the fished area expands,
standardized CPUE values will be lower than nomadlies.

Nominal values of the proportion of positive s&E&®UE?2) are to some degree higher than the
standardized time series (Fig 2). The GLM and GLM&ues are close but the GLMM
confidence intervals are larger than the GLM detigenfidence intervals. GLMs account for
the process error only whereas GLMMs add the vanatf the random effect to the process
error. In this case, the additional uncertaintynstérom spatial heterogeneity of fishing effort
(i.e. variation between sampling sites/ grid cells)

Standardized estimates of catch per set (CPUE3paes than the observed annual averages
derived from catches. GLMM estimates coincide viite lower 95% confidence interval of
the corresponding GLM derived estimates (Fig 3)e @iference in estimates is particularly
evident during the period 2000-2008, a prolongedodeof high CPUE3 values and little

4



inter-annual variability. the same phenomenon wasahstrated by Cao et al. (2011) for the
squid jigging fishery, where CPUE predictions irbhg unfished areas were lower than
observed values or model estimates that did naiuetdor unfished areas. Cao et al. (2011)
attribute their results to the efficiency of fisgimessels in finding productive fishing grounds,
and view lower standardized CPUE values as a didryperstability. Similarly Zhang and
Holmes (2010) developed a Bayesian model for tuR&JEE standardization, incorporating
spatial variables as random effects; the authorservied a difference between model
estimates (low) and nominal catches (high) relatid the contraction of the fishery.

The index of sets per searching day (CPUE1) fotewiis the result of stationary processes
(mean and variance remain constant over time), pettsistently higher values (two sets per
searching day) compared with the other seasons4Fighe post-monsoon season index
shows great inter-annual variability with abruptreases of the number of sets to four per
searching day and precipitous decreases to neawakres the next year. A common pattern
between all seasons is the high index values ddin@dast 2-3 years of the time series (2010-
2013). The proportion of positive sets (CPUE?2) shavgradually decreasing trend during all
seasons (Fig 5), with the exception of the pre-rmaonsseason, when the index is stable with
half of the sets showing positive catches for sidpj The post-monsoon index is highly
variable with peaks that seem to be periodicale@ht year cycles). Finally, catch per set
(CPUES3; Fig 6) shows similar trends in all seasdhs; main characteristic is a prolonged
period of high values starting in the mid 1990sluhé end of the time series (around 2010).
Maps of fishing effort distribution, namely totahimber of sets, show a shift of fishing effort
to the west (Figs 7 and 8) between the 1990s am@@00s and a southward expansion. The
shift is pronounced in the winter and the monsaeasen. In addition to the expansion of the
fishing grounds over the years, a sudden changpadhal distribution is observed in 2008 due
to piracy off Somalia. To address security issfishjng companies defined in 2008 a large
exclusion zone off the Somali coast that represkntere than 25% of the total catch of the
fishery during 2001-2007. The exclusion zone reslih some reallocation of the European
fleet toward the eastern part of the North equat@rea during the typical season of FAD-
fishing (June-November) in the Somali basin (Chessal, 2010).

Discussion

The first CPUE index (CPUEL: positive sets per g@ag day) is not species specific but
relates to the presence of tuna schools and tke&cthbility. The values might be variable at
a seasonal and annual basis but at a multi-anoabd the time series is stationary. The other
two CPUE indices (2 and 3) refer specifically topgkck tuna and show a decreasing trend
after 2007. A collapse of catches of skipjack gefswimming schools after 2007 has already
been described by Fonteneau (2014) and Marsaclaod 2014). The latter discuss the role
of new fishing technologies and the environmentragers of the observed trends.

Although the general trends of CPUE indices areilaimregardless the standardization
technique used, the amplitude of inter-annual Béitg and the running average differ
between CPUE time series derived through diffestamndardization methods. CPUE values
derived from GLM standardization approaches thatndd account for changes in the
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distribution of fishing effort are expected to baded because CPUE varies between fished
areas and fishing cannot be considered random sampCampbell, 2004; Hoyle and
Okamoto, 2011; McKechnie et al., 2013). Un-standadiand GLM-standardized CPUEs are
expected to overestimate CPUES; the phenomemaeiated either with the expansion of a
fishery and the discovery of new, unexploited, mcitve areas or its contraction to areas
where CPUE is highest (hyperstability) (McKechnieale, 2013). In this paper we show how
to account for spatial heterogeneity of fishingogfthrough mixed modeling and discuss the
effect this approach has on standardized CPUE salue

Treating spatial variables as random effects inieedimodel or Bayesian framework has
been suggested as a means to derive realistic QRillEes and related uncertainty for
fisheries that undergo changes (contractions/ estpag) of fishing effort distribution
(Campbell, 2004, 2015; Cao et al., 2011; MaunddrRumt, 2004; Zhang and Holmes, 2010).
When sampling sites (i.e. fished areas, in thi® gagd cells or larger sampling areas where
fishing effort is present) are fixed factors, aanGPUE predictions are restricted to the sites
that were fished on the specific year. Areas hisatly fished or with the potential of being
fished are overlooked. GLMMs do not focus on thpasate levels of a factor but on the
variance of the distribution from which the levele assumed to originate (Bolker et al.,
2009; McCulloch and Neuhaus, 2001; Venables andiBant, 2004). Therefore GLMMs,
with "site" as a random effect, allow for CPUE po#idns outside the fished areas, in sites
that are not sampled. The flexibility of GLMMs idfset by the higher uncertainty of
predictions. If the sampling sites are fixed, tiséireated error equals the error per site; by
randomizing the sites the estimated error incoesraariability stemming from two sources:
within each sampled site and the between sites.c&hainty on our prediction is reduced by
our aspiration to generalize inference beyond taepted sites, to the "population” of
possible sites. A conspicuous example of this effeseen in this study for the standardized
values of the proportion of positive sets (CPUER;H.

In this paper we explored the issue of spatialrogeneity of fisheries dependent data, if it
effects CPUE estimates and how this affect caneladt avith through non-conventional CPUE
standardising approaches. However this exploraasatysis brought more problems to light.
First, from a statistical point of view logbook daare derived through a very complex
sampling design. As discussed earlier the samglihgme is non-random; on top of that the
data are correlated in space and time, they aerdseedastic and hierarchical (e.g. at a
vessel level) and they don't fit well into convenial distributions (Candy, 2004; Nishida and
Chen, 2004). These issues can be addressed udévisl or Bayesian framework. Second,
the choice of CPUE is often arbitrary and its iielaghip to abundance and fishing efficiency
is still not fully understood. Here we follow theamework suggested by Chassot et al.,
(2012), where different definitions of CPUE providéolistic description of the fishery and
the fished stocks. Third, thought should be pub ithie definition of the study area and the
criteria (historial, biological, statistical) thahould be followed to delimit it. Finally, the
development of FADs and the incorporation of suebhhological developments - with
unknown effects on fishing effort and on the ectamys- into CPUE standardization models
is essential and constitutes a research priorityure work aims to further investigate the
identified problems and find ways to improve CPWHices for the purse seine fishery.
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Fig 1. Annual predictions for sets per searching day (CPUE1) derived from a GLM and a
GLMM. The latter accounts for "unfished" areas. 95% Confidence intervals are also shown
(dashed lines) and the observed annual average is given.
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Fig 2. Annual proportion of positive sets (CPUE2) derived from a GLM and a GLMM. The
latter accounts for "unfished" areas. 95% Confidence intervals are also shown (dashed lines)
and the observed annual average is given.
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Fig 3. Annual predictions for skipjack catch per positive set (CPUE3) derived from a GLM and
a GLMM. The latter accounts for "unfished" areas. 95% Confidence intervals are also shown
(dashed lines) and the observed annual average is given.
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Fig 4. Sets per searching day (CPUE1) trends for skipjack, standardised using a GLMM that
accounts for spatial heterogeneity of fishing effort and makes predictions for "unfished"

areas.
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Fig 5. Proportion of positive sets (CPUE2) trends for skipjack, standardised using a GLMM
that accounts for spatial heterogeneity of fishing effort and makes predictions for "unfished"

areas.
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Fig 6. Catch per positive set (CPUE3) trends for skipjack, standardised using a GLMM that
accounts for spatial heterogeneity of fishing effort and makes predictions for "unfished"

areas.
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Fig 7. Maps of fishing effort distribution (total number of sets) for 2 decades (90s and 00s)
per season. Fishing effort has contracted from the East and expanded in the west.
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