Availability: 31 October & 31 December 2014 # Historical Catch Estimate Reconstruction for the Indian Ocean based on Shark Fin Trade Data Shelley Clarke Technical Coordinator-Sharks and Bycatch-Areas Beyond National Jurisdiction (ABNJ) Tuna Project Western and Central Pacific Fisheries Commission Pohnpei, Federated States of Micronesia # **Summary** This paper presents alternative estimates of catches of blue and oceanic whitetip sharks in the Indian Ocean based on shark fin trade data. This method was previously applied to the Atlantic Ocean for use in blue and shortfin make shark assessments, as well as to the Western and Central Pacific Ocean for use in oceanic whitetip and silky shark assessments. The method involves multiple assumptions and is best utilized as an alternative (i.e. for comparison) to catch estimates prepared from more traditional data sources. Estimates were constructed using four steps. First, estimates by species (in number and biomass based on Hong Kong shark fin auction data and extrapolated to the global trade) in 2000 were reconstructed using triangular distributions in a Bayesian model and Markov chain Monte Carlo (MCMC) methods. These estimates were then adjusted using annual imports into Hong Kong for 1980-2011. Figures were then further adjusted based on the diminishing share of Hong Kong's shark fin trade as compared to the total global trade in recent years. Finally, these adjusted global estimates were scaled in a number of ways (by ocean area (km²), by target specie catch, by longline effort and by import country of origin statistics) to represent potential shark catches in the Indian Ocean. It is important to note that these estimates capture only a portion of the potential shark mortality (i.e. only those sharks' whose fins are traded). ## 1 Introduction The Indian Ocean Tuna Commission (IOTC) must find ways of overcoming the lack of historical catch data in order to assess the status of shark species, in particular blue (*Prionace glauca*) and oceanic whitetip (*Carcharhinus longimanus*) sharks (IOTC 2014a). This paper adapts and applies a methodology used to produce estimates of catches of sharks utilised in the shark fin trade for the International Commission for the Conservation of Atlantic Tunas (Clarke 2008) and the Western and Central Pacific Fisheries Commission (Clarke 2009). These estimates are not direct substitutes for species-specific catch time series primarily because they capture only a portion of the potential shark mortality, i.e. only those sharks' whose fins are internationally traded. As a result, figures produced by this study should be considered minimum estimates of shark mortality in the Indian Ocean. Nevertheless, they may be useful for comparison with other, more conventional sources of catch data or as minimum plausible estimates if other catch series are not available. # 2 Materials and Methods #### 2.1 Data Sources The algorithm for estimating the Indian Ocean shark catch represented in historical shark fin trade data is based on Clarke (2008, 2009). It consists of four data components, each of which is discussed separately below: - 1. Estimates, by species, of the number and biomass of sharks used in the global shark fin trade in 2000 (the "anchor point" estimates); - 2. A standardized estimate of the quantity of shark fins imported to Hong Kong for each year of interest before and after 2000; - 3. An estimate of the Hong Kong market share, relative to the global market, for each year of interest before and after 2000; - 4. Estimates of the proportion of the global total of shark fins that are derived from the Indian Ocean (calculated using several alternative methods). ## 2.1.1 Data Source 1 The "anchor point" estimates of the number and biomass of sharks used in the global shark fin trade are taken from Clarke et al. (2006a). That study used matches of Chinese trade names and taxa from market sampling and genetic testing (Clarke et al. 2006b), in combination with 18 months of Hong Kong auction records to impute missing data and produce an annual estimate of traded fin weights by species and fin size category. These fin weights were then converted to number of sharks and biomass using a series of conversion factors. For each species, three independent estimates based on dorsal, pectoral and caudal fins, respectively, were produced and extrapolated using trade data to represent the global market. A composite estimate for all fin types was then produced using a mixture distribution computed with the density function for each fin position weighted proportional to its precision. Since a probabilistic modelling framework was applied, the results were presented as probability intervals. Of the eleven categories of species, or groups of species, presented in that study, this analysis uses the results for blue and oceanic whitetip sharks only. These estimates are based on the shark fin trade as of 2000 when Hong Kong imported 6,788 t of fins and was estimated to control 44-59% of the global market (Clarke 2004a, Clarke et al. 2006a) An excerpt of the relevant species-specific anchor point estimates from Clarke et al. (2006a) is provided in Table 1. #### 2.1.2 Data Source 2 Standardized estimates of the quantity of shark fin imported by Hong Kong in each year since 1980 were prepared from unpublished Hong Kong government records (HKSARG 2012). Prior to 1998, Hong Kong recorded imports of shark fins in dried or frozen ("salted") categories without distinguishing between processed and unprocessed fins. In order to avoid double-counting fins returning to Hong Kong after processing in Mainland China, imports from the Mainland prior to 1998 were subtracted from total imports following methods used by TRAFFIC (1996). In 1998 Hong Kong established separate customs codes for dried and frozen (i.e. the latter listed as "salted" in commodity coding lists), processed and unprocessed fins. After 1998, only unprocessed dried and frozen fins were included in the annual totals. All frozen fin weights were normalized for water content by multiplying by 0.25 (Clarke 2004a). Although the data series continues through to the present, changes in the commodity coding scheme in 2012, in parallel with reports of a sharp drop in both market demand and price, suggest that Hong Kong import data after 2011 may not reflect trends in shark catches to the same extent as prior data (Clarke and Dent, 2014; Eriksson and Clarke, in press). For this reason, only data prior to 2012 were used in the estimation. The adjusted annual imports of shark fin to Hong Kong are shown in Table 2. #### 2.1.3 Data Source 3 Hong Kong's share of the global shark fin trade was studied in detail for 1996-2000 and was calculated from empirical data to range from 44-59% (Clarke et al. 2006a). Since reliable empirical data for estimating Hong Kong's market share in previous and subsequent years (i.e. 1980-1995 and 2001-2011) are lacking, ranges of values for these years were specified based on expert judgment. Difficulties in estimating Hong Kong's share of the global trade in previous years (i.e. 1980-1995) are mainly due to the lack of access to customs statistics, especially for Mainland China. Nevertheless, a general understanding of trade patterns in Hong Kong during the 1980s (Clarke et al. 2007) suggests that Hong Kong's market share was higher in 1980-1995 than during 1996-2000. The earliest accounts of the shark fin trade state that Hong Kong's share of world imports was 50% (Tanaka 1994, based on data through 1990) or 85% (Vannuccini 1999, based on 1992 data). A range of 65-80% was thus selected for the period 1980-1990. A transitional period for the shark fin trade in Hong Kong occurred in 1991-1995 as demand began to rise appreciably in Mainland China. It is likely that Hong Kong's share began to drop, but not to the extent observed in the period 1996-2000 (i.e. 44-59%), thus a range of 50-65% was selected. Estimation of Hong Kong's market share since 2000 is less plagued by data gaps but still subject to a number of potential biases. Previous analysis has shown that Hong Kong imports of shark fin rose at a rate of 6% per year from 1992-2000 (Clarke 2004a), but afterwards showed a nearly level but slightly declining linear trend (Clarke et al. 2007). Hong Kong shark fin traders attribute this trend to a loss of market share to Mainland China. While this explanation is supported by the well-known liberalization of the Mainland China economy just prior to and as a result of entry to the World Trade Organization in December 2001 (WTO 2014), Mainland China's shark fin imports do not show a strong trend of increase since 2000. One reason for this lack of trend may be that in 2000 Mainland China began importing frozen shark fins under a category previously used only for frozen shark meat and therefore from 2000 onward frozen fins, which comprise a substantial portion of the trade, are no longer distinguishable in the statistics (Clarke 2004b). Complications in trade reporting by Mainland China and their implications for assessing global trade in shark fins are discussed in detail in Clarke et al. (2007). On balance it was considered that even without strong evidence of increasing imports by Mainland China, it was likely that Hong Kong's share of global trade declined sharply after 2000. A range of 30-50% was thus specified for 2001-2006 to account for the initial decline, and a lower range of 25-40% was specified for 2007-2011 as the trend is believed to have become even more pronounced. #### 2.1.4 Data Source 4 Four methods were used for proportioning global fin trade-based catch estimates to Indian Ocean-specific quantities. As one of the methods requires country-specific import records and as these records are only available from 1998 onward, this index extends only from 1998-2011. The other indices extend over the full period (1980-2011) but as described below they have various inherent biases
acting over the entire time series or over portions of the time series. Therefore, when patterns appear in results derived from one proportioning method only, careful consideration of the credibility of that particular proportioning method is warranted. The first proportioning method is based on calculating the area of each shark species' potential habitat within the Indian Ocean relative to its potential habitat in the world ocean as a whole. This method assumes that each shark species is evenly distributed throughout global waters between the northern-most and southern-most extent of its range. For simplicity, the wide-ranging blue shark was considered to be distributed between 50°N-50°S worldwide, while the oceanic whitetip shark was considered to be distributed between 30°N-30°S based on indicative ranges given in Compagno (1984). The global areas of habitat were calculated for Clarke (2008, 2009) and reapplied for this study: 454.10 million km² for the blue shark (50°N-50°S) and 339.70 million km² for the oceanic whitetip shark (30°N-30°S). The area of the Indian Ocean between 30°N-30°S was calculated as 39.62 million km² using the Google Maps' "measure area" function to measure the perimeter of the ocean basin corresponding to the IOTC area of competence (except for the southern perimeter which was fixed at 30°S), and then subtracting the land area of Madagascar and Sri Lanka¹. To obtain the area of blue shark habitat, 62.24 million km², the perimeter of the area from 30°S to 50°S was measured with Google Maps, the area of Tasmania was subtracted, and the sum was added to the oceanic whitetip shark habitat²,³. The area-based habitat ratios for the Indian Ocean were thus calculated as: Blue shark: $$\frac{62.24 \, Mkm^2}{454.10 \, Mkm^2} = 0.137$$ (1) ¹ The Google Maps area calculation was 40,270,835 km² and the land areas of Madagascar and Sri Lanka according to Wikipedia are 587,040 km² and 65,610 km², respectively. $^{^2}$ The Google Maps area calculation (30°S-50°S) was 22,688,765 km 2 and the land area of Tasmania according to Wikipedia is 68,401 km 2 . ³ For reference, Wikipedia gives the surface area of the entire Indian Ocean (based on a southern boundary of 60°S) as 73.556 million km². Oceanic whitetip shark: $\frac{39.62 \, Mkm^2}{339.70 \, Mkm^2} = 0.117$ (2) No plot is shown for the first proportioning method because the ratios are constant throughout the time series. The second proportioning method involved scaling against a ratio of tuna and tuna-like species catches in global waters versus those in the Indian Ocean. Catch data were taken from the FAO Capture Production database's ISSCAAP group "tunas, bonitos and billfishes" for all oceans and for the Indian Ocean alone (FAO 2014). These figures, and the resulting ratios, are shown in Table 3 and Figure 1. The third proportioning method involved constructing an index of longline effort. Although a number of gear types catch sharks, this index was chosen because it was assumed that longline gear both catches a large number of sharks and is easy to quantify on a global basis (e.g. unlike gill net effort). The number of longline hooks (in millions) fished annually was estimated for the Indian Ocean and provided by IOTC staff (IOTC 2014b), and were extracted from a database of raised longline effort for the WCPO (CES 2014). For the Eastern Pacific, longline effort was only available in nominal form for fleets from China, Japan, Korea, French Polynesia, Taiwan-China and the United States. Effort for other fleets, and for all fleets prior to 1984 has not been compiled (IATTC 2014). Longline effort in the Atlantic has been estimated under ICCAT's EFFDIS project through 2007 only (ICCAT 2014a). In order to extend the series through 2011, nominal effort for 2005-2011 was extracted from the ICCAT Task II (Catch and Effort database) by ICCAT staff (ICCAT 2014b) and used to create a conversion factor (5.32) between nominal and EFFDIS effort based on paired values for 2005-2007. This conversion factor was used to construct annual effort values for 2008-2011 and thus complete the EFFDIS series in a rudimentary way⁴. These data, the total global longline effort figures and the ratio of Indian Ocean to global longline effort are shown in Table 4 and Figure 2. The fourth proportioning method considers that the proportion of shark fins which are imported by Hong Kong and which also derive from shark catches in the Indian Ocean might best be represented by the proportion of Hong Kong's total shark fin imports which report as their "country of origin" countries around the Indian Ocean basin. One important drawback of this method is that it assumes that all sharks which are caught in the Indian Ocean and used in the shark fin trade are shipped to Hong Kong from Indian Ocean coastal States. This is probably not a valid assumption for the distant water fishing nations active in the Indian Ocean, in particular China, EU-France, Japan, Republic of Korea, EU-Portugal, EU-Spain and Taiwan-China. Given the possibility that a portion of Hong Kong imports recorded as originating in these seven locations may actually have been derived from Indian Ocean catches that were transported back and landed domestically, two methods (Methods 1 and 2) were tested. First, each country shown in the Hong Kong import database as importing unprocessed shark fins in dried or salted form from 1998-2011 was classified into one of ⁴ It is noted that at the time of writing, a consultant being engaged by ICCAT to update the EFFDIS data series and a new series is expected to be available by mid-2015. three categories based on its propensity to be trading shark fins derived from Indian Ocean catches (Table 5). Under both methods, all imports from Indian Ocean coastal States fishing only in the Indian Ocean were tallied in full, and it was assumed that half of the imports from Australia, Indonesia, Malaysia, South Africa and Thailand were derived from the Indian Ocean (and half from other oceans). Under Method 1 only it was arbitrarily assumed that 20% of Hong Kong's imports from distant water fishing entities China, EU-France, Japan, the Republic of Korea, EU-Portugal, EU-Spain and Taiwan-China derived from the Indian Ocean. Method 2 assumes that none of the imports from these seven locations derives from the Indian Ocean (i.e. if any of them are producing shark fins from the Indian Ocean these fins are assumed to be shipped to Hong Kong via one of the other countries listed in Table 5). Tallies resulting from Methods 1 and 2 were expressed as ratios of the total amount of shark fins imported by Hong Kong in each year (Table 2). Under Method 1 the average ratio for 1998-2011 was 0.365 as compared to 0.304 for Method 2 (Table 6, Figure 3). # 2.2 Model and Modelling Methods The model was implemented with Markov chain Monte Carlo (MCMC) methods using the Gibbs sampler (Gelfand and Smith 1990) via OpenBUGS software version 3.2.3 rev 1012 (Imperial College London 2014). Since the original posterior distributions presented in Clarke et al. (2006a) require many hours of computing time to replicate, simplified representations of these complex distributions were approximated using triangular distributions (Step 1). Other uncertain parameters, such as Hong Kong's share of the global fin trade (Step 3), were specified as expert judgement-based ranges with uniformly distributed random variables. The annual quantity of Hong Kong imports (Step 2) and the proportioning indices (Step 4) were based on empirical data for each year, except for the geographic area which does not vary from year to year. Although there is uncertainty in these data it is not possible to quantify the variance and thus these parameters were specified using deterministic equations. The model was executed in four steps covering each of the four data sources given above (Annex 1): # Step 1 The probability distributions representing the range of estimates of the two shark species in the global trade by number and biomass (Table 1, the "anchor point" estimates) were approximated as triangular distributions using the reported lower limit of the 95% probability interval as the minimum, the upper limit of the 95% probability interval as the maximum, and the median as the mode. The model drew a random variable from each of the triangular distributions representing each species' number or biomass in 2000 in each iteration. ### Step 2 Each random variable drawn in Step 1 was multiplied by the ratio of the standardized quantity of fins traded through Hong Kong in each year from 1980-1999 and 2001-2011 (Table 2) to the quantity of fins traded through Hong Kong in 2000 (i.e. 6,788 t). This step serves to scale the species-specific number or biomass estimates from 2000 to quantities representing trade levels in each of the other years. Due to a lack of quantitative data on trends in species composition this step assumes that the species composition in 2000, the only year for which the species composition is known, remains constant over the years 1980-2011. It is likely, however, that the relative proportion of blue sharks in trade has increased in recent years due to the relatively higher productivity of that species (Eriksson and Clarke, in press), and the relative proportion of oceanic whitetip sharks in trade has declined due to the severe downward trends in abundance observed for this species in some oceans (Clarke et al. 2013). ### Step 3 Hong Kong's share in four alternative periods (S_a), i.e. 1980-1990, 1991-1995, 2001-2006 and 2007-2011, relative to its share in 1996-2000 (0.44-0.59, S) was specified as a series of uniformly distributed random variables using endpoints based on expert judgment (Section 2.1.3). The ratio of S and S_a was then computed and multiplied by the result from Step 2. The result of Step 3 is a species-specific number or biomass value representing sharks used in the global trade for each year from 1980-2011. ##
Step 4 The final step required proportioning the annual values from Step 3 to the Indian Ocean. Proportioning based on area used constants of 0.137 for blue shark and 0.117 for oceanic whitetip shark over all years in the time series. The target species catch-based (Table 3 and Figure 1), longline effort-based (Table 4 and Figure 2) and country of origin-based (Table 6 and Figure 3) proportioning methods applied unique values for each year as deterministic calculations. The model was run for 100,000 iterations, and medians and 95% probability interval endpoints were sampled from the final 10,000 iterations. ## 3 Results The algorithm outlined above will, by definition, produce the same patterns of results for blue and oceanic sharks in number (Figures 4 and 5) and in biomass (Figures 6 and 7). This is because the same scaling factors were applied to the four anchor point estimates (Table 1) thus only the absolute value of the starting point differs. In general the area-based proportioning method, which used constant annual values, produced the lowest estimates. The target species catch-based method produced the next higher estimates and these often approached 150% of the area-based estimated quantities. The effort-based method and the two country of origin-based methods produced the highest estimates with values ranging from near the target species catch-based estimates to nearly double those amounts. The three effort- and country of origin-based methods' estimates were reasonably similar (medians are +/- 25% of each other despite large probability intervals) within the limited range of years which could be estimated for all three (1998-2011). In addition to considering the absolute differences between the estimates in any given year, the trends in the estimates can also be interpreted with reference to which proportioning method was applied. For example, the relatively flat trend in the area-based series is a reflection of the constant (over time) geographical proportioning of the annual observed fluctuations in the Hong Kong trade quantities. All of the other proportioning methods superimpose an annually varying index over these Hong Kong trade fluctuations. Therefore, larger variations are observed in the target species catch-, effort- and country of origin-based methods when peaks or troughs in Hong Kong trade combine with peaks or troughs in the Indian Ocean proportioning indices. For example, the target-species-based method produced local maxima in 2003 and 2011 when both the quantity of shark fins imported by Hong Kong and the proportion of tuna and billfish caught in the Indian Ocean were high relative to other years. Focusing on the 1998-2011 period and accounting for the full width of the 95% probability intervals, Indian Ocean catch estimates for blue shark ranged from a minimum (area-based) of \sim 1-3 million sharks per year to a maximum (effort- and country of origin-based) of \sim 2-8 million sharks per year. In biomass, these Indian Ocean catches were estimated to be at least \sim 40,000-120,000 t (area-based) and at most \sim 100,000-300,000 t (effort- and country of origin-based) per year over the same period. For the oceanic whitetip sharks the estimates in number of sharks for 1998-2011 are \sim 50,000-200,000 sharks per year at the low end of the range (area-based) and \sim 100,000-600,000 sharks per year at the upper end of the range (effort- and country of origin-based). In biomass the minimum estimates were \sim 1,200-8,000 t (area-based) and the maximum estimates were \sim 3,500-25,000 t (effort- and country of origin-based). Median estimates for four of the proportioning methods (i.e. excluding the area-based method) were centred on 4 million blue sharks (150,000 t) and 250,000 oceanic whitetip sharks (8,000 t) per year in the most recent decade. In order to explore the assumptions underlying the country of origin-based proportioning index, two variations were calculated. As expected, when Hong Kong imports from distant water fishing entities active in the Indian Ocean (China, EU-France, Japan, Republic of Korea, EU-Portugal, EU-Spain and Taiwan-China) were assumed to derive entirely from waters outside the Indian Ocean (Method 2)⁵, and were thus excluded from the Indian Ocean-derived trade tally, the proportion of shark catches in the Indian Ocean declined. The alternative scenario (Method 1) assumed that 20% of Hong Kong imports from these locations derived from sharks caught in the Indian Ocean but were transported back to flag State before being shipped directly to Hong Kong. The choice of Method 2 over Method 1 reduced the country of origin-based proportioning index, and the resulting catch estimates by 10-20%. Method 2 produced an estimate that was intermediate to the higher estimates produced by the effort-based and country of origin-based (Method 1) estimates, and the lower estimates produced by the target species catch-based method. ## 4 Discussion Catch data for most shark species are insufficient to support stock assessment, yet concerns about the status of shark populations continue to grow. Under such circumstances, development of ⁵ Note that this assumption allows that these seven entities may catch sharks whose fins enter the Hong Kong trade, however it assumes that this trade passes through one of the Indian Ocean coastal States shown in Table 5. alternative historic shark catch time series and careful evaluation of whether these alternative series can fill some of the existing critical data gaps is a worthwhile exercise. The estimates produced by this study were based on "anchor point" estimates derived from a shark fin trade data set compiled in Hong Kong in 2000 (Clarke et al. 2006a). To date these are the only quantitative, species-specific data on the shark fin trade and represent a snapshot of the centre of the global shark fin trade at that time. Using these data to estimate the number and biomass of shark catches in the Indian Ocean requires a number of assumptions, namely: - 1. The species composition of the sampled portion of the Hong Kong shark fin trade in Clarke et al. (2006a) is representative of global species composition. As discussed in Clarke et al. (2006b), there is a lack of information to evaluate the strength of this assumption, but there are no other datasets that are considered more representative. - 2. The species composition of the fin trade observed in 2000, and the relationships between fin sizes/weights and whole shark weights observed at that time, are constant throughout the time series. While some stock composition shifting would be expected over time, there are few existing data with which to explore alternative assumptions. It may be the case that the proportion of blue shark in the shark fin trade has increased as other, less productive species have been depleted (Eriksson and Clarke, in press). In such a case the estimates presented here would under-estimate the actual blue shark catch, and over-estimate the actual oceanic whitetip shark catch, in recent years. - 3. **Each of the species assessed is equally likely to be found in the Indian Ocean as in any other ocean.** This appears to be a reasonable assumption given what is known regarding the distribution of these sharks. Overlying these assumptions is the fact that estimating catches based on shark fin trade data will necessarily underestimate the true quantities of sharks caught. First, the original "anchor point" estimates are in themselves conservative because they are based only on those fins which could be confirmed to derive from the species of interest. More than half (54%) of the fins observed by Clarke et al. (2006a) could not be characterized by species and could have contained additional quantities of the species of interest (Clarke et al. 2006b). Second, only those sharks whose fins enter the international shark fin trade are enumerated. This is because there is no means in this study of accounting for mortality associated with sharks which are a) discarded dead with their fins attached; b) released with their fins attached but subsequently die due to injury or stress; or c) are retained but whose fins are either not used or used without being internationally traded. For these two reasons actual shark mortality is very likely to be greater than the estimates provided here. Robust estimation requires use of a number of different algorithms to explore various assumptions and biases. However, this approach in combination with reporting of probability intervals rather than point estimates can lead to considerable uncertainty when drawing conclusions about the estimation results. It is thus important to discuss, qualitatively if necessary, the relative credibility of each of the five estimates (Figures 4-7, Annexes 2 and 3). Of the four proportioning methods (area-, target species catch-, effort- and two country or origin-based methods), the most arbitrary is the area-based method. Although it is useful as a reference case, setting catch proportional to geographic area makes the unlikely assumption that shark abundance and fishing operations are evenly distributed throughout the world's oceans. For this reason the proportioning methods relating to fishing activity are more credible. The target species catch-proportioning method assumes that when tuna and billfish catches in the Indian Ocean are low relative to other oceans, shark catches in the Indian Ocean are also low relative to other oceans. This assumption may be erroneous, particularly if there have been shifts in targeting between tunas, billfishes and sharks to differing degrees in different oceans. Another method for proportioning global to Indian Ocean totals using fishing activity was based on effort statistics, specifically longline effort in hooks. This method is considered to be more reliable that the area- or target species catch-based methods because its main assumption, i.e. that shark
catch is proportional to longline effort, seems reasonable. The main source of bias associated with the effort-based method is the under- or non-reporting of longline effort particularly in small coastal longline fleets. There may also be bias associated with relying only on longline effort in oceans where large quantities of sharks are caught with other gear types. For example, although oceanic whitetip sharks are caught by purse seine gear in all oceans this is not expected to skew the effort-based proportioning method as all oceans would be affected. However, if large quantities of shark fins are produced by small-scale gear types (e.g. gill nets, hand lines) which comprise a larger portion of the fishery in the Indian Ocean (Murua et al. 2013), the actual Indian Ocean shark catch would be higher than estimated by the longline effort-based index. Similarly, it is known that longline effort is under-represented for the Eastern Pacific because of lack of effort data for many of the smaller fleets (IATTC 2014). This would tend to inflate the catch estimates in other oceans. Unless and until there is a common method for compiling effort statistics across all oceans, potential biases will exist due to different statistical procedures applied by each t-RFMO6. Due to the additional uncertainty associated with the effort-based method as it relates to the Indian Ocean fisheries, a fourth proportioning method involving country of origin statistics was applied. This method is the most likely to directly reflect the level of shark fin production in the region, but it is complicated by the potential for transhipment and other complex trading patterns particularly amongst the distant water fishing entities (Martin et al. 2013). Despite this inherent shortcoming, this method has an advantage over the effort- and target species catch-based proportioning methods: it may be easier to detect the importance of certain Indian Ocean developing States in shark trade statistics (i.e. Hong Kong imports) than in fishery statistics which for some of these fleets are unreliable. Compared to an earlier version of this paper which used an older and incomplete series of longline effort data and applied a different country of origin-based proportioning method, the results presented here show higher effort-based estimates and lower trade-based estimates. Under this - ⁶ Note that inconsistent statistical procedures also bias global catch statistics and thus the target species catch-based proportioning method. new methodology these two proportioning methods now show close agreement not only with overlapping probability intervals but also similar medians. The target species catch-based method provides a slightly lower but still plausible estimate ($\sim 30\%$ lower than the effort- and country of origin (Method 1)-based methods, and $\sim 15\%$ lower than the alternative country of origin (Method 2)-based method). There are few existing estimates of Indian Ocean shark catches which with to compare the results of this study. Murua et al. (2013) used ratios of shark catches to target species catches over the period 2000-2010 to produce a point estimate for each of 24 types of sharks (including "other sharks") and 16 fleet types (including "other"). The sum of the point estimates across the 16 fleet types was just over 50,000 t per year for blue sharks and slightly less than 17,000 t per year for oceanic whitetip sharks. The Murua et al. (2013) estimate for blue sharks (~50,000 t per year) is similar to but less than the area-based estimate produced here (this study's median range: 53,000 t (2000) to 73,000 t (2011) per year). It is considerably lower than the more credible proportioning methods applied in the current study (this study's median ranges in the vicinity of 100,000 to 200,000 t per year). The Murua et al. (2013) estimate for oceanic whitetip sharks (~17,000 t per year), which is mainly determined by their estimates for the gill net fishery, is in contrast higher than the median estimates for any of the proportioning methods applied in this study. It is interesting to consider that the ratio of blue shark to oceanic whitetip shark catches based on Murua et al. (2013) is approximately 3:1 whereas the ratio of blue shark to oceanic whitetip shark fins in the Hong Kong trade is approximately 16:1 (Clarke et al. 2006a (see Table 1))7. It is also important to consider that the Hong Kong species ratio was calculated on the basis of data from 1999-2001 since which time it is expected that oceanic whitetip shark populations have severely declined (e.g. Clarke et al. 2013) and their representation in the shark fin trade, and in shark catches, has likely declined concomitantly. This discussion highlights that while both catch estimation methods have merit, there are also some important uncertainties which cannot be resolved on the basis of existing data. Given the urgent need for improvement in historic catch data to support shark stock assessment, further study of these and other methods is strongly encouraged. # 5 Acknowledgements The author would like to thank the following for assistance with compiling data for this study: A. DaSilva (IATTC), P. deBruyn (ICCAT), S. Martin and M. Herrera (IOTC), S. Taufao and L. Manarangi-Trott (WCPFC), and P. Williams (SPC). Helpful comments and encouragement by participants in the Tenth IOTC Working Party on Ecosystems and Bycatch, in particular the WPEB Chair R. Coelho and IOTC Deputy Secretary and Science Manager D. Wilson, are also highly appreciated. Funding support for this work was provided by the Areas Beyond National Jurisdiction Tuna Project ⁷ The ratio of blue shark to oceanic whitetip shark catches in the IOTC catch and effort databases for 2000-2010 is on the order of 27:1 (calculated by the author based on data provided by M. Herrera and S. Martin on 9 October 2014). implemented as a whole by the United Nations Food and Agriculture Organization and for shark data improvement and assessment by the Western and Central Pacific Fisheries Commission. # **6** References CES (Tuna Fishery Catch and Effort Query System). 2014. Aggregate Catch/Effort Data – Raised for longline gear type, 1950-2014. Secretariat of the Pacific Community, Nouméa, New Caledonia. Clarke, S. 2004a. Understanding pressures on fishery resources through trade statistics: a pilot study of four products in the Chinese dried seafood market. Fish and Fisheries 5: 53-74. Clarke, S. 2004b. Shark product trade in Hong Kong and Mainland China, and implementation of the shark CITES listings. TRAFFIC East Asia, Hong Kong. Clarke, S. 2008. Use of shark fin trade data to estimate historic total shark removals in the Atlantic Ocean. Aquatic Living Resources 21: 373-381. Clarke, S. 2009. An Alternative Estimate of Catches of Five Species of Sharks in the Western and Central Pacific Ocean based on Shark Fin Trade Data. WCPFC-SC5-2009/EB-WP-02. Available online at https://www.wcpfc.int/system/files/SC5-EB-WP-02%20%5BAn%20Alternative%20Estimate%20of%20Catches%20of%20Five%20Species%20of%20Sharks%5D.pdf Clarke, S. and F. Dent. 2014. State of the Global Market for Shark Commodities: Summary of the Draft FAO Technical Paper. 27th CITES Animals Committee, Twenty-seventh meeting of the Animals Committee, Veracruz, 28 April – 3 May 2014. AC17, Inf. 14. Available online at http://www.cites.org/sites/default/files/eng/com/ac/27/E-AC27-Inf-14.pdf. Clarke, S.C.,M.K. McAllister, E.J. Milner-Gulland, G.P. Kirkwood, C.G.J. Michielsens, D.J. Agnew, E.K. Pikitch, H. Nakano and M.S. Shivji. 2006a. Global estimates of shark catches using trade records from commercial markets. Ecology Letters 9: 1115-1126. Clarke, S.C., J.E. Magnussen, D.L. Abercrombie, M.K. McAllister and M.S. Shivji. 2006b. Identification of shark species composition and proportion in the Hong Kong shark fin market based on molecular genetics and trade records. Conservation Biology 20: 201-211. Clarke, S, E.J. Milner-Gulland and T. Bjørndal. 2007 Social, economic and regulatory drivers of the shark fin trade. Marine Resource Economics 22: 305-327. Clarke, S.C., S.J. Harley, S.D. Hoyle and J.S. Rice. 2013. Population trends in Pacific Oceanic sharks and the utility of regulations on shark finning. Conservation Biology 27: 197-209. Compagno, L.J.V. 1984. Sharks of the World. An annotated and illustrated catalogue of shark species known to date. Part 2. Carcharhiniformes. FAO Species Catalogue (Fish. Synop., (125)), Vol. 4, Part 2: 251-655. Eriksson, H. and S. Clarke. In press. Chinese market responses to overexploitation of sharks and sea cucumbers. Biological Conservation. FAO (Food and Agriculture Organization). 2014. FishSTAT Capture Production (1950-2007) Database. Accessed online at http://www.fao.org Gelfand, A.E. and A.F.M. Smith. 1990. Sampling-based approaches to calculating marginal densities. J. Am. Stat. Asso. 85: 398-409. HKSARG (Hong Kong Special Administrative Region Government). 2012. Census and Statistics Department, unpublished data, 1996-2011. IATTC (Inter-American Tropical Tuna Commission). 2014. Fishery Status Report No. 12 – Tunas and Billfishes in the Eastern Pacific Ocean in 2013 (Table A-9). Available online at http://www.iattc.org/PDFFiles2/FisheryStatusReports/FisheryStatusReport12.pdf *ICCAT (International Commission for the Conservation of Atlantic Tunas). 2014a. Preliminary estimates of numbers of hooks for major fleets and total. Available online at https://www.iccat.int/en/SCRS.htm ICCAT (International Commission for the Conservation of Atlantic Tunas).
2014b. Raw nominal Task 2 (catch and effort) data from ICCAT database, 2005-2013. Available online at https://www.iccat.int/en/t2ce.asp Imperial College London. 2014. OpenBUGS software (version 3.2.3 rev 1012). Available online at http://www.mrc-bsu.cam.ac.uk/bugs/ IOTC (Indian Ocean Tuna Commission). 2014a. Report of the Indian Ocean Shark Year Program Workshop (IO-SHYP01). IOTC-2014-IOShYP01-R. Available online at http://www.iotc.org/documents/report-indian-ocean-shark-year-program-workshop-io-shyp01 IOTC (Indian Ocean Tuna Commission). 2014b. Estimate of longline hooks fished in the Indian Ocean, 1952-2013, provided by S. Martin on 20 December 2014. Martin, S.M., J.C. Moir Clark, J.C. Pearce and C.C Mees. 2013. Summary of the transhipment of shark products by longliners in the Indian Ocean. IOTC-2013-WPEB09-16 (rev 1). Available online at http://www.iotc.org/documents/summary-transhipment-shark-products-longliners-inthe-indian-ocean Murua, H., M. N. Santos, P. Chavance, J. Amande, F. J. Abascal, J. Ariz, P. Bach, M. Korta, F. Poisson, R. Coelho, and B. Seret. 2013. EU project for the Provision of Scientific Advice for the Purpose of the implementation of the EUPOA sharks: a brief overview of the results for Indian Ocean. IOTC-2013–WPEB09-19 Rev_1. Available online at http://www.iotc.org/documents/eu-project-provision-scientific-advice-purpose-implementation-eupoa-sharks-brief-overview TRAFFIC. 1996. The World Trade in Sharks: A Compendium of TRAFFIC's Regional Studies (Volumes 1 and 2). TRAFFIC International, Cambridge, United Kingdom. World Trade Organization (WTO). 2014. China and the WTO. Accessed online at http://www.wto.org/english/thewto-e/countries-e/china-e.htm **Table 1**. Number and biomass of blue and oceanic whitetip sharks (median and 95% probability interval) used in the global shark fin trade in 2000 (Clarke *et al.* 2006a). | Species | Number (million) | Biomass ('000 t) | |------------------------|----------------------|------------------| | Blue shark | 10.74 (4.64 – 15.76) | 364 (204 – 619) | | Oceanic whitetip shark | 0.60 (0.22 - 1.21) | 22 (9 – 47) | **Table 2**. Adjusted total imports of shark fin (t) to Hong Kong, 1980-2011 (see text for adjustment methods). The "anchor point" estimate is shown in bold (Source: HKSARG 2012) | Year | Quantity (t) | Year | Quantity (t) | |------|--------------|------|--------------| | 1980 | 2,739 | 1996 | 4,513 | | 1981 | 2,741 | 1997 | 4,868 | | 1982 | 2,704 | 1998 | 5,196 | | 1983 | 2,512 | 1999 | 5,824 | | 1984 | 2,748 | 2000 | 6,788 | | 1985 | 2,613 | 2001 | 6,435 | | 1986 | 2,788 | 2002 | 6,513 | | 1987 | 3,317 | 2003 | 6,960 | | 1988 | 3,272 | 2004 | 6,142 | | 1989 | 3,003 | 2005 | 5,887 | | 1990 | 3,018 | 2006 | 5,337 | | 1991 | 3,526 | 2007 | 5,798 | | 1992 | 4,265 | 2008 | 5,536 | | 1993 | 3,856 | 2009 | 5,559 | | 1994 | 4,144 | 2010 | 5,759 | | 1995 | 4,706 | 2011 | 6,175 | **Table 3.** FAO-reported capture production of tunas, bonitos and billfishes globally and in the Indian Ocean, and their ratio, 1980-2011 (FAO 2014). | Year | Global
(million t) | Indian Ocean
(million t) | Ratio
(Indian Ocean :
Global) | |------|-----------------------|-----------------------------|-------------------------------------| | 1980 | 2.676 | 0.305 | 0.114 | | 1981 | 2.700 | 0.326 | 0.121 | | 1982 | 2.800 | 0.385 | 0.138 | | 1983 | 2.961 | 0.400 | 0.135 | | 1984 | 3.152 | 0.496 | 0.157 | | 1985 | 3.239 | 0.598 | 0.185 | | 1986 | 3.548 | 0.654 | 0.184 | | 1987 | 3.678 | 0.719 | 0.195 | | 1988 | 4.108 | 0.838 | 0.204 | | 1989 | 4.105 | 0.796 | 0.194 | | 1990 | 4.371 | 0.769 | 0.176 | | 1991 | 4.508 | 0.782 | 0.173 | | 1992 | 4.541 | 0.927 | 0.204 | | 1993 | 4.653 | 1.106 | 0.238 | | 1994 | 4.788 | 1.094 | 0.228 | | 1995 | 4.944 | 1.212 | 0.245 | | 1996 | 4.900 | 1.232 | 0.251 | | 1997 | 5.165 | 1.269 | 0.246 | | 1998 | 5.723 | 1.279 | 0.223 | | 1999 | 5.936 | 1.405 | 0.237 | | 2000 | 5.832 | 1.400 | 0.240 | | 2001 | 5.762 | 1.334 | 0.232 | | 2002 | 6.135 | 1.445 | 0.236 | | 2003 | 6.291 | 1.557 | 0.248 | | 2004 | 6.336 | 1.665 | 0.263 | | 2005 | 6.517 | 1.644 | 0.252 | | 2006 | 6.542 | 1.690 | 0.258 | | 2007 | 6.617 | 1.479 | 0.224 | | 2008 | 6.609 | 1.481 | 0.224 | | 2009 | 6.732 | 1.462 | 0.217 | | 2010 | 6.765 | 1.495 | 0.221 | | 2011 | 6.825 | 1.526 | 0.224 | **Table 4**. Estimates of longline fishing effort (in million hooks) compiled from t-RFMO databases, and the ratio of total effort in the Indian Ocean, 1980-2011 (see text for derivation details). | Year | Atlantic | Western and | Eastern | Indian | Total | Ratio | |------|----------|---------------|----------|----------|----------|---------| | | Ocean | Central | Pacific | Ocean | Longline | (Indian | | | Longline | Pacific Ocean | Longline | Longline | Effort | Ocean: | | | Effort | Longline | Effort | Effort | | Total) | | | (ICCAT | Effort (CES | (IATTC | (IOTC | | | | | 2014) | 2014) | 2014) | 2014b) | | | | 1980 | 205 | 695 | na | 268 | na | na | | 1981 | 227 | 737 | na | 255 | na | na | | 1982 | 277 | 667 | na | 303 | na | na | | 1983 | 222 | 756 | na | 330 | na | na | | 1984 | 239 | 724 | 135 | 302 | 1,401 | 0.216 | | 1985 | 283 | 1,053 | 130 | 301 | 1,767 | 0.170 | | 1986 | 307 | 742 | 196 | 333 | 1,579 | 0.211 | | 1987 | 297 | 884 | 237 | 362 | 1,780 | 0.204 | | 1988 | 292 | 838 | 235 | 419 | 1,785 | 0.235 | | 1989 | 310 | 755 | 230 | 547 | 1,842 | 0.297 | | 1990 | 355 | 767 | 238 | 688 | 2,048 | 0.336 | | 1991 | 367 | 667 | 283 | 666 | 1,983 | 0.336 | | 1992 | 364 | 800 | 270 | 669 | 2,103 | 0.318 | | 1993 | 410 | 683 | 225 | 875 | 2,193 | 0.399 | | 1994 | 450 | 586 | 223 | 842 | 2,101 | 0.401 | | 1995 | 422 | 596 | 190 | 759 | 1,966 | 0.386 | | 1996 | 445 | 567 | 152 | 941 | 2,105 | 0.447 | | 1997 | 427 | 569 | 140 | 1,006 | 2,141 | 0.470 | | 1998 | 439 | 639 | 175 | 1,239 | 2,491 | 0.497 | | 1999 | 493 | 731 | 166 | 1,073 | 2,463 | 0.436 | | 2000 | 493 | 787 | 140 | 961 | 2,381 | 0.404 | | 2001 | 468 | 966 | 238 | 891 | 2,564 | 0.348 | | 2002 | 379 | 1,009 | 315 | 888 | 2,590 | 0.343 | | 2003 | 431 | 993 | 302 | 806 | 2,533 | 0.318 | | 2004 | 435 | 1,100 | 213 | 931 | 2,679 | 0.347 | | 2005 | 352 | 874 | 152 | 935 | 2,313 | 0.404 | | 2006 | 373 | 856 | 107 | 877 | 2,213 | 0.396 | | 2007 | 344 | 947 | 103 | 956 | 2,350 | 0.407 | | 2008 | 464 | 952 | 89 | 742 | 2,246 | 0.330 | | 2009 | 335 | 1,069 | 100 | 724 | 2,228 | 0.325 | | 2010 | 338 | 950 | 154 | 665 | 2,106 | 0.316 | | 2011 | 375 | 1,072 | 152 | 637 | 2,237 | 0.285 | **Table 5.** Categorization of Hong Kong import records for estimating the amount of trade derived from sharks caught in the Indian Ocean. | | | Proportion of Hong Kong imports recorded as originating in each country and assume to derive from the Indian Ocean | | | | | | | |--|---|--|----------|--|--|--|--|--| | Category | Countries | Method 1 | Method 2 | | | | | | | Imports from coastal States which border the Indian Ocean (only), and which do not engage in distant water fishing | Bahrain, Bangladesh, Egypt, Ethiopia, India, Iran Islamic Republic, Kenya, Kuwait, Madagascar, Maldives, Mauritius, Mozambique, Myanmar, Oman, Pakistan, Qatar, Saudi Arabia, Seychelles, Singapore, Somalia, Sri Lanka, Sudan, Tanzania, United Arab Emirates, Yemen | 1.0 | 1.0 | | | | | | | Imports from coastal States which border both the Indian Ocean and another ocean, and which do not engage in distant water fishing | Australia, Indonesia, Malaysia,
South Africa, Thailand | 0.5 | 0.5 | | | | | | | Distant water fishing
nations fishing in the Indian
Ocean | China, EU-France, Japan, Republic of
Korea, EU-Portugal, EU-Spain,
Taiwan-China | 0.2 | 0 | | | | | | Table 6. Dried and 'salted' (frozen) shark fin imports by Hong Kong from Indian Ocean basin countries (plus major fishing entities not located around the Indian Ocean basin but having a major fishing presence in the Indian Ocean), 1998-2011. 'Salted' fins were normalized for water content by dividing reported weights by four and then summed with dried fins to produce the quantities shown here. The names of countries which were reported to import both dried and 'salted' fins are shown in capital letters. Each annual country value was then applied to the factors shown as Method 1 or Method 2 (see text) and summed to produce an annual Indian Ocean basin total. That total was then expressed as a ratio (Method 1 or 2) to the annual adjusted Hong Kong shark fin import totals shown in Table 2. | | Method 1 | Method 2 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | |---|----------|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | AUSTRALIA | 0. | 5 0.5 | 53461 | 45541 | 52963 | 30916 | 38248 | 30524 | 19420 | 32684 | 18905 | 52105 | 88903 | 56236 | 64751 | 50555 | | Bahrain | | 1 1 | | | 362 | 643 | 979 | 578 | 0 | 0 | 0 | 0 |
114 | 0 | 269 | 68 | | Bangladesh | | 1 1 | 7798 | 19481 | 42053 | 9824 | 13806 | 10295 | 13417 | 7296 | 4616 | 5697 | 16806 | 15705 | 6418 | 11271 | | CHINA | | | 86370 | 86803 | 60629 | 57569 | 168199 | 407873 | 294788 | 95688 | 30945 | 1134 | 12528 | 10787 | 9123 | 9366 | | Egypt | | 1 1 | 2565 | 7297 | 5509 | 4175 | 3708 | 7070 | 8868 | 1944 | 2800 | 6822 | 5707 | 20414 | 16356 | 10131 | | Ethiopia | | 1 1 | | 509 | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | (| | EU-FRANCE | 0. | 2 0 | 592 | 1118 | 3467 | 363 | 143 | 1830 | 7297 | 6922 | 3638 | 631 | 320 | 0 | 1956 | 3685 | | INDIA | | 1 1 | 178294 | 384332 | 315591 | 281195 | 231009 | 241718 | 240119 | 128722 | 98992 | 83832 | 82365 | 161582 | 123337 | 103531 | | INDONESIA | 0. | 5 0.5 | 376861 | 459781 | 597012 | 679694 | 768509 | 600538 | 453084 | 430909 | 356292 | 472061 | 388744 | 494359 | 467922 | 361384 | | Iran Islamic Republic | | 1 1 | | | | | | 0 | 638 | 3204 | 0 | 24 | 300 | 0 | 767 | C | | JAPAN | 0. | 2 0 | 425199 | 386502 | 254207 | 252288 | 205305 | 205192 | 215329 | 208767 | 202958 | 247754 | 149616 | 153145 | 155176 | 113251 | | Kenya | | 1 1 | 7110 | 12860 | 16049 | 15741 | 6901 | 10689 | 24840 | 16266 | 29911 | 23967 | 10984 | 9923 | 10922 | 15904 | | KOREA (REPUBLIC OF) | 0. | 2 0 | 300 | 2258 | 16260 | 20992 | 19797 | 58170 | 70091 | 95885 | 32232 | 88053 | 85434 | 87264 | 86298 | 106204 | | Kuwait | | 1 1 | 1430 | | | 591 | 1394 | 200 | 0 | 0 | 311 | 602 | 1865 | 0 | 0 | 581 | | MADAGASCAR | | 1 1 | 8741 | 5206 | 19630 | 17481 | 20401 | 13106 | 29071 | 24524 | 30795 | 22460 | 28011 | 13868 | 21757 | 27906 | | MALAYSIA | 0. | 5 0.5 | 3924 | 9023 | 11895 | 5260 | 6734 | 3544 | 3552 | 1703 | 1904 | 36200 | 12324 | 5088 | 28049 | 6212 | | Maldives | | 1 1 | 1162 | 1883 | 8631 | 1267 | 6536 | 7920 | 1297 | 2544 | 0 | 5844 | 7593 | 1720 | 1815 | 0 | | MAURITIUS | | 1 1 | 18027 | 11294 | 19488 | 2673 | 8542 | 33864 | 13187 | 25204 | 15803 | 24382 | 5161 | 29661 | 19628 | 13519 | | MOZAMBIQUE | | 1 1 | 2746 | 4410 | 2894 | 3962 | 5999 | 7749 | 652 | 2051 | 2456 | 4519 | 3860 | 7563 | 5528 | 1036 | | Myanmar | | 1 1 | 462 | | | 208 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | OMAN | | 1 1 | 98320 | 63791 | 149279 | 125299 | 29650 | 8060 | 20356 | 79708 | 69635 | 33921 | 37387 | 58877 | 12402 | 30515 | | Pakistan | | 1 1 | 50017 | 33449 | 55298 | 46633 | 36281 | 35507 | 53705 | 31400 | 39525 | 65827 | 39062 | 70634 | 52291 | 34954 | | EU-Portugal | 0. | 2 0 | 3748 | 3530 | | | | 0 | 172 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Qatar | | 1 1 | | 300 | 430 | 298 | 120 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Saudi Arabia | | 1 1 | | 9022 | | | 789 | 1371 | 202 | 3353 | 160 | 6370 | 5158 | 5060 | 3906 | 10042 | | Seychelles | | 1 1 | | 1286 | 7643 | 9635 | 10048 | 1763 | 546 | 2013 | 336 | 2125 | 2594 | 7744 | 5224 | 3923 | | SINGAPORE | | 1 1 | 245407 | 328591 | 296720 | 222444 | 333262 | 397954 | 431955 | 426509 | 335862 | 303967 | 466911 | 337554 | 366435 | 726667 | | Somalia | | 1 1 | | | | | | 0 | 4488 | 0 | 0 | 0 | 0 | 0 | 0 | (| | SOUTH AFRICA | 0. | 5 0.5 | 62044 | 80448 | 138559 | 103380 | 127249 | 104786 | 87932 | 80600 | 77682 | 64510 | 113170 | 97445 | 106822 | 65140 | | EU-SPAIN | 0. | 2 0 | 845741 | 744009 | 970412 | 863578 | 910607 | 979784 | 775826 | 858768 | 863037 | 925472 | 758406 | 715471 | 619159 | 859568 | | SRI LANKA | | 1 1 | 36986 | 55086 | 54535 | 50798 | 28552 | 53802 | 110777 | 62397 | 69661 | 42259 | 39448 | 81658 | 52518 | 69355 | | Sudan | | 1 1 | | | 100 | | | 0 | 0 | 0 | 0 | 1265 | 377 | 702 | 460 | (| | TAIWAN-CHINA | 0. | 2 0 | 215096 | 459993 | 639869 | 784143 | 849216 | 876799 | 690495 | 509244 | 717163 | 667718 | 571704 | 557143 | 594500 | 545034 | | Tanzania | | 1 1 | 3222 | 2360 | 21751 | 2973 | 90 | 458 | 385 | 370 | 3102 | 4959 | 3024 | 3789 | 2221 | 1647 | | THAILAND | 0. | 5 0.5 | 17539 | 7491 | 34235 | 30679 | 26336 | 37796 | 12935 | 23946 | 13773 | 8038 | 18085 | 22082 | 29362 | 88256 | | United Arab Emirates | | 1 1 | 464026 | 405244 | 498863 | 357789 | 538918 | 507263 | 405608 | 500333 | 406996 | 474422 | 492540 | 443323 | 420502 | 386534 | | Yemen | | 1 1 | 190535 | 232762 | 350052 | 225573 | 118095 | 105810 | 54810 | 82595 | 214957 | 269332 | 224738 | 216052 | 422498 | 332833 | | Total from above using Method 1 | | | 1889171 | 2217146 | 2671179 | 2199951 | 2309270 | 2339700 | 2114180 | 2040409 | 1930190 | 2085204 | 2100219 | 2128195 | 2186949 | 2393611 | | TOTAL from above using Method 2 | | | 1573762 | 1880304 | 2282210 | 1804164 | 1878617 | 1833770 | 1703381 | 1685355 | 1560195 | 1699052 | 1784618 | 1823433 | 1893707 | 2066190 | | Hong Kong Total (from Table 2) | | | 5195777 | 5823683 | 6787929 | 6434813 | 6513007 | 6959699 | 6141969 | 5887061 | 5336705 | 5798486 | 5535517 | 5558389 | 5759196 | 6174597 | | Ratio of IO to Hong Kong Total - Method 1 | | | 0.364 | 0.381 | 0.394 | 0.342 | 0.355 | 0.336 | 0.344 | 0.347 | 0.362 | 0.360 | 0.379 | 0.383 | 0.380 | 0.388 | | Ratio of IO to Hong Kong Total - Method 2 | | | 0.303 | 0.323 | 0.336 | 0.280 | 0.288 | 0.263 | 0.277 | 0.286 | 0.292 | 0.293 | 0.322 | 0.328 | 0.329 | 0.335 | **Figure 1**. Annual ratios of FAO-reported capture production of tunas, bonitos and billfishes in the Indian Ocean to the global catch of these species, 1980-2011 (data given in Table 3). **Figure 2.** Annual ratios of longline effort in the Indian Ocean to global longline effort, 1984-2011 (data given in Table 4). **Figure 3**. Annual proportion of Hong Kong shark fin imports estimated to be derived from the Indian Ocean using two methods (gray line=Method 1; dashed line=Method 2 (see text and Table 5 for methods and Table 6 for data), 1998-2011. **Figure 4**. Annual median (solid line) and 95% confidence interval (dashed lines) estimates for blue shark (in million sharks), using area, target species catch, longline effort, and two types of country of origin proportioning methods to scale the number of sharks present in the global shark fin trade to those derived from the Indian Ocean, thus representing Indian Ocean shark catches. **Figure 5**. Annual median (solid line) and 95% confidence interval (dashed lines) estimates for oceanic whitetip shark (in million sharks), using area, target species catch, longline effort, and two types of country of origin proportioning methods to scale the number of sharks present in the global shark fin trade to those derived from the Indian Ocean, thus representing Indian Ocean shark catches. **Figure 6**. Annual median (solid line) and 95% confidence interval (dashed lines) estimates for blue shark (in thousand t), using area, target species catch, longline effort, and two types of country of origin proportioning methods to scale the number of sharks present in the global shark fin trade to those derived from the Indian Ocean, thus representing Indian Ocean shark catches. **Figure 7**. Annual median (solid line) and 95% confidence interval (dashed lines) estimates for oceanic whitetip shark (in thousand t), using area, target species catch, longline effort, and two types of country of origin proportioning methods to scale the number of sharks present in the global shark fin trade to those derived from the Indian Ocean, thus representing Indian Ocean shark catches. ``` Annex 1. WinBUGS code model { #these are HK's assumed share of the global totals in each period shar8090~dunif(0.65,0.80) shar9195~dunif(0.50, 0.65) shar9600~dunif(0.44,0.59) shar0006~dunif(0.30,0.50) shar0711~dunif(0.25,0.40) for (z in 1:11){ ratio[z] <- shar9600/shar8090 for (z in 12:16){ ratio[z] <- shar9600/shar9195 for (z in 17:21){ #for 1996-2000 (this is the base period) ratio[z] <- 1 for (z in 22:27){ #2001-2006 ratio[z] <- shar9600/shar0006 for (z in 28:32){ ratio[z] <- shar9600/shar0711 for (g in 1:2) { #this is a triangular distribution for the biomass of BSH and OCS in 2000 rv[g]~dunif(0,1000) #to run for all five species, change this loop to in 1:5; fix trimin, trimode, trimax x[g]<-rv[g]/1000 gate[g]<-((trimode[g]-trimin[g]) / (trimax[g]-trimin[g])) A[g]<-min(x[g],gate[g]) # find out whether x is higher or lower than criterion B[g] < -equals(x[g],A[g]) # if x IS lower then B will be 1, if x>calculation then B will be 0 C[g]<-equals(B[g],0)# sets C to zero if B=1 or sets C to 1 if b=0; so B and C are binary and opposite draw[g]<-(B[g]*(trimin[g]+sqrt(x[g]*(trimode[g]-trimin[g])*(trimax[g]-trimin[g])))) +(C[g]*(trimax[g]-sqrt((1-x[g])*(trimax[g]-trimode[g])*(trimax[g]-trimin[g])))) for (h in 1:32) { #scale by whether HK's share was more or less than in 2000 hookprop[g,h] <- share[g,h] * LLratio[h] #scale by LL hook effort basinprop1[g,h] <- share[g,h] * basinratio1[h] basinprop2[g,h] <- share[g,h] * basinratio2[h] #country of origin scaling Method 1 #country of origin Method 2 } } #DATA list(#BIOMASS trimin=c(204,9), #species order is blue, oceanic whitetip trimode=c(364,22), # these are inputs for shark biomass from Ecology Letters (2006) trimax=c(619,47), #all values in '000 t #NUMBER OF SHARKS #trimin=c(4.640,0.218), #species order is blue, oceanic whitetip #trimode=c(10.741,0.604), # these are inputs for shark numbers #trimax=c(15.762,1.209), #values in million sharks HKimport=c(2739,2741,2704,2512,2748,2613,2788,3317,3272,3003,3018, 3526,4265,3856, 4144,4706, 4513,4868,5196,5824,6788, 6435,6513,6960,6142,5887,5337, 5798,5536,5559,5759,6175), #HK adjusted imports of dried and salted unprocessed shark fins GIS=c(0.137,0.117), #updated with Google Maps measure area function tunalO=c(0.114,0.121,0.138,0.135,0.157,0.185,0.184,0.195,0.204,0.194,0.176, ``` $\begin{array}{l} 0.173, 0.204, 0.238, 0.228, 0.245, \\ 0.251, 0.246, 0.223, 0.237, 0.240, \\ 0.232, 0.236, 0.248, 0.263, 0.252, 0.258, \end{array}$ 0.224,0.224,0.217,0.221,0.224), #FISHSTAT (not LL specific) LLratio=c(0.200, 0.200,0.200,0.200,0.216,0.170,0.211,0.204,0.235,0.297,0.336, 0.336,0.318,0.399,0.401,0.386, 0.447,0.470,0.497,0.436,0.404, 0.348, 0.343, 0.318, 0.347, 0.404, 0.396, 0.407,0.330,0.325,0.316,0.285),
#ratio of LL hooks fished in IO versus the world, updated Dec 2014 (1980-1983 are dummies) 0.360,0.379,0.383,0.380,0.388), #assumes 20% of DWFNs exports to Hong Kong (as recorded by HK) are from IO; no data before 1998 #assumes none of DWFN exports to Hong Kong are from IO; 1998-2011 only Annex 2. Blue shark results in numerical format (shown in Figures 4 and 6): in number (top) and in biomass (bottom). | 980 areaprop 0 | an so | | AC_error va | | | | node r | nean | sd I | AC_error | val2.5pc | median | val97.5pc | node | mean | sd M | MC_error v | al2.5pc me | dian val97. | 5pc node | mean | sd | MC_error | val 2.5pc | median | val97.5pc | | nean s | | MC_error | | | |--|--|---|--|---|--|---|---|---|--|---|--|---|---|--|--|--|---|--|--|--|--|---|--|--|--|--|--|--|---|--|---|---| | | 0.4093 | 0.0000 | 0.001127 | 0.2222 | 0.408 | 0.6103 | naprop[1,: | 0.0.00 | 0.00000 | 9.37E-04 | | 0.3395 | | | | 0.09987 | | 0.2223 | 0.4083 | 0.6107 | tunaprop | 0.00- | 0.000 | 9.96E-04 | 0.1964 | 0.3606 | | | | 0.09853 | | 0.2193 | 0.4028 | 0.6025 | tunaprop | | 0.09924 | | 0.2209 | 0.4057 | | | | 0.09153 | | 0.2038 | 0.3742 | 0.5597 | tunaprop | 0.3699 | 0.000 | 0.001018 | 0.2008 | 0.3687 | | | 0.4106 | 0.1001 | 0.000 | 0.2229 | 0.4093 | 0.6123 | | | | | | | | | | | _ | | | hookpro | | | 0.001782 | 0.3515 | 0.6454 | | tunaprop | 0.4706 | | 0.001295 | 0.2555 | 0.4691 | | | | 0.09521 | | 0.212 | 0.3892 | 0.5822 | | | | | | | | | | | | | | hookpro | | | 0.001334 | 0.200 | | | tunaprop | 0.5272 | 0.2200 | 0.001451 | 0.2862 | 0.5256 | | | 0.4166 | | 0.001147 | 0.2262 | 0.4153 | 0.6212 | | | | | | | | | | | | | | hookpro | | | 0.001766 | 0.3483 | 0.6396 | 0.9568 | tunaprop | 0.5595 | 0.1364 | 0.00154 | 0.3038 | 0.5578 | | o. a.oap.op | | 0 | | 0.2002 | | 0.7391 | | | | | | | | | | | | | | hookpro | | | 0.00-00- | | 0000 | | tunaprop | | | 0.0000 | 0.000 | 0 | | | 0.4889 | | 0.001346 | | 0.4874 | | | | | | | | | | | | | | | hookpro | | | 0.002308 | 0.4553 | | | tunaprop | 0.728 | | 0.002004 | 0.3952 | 0.7258 | | | 0.4487 | 0.1094 | | | 0.4473 | 0.6691 | | | | | | | | | | | | | | hookpro | | | 0.002678 | 0.0202 | 0.000 | 1.451 | tunaprop | 0.6354 | 0.20.0 | 0.001749 | 0.345 | 0.6335 | | | 0.451 | | 0.001241 | 0.2448 | 0.4496 | 0.6725 | | | | | | | | | | | | | | hookpro | | 0.200. | 0.003044 | 0.6004 | 1.103 | 1.649 | tunaprop | 0.5793 | | 0.001595 | 0.3145 | 0.5775 | | | 0.6657 | | 0.00169 | 0.3656 | 0.6611 | 0.9939 | | | | | | | | | | | _ | | | hookpro | | | 0.004145 | 0.8967 | 1.621 | 2.438 | tunaprop | 0.8407 | | 0.002134 | 0.4617 | 0.8348 | | | 0.8053 | 0.2000 | 0.002045 | 0.4422 | 0.7996 | 1.202 | | | | | | | | | | | | | | hookpro | | | 0.004746 | 1.027 | 1.856 | 2.791 | tunaprop | 1.199 | 0.200. | 0.003044 | 0.6585 | 1.191 | | | 0.728 | | 0.001848 | 0.3998 | 0.7229 | 1.087 | | | | | | | | | | | - | | | hookpro | | | 0.005383 | | | | tunaprop | 1.265 | | 0.003211 | 0.6946 | 1.256 | | | 0.7824 | 0.200 | 0.001987 | 0.4297 | 0.7769 | 1.168 | | | | | | | | | | | | | | hookpro | | 0.00.0 | 0.005815 | 1.258 | | 0 | tunaprop | 1.302 | | 0.003306 | 0.7151 | 1.293 | | | 0.8885 | | 0.002256 | 0.488 | 0.8823 | 1.327 | | | | | | | | | | | | | | hookpro | | | 0.006356 | | | 3.737 | tunaprop | 1.589 | | 0.004034 | 0.8726 | 1.578 | | oo arooprop | 0.9462 | | 0.00221 | 0.5399 | 0.954 | 1.332 | | | | | | | | | | | | | | hookpro | | | 0.007212 | 1.762 | 3.113 | 4.345 | tunaprop | 1.734 | 0.00 | 0.004049 | 0.9891 | 1.748 | | | 1.021 | | 0.002384 | 0.5824 | 1.029 | | | | | | | | | | | | | | | hookpro | | | 0.008179 | | | 4.928 | tunaprop | 1.833 | | 0.004281 | 1.046 | 1.848 | | a. cop. op | 1.089 | | 0.002545 | 0.6216 | 1.098 | 1.533 | basinprop1 | 2.894 | 0.6361 | 0.006761 | 1.00 | 2.51 | | basinpro | | 0.000 | 0.000 | | 43E+00 3.39E | | | 0.000 | 0.009232 | | 0.000 | 5.563 | tunaprop | 1.773 | 0.3037 | 0.004142 | 1.012 | 1.700 | | | 1.221 | | 0.002852 | 0.6967 | 1.231 | 1.719 | basinprop1 | 3.396 | 011 100 | 0.007932 | | | | | | | | | 90E+00 4.05E | | | | 0.009078 | 2.217 | | 5.47 | tunaprop | 2.112 | 0 | 0.00.00. | 1.205 | 2.13 | | | 1.423 | | 0.003324 | 0.812 | 1.435 | 2.003 | basinprop1 | 4.093 | 0.8995 | 0.009561 | | | | | | | | | 52E+00 4.91E | | | | 0.009804 | | | | tunaprop | 2.493 | | 0.005824 | 1.423 | 2.514 | | о- о-оор-ор | 1.771 | | 0.004973 | 0.9192 | 1.735 | 2.842 | basinprop1 | 4.422
4.646 | 1.238 | 0.01241 | | | | | | | | | 55E+00 5.81E | | | 1.26 | 0.0 | 2.335 | | 7.22 | tunaprop | 3.088 | 0.0. | 0.008422 | 1.557 | 2.939 | | о- о-оор-ор |
| 0.000 | | 0.000 | | | basinprop1 | | | 0.0200 | | | | | | | | | | | | | 0.0-20 | | | | tunaprop | 0.000 | 0.00.0 | 0.0000.2 | | 0.020 | | 003 areaprop | 1.916 | 0.5365 | | 0.9942 | 1.877 | 3.074 | basinprop1 | 4.699 | 1.316 | 0.01319 | | | | | | | | | 50E+00 5.90E | | | 1.245 | 0.000 | 2.308 | | 7.136 | tunaprop | 3.468 | | 0.009737 | 1.8 | 3.398 | | 04 areaprop | 1.691 | | 0.004747 | | 1.656 | 2.713 | basinprop1 | 4.245 | 1.189 | 0.01192 | | | | | | | | | 35E+00 5.49E | | | 1.199 | | 2.222 | | | tunaprop | 3.246 | | 0.009112 | 1.684 | 3.18 | | 05 areaprop | 1.621 | | 0.00455 | 0.841 | 1.588 | 2.6 | basinprop1 | 4.105
3.882 | 1.149 | 0.01152 | | | | | | | | | 31E+00 5.43E | | | 1.338 | 0.01342 | 2.48 | | 7.668
6.814 | tunaprop | 2.981 | | 0.008369 | 1.547
1.436 | 2.92 | | oo urcuprop | 1.405 | | 0.00 | | 1.439 | 2.357 | basinprop1 | 0.002 | | 0.020 | | | | | | | | | | | 4.240 | 1.189 | 0.0000 | | | 0.02. | tunaprop | | 411111 | | | | | | 1.964 | 0.5383 | | 1.036 | 1.929 | 3.086 | basinprop1 | 5.16 | 1.414 | 0.01607 | | | | | | | | | 13E+00 6.60E | | | 1.599 | 0.0202. | 3.079 | 5.731 | 9.168 | tunaprop | 3.211 | 0.8801 | 0.01 | 1.695 | 3.154 | | 08 areaprop | 1.875 | 0.5139 | | 0.9895 | 1.842 | 2.947 | basinprop1 | 5.187 | 1.422 | 0.01616 | | 0.00 | | | | | | | 33E+00 6.93E | | | 1.238 | 0.02.0 | 2.384 | 4.437 | 7.097 | tunaprop | 3.065 | 0.8403 | 0.0000 | 1.618 | 3.012 | | 9 areaprop | 1.883 | 0.5161 | | 0.9937 | 1.85 | 2.959 | basinprop1 | 5.263 | 1.443 | 0.0164 | | | | | | | | | 43E+00 7.08E | | | 1.224 | | 2.357 | 4.388 | 7.019 | tunaprop | 2.982 | 0.8174 | | 1.574 | 2.93 | | 0 areaprop
1 areaprop | 1.95
2.091 | 0.5346 | 0.006076 | 1.029 | 1.916
2.055 | 3.065
3.287 | basinprop1
basinprop1 | 5.41
5.923 | 1.483 | 0.01685 | | | | | | | | | 50E+00 7.36E
02E+00 8.04E | | | 1.233 | | 2.374
2.296 | 4.42 | 7.07
6.837 | tunaprop | 3.146 | | 0.009801 | 1.661 | 3.091 | | 80 areaprop | 15.6 | 3.76 | | 9.136 | | | node | mean | sa | MC_error | val2.5pc me | dian val97. | .spc node | mea | n sd | MC_er | ror vai2.5 | c median | va197.5pc | node m | ean sd | MC | _error_val2 | 2.5pc me | dian va | 197.5pc | node me
tunaprop | 12.98 | 3.128 | 3.54E-02 | 7.602 | nedian
12.73 | | 981 areaprop | 15.61 | 3.762 | 0.04258 | 9.142 | 15.3 | tunaprop | 13.79 | 3.323 | 3.76E-02
0.04231 | 9.085 | 13.52 | | 982 areaprop | | | | 0.000 | | | - | tunaprop | | 011.00 | 0.0.0 | 0.000 | | | 983 areaprop | 14.31 | 3.448 | | | | | | | | | | | _ | | | | | | | | 04.60 | E 0.43 | 0.0000 | | 24.0 | 07.00 | tunaprop | 14.1 | | 0.03845 | 8.256 | 13.83 | | 84 areaprop | 15.65 | 3.772 | 0.0.00 | 3.100 | 15.3 | | | | | | | | | | | | | | | hookprop | 24.68 | 3.347 | 0.0073 | 14.45 | 24.2 | 37.36 | tunaprop | 17.94 | 4.525 | 0.04892 | 10.5 | 17.59 | | 85 areaprop | 14.88 | 3.587 | | | | | | | | | | | | | | | | | | hookprop | 18.47 | | .05036 | 10.81 | 18.11 | 27.96 | tunaprop | 20.1 | | 0.05481 | 11.77 | 19.71 | | 86 areaprop | 15.88 | 3.827 | | | | | 1 | | | | | | | | | | | | | hookprop | 24.46 | | 0.0667 | 14.32 | 23.99 | 37.03 | tunaprop | 21.33 | | 0.05816 | 12.49 | 20.92 | | 87 areaprop | 18.89 | 4.553 | | | | | | | | | | | | | | | | | | hookprop | 28.13 | 6.78 0 | .07672 | 16.47 | 27.59 | 42.59 | tunaprop | 26.89 | | 0.07333 | 15.75 | 26.37 | | 38 areaprop | 18.64 | 4.491 | 0.0000 | 10.91 | | | 2 | 16.25 | 27.22 | | | 17.1 | 4.122 | 0.04664 | 10.02 | 16.7 | 7 25.9 | | | | | | | | | | | | | | hookprop | 31.97 | | .08718 | 18.72 | 31.35 | 48.4 | tunaprop | 27.75 | | | | | | 89 areaprop | hookprop
hookprop | 31.97
37.08 | 8.936 | .08718
0.1011 | 21.71 | 36.37 | 56.14 | tunaprop | 24.22 | 5.837 | 0.06605 | 14.18 | 23.75 | | 0 areaprop | 17.19 | 4.143 | | 10.07 | 16.8 | 6 26.0 | 3 | | | | | | | | | | | | | hookprop
hookprop | 31.97
37.08
42.16 | 8.936
10.16 | .08718
0.1011
0.115 | 21.71
24.69 | 36.37
41.35 | 56.14
63.83 | tunaprop
tunaprop | 24.22 | 5.837
5.322 | 0.06605
0.06022 | 12.93 | 21.66 | | 0 areaprop
1 areaprop | 25.38 | 6.184 | 0.06375 | 14.88 | 24.8 | 6 26.0
4 38.5 | 3 | | | | | | | | | | | | | hookprop
hookprop
hookprop
hookprop | 31.97
37.08
42.16
62.24 | 8.936
10.16
15.17 | .08718
0.1011
0.115
0.1563 | 21.71
24.69
36.5 | 36.37
41.35
60.92 | 56.14
63.83
94.51 | tunaprop
tunaprop
tunaprop | 24.22
22.08
32.04 | 5.837
5.322
7.809 | 0.06605
0.06022
0.0805 | 12.93
18.79 | 21.66
31.37 | | 0 areaprop
1 areaprop
2 areaprop | 25.38
30.69 | 6.184
7.481 | 0.06375
0.07711 | 14.88 | 24.8
30.0 | 6 26.0
4 38.5
4 46.6 | 3
3
1 | | | | | | | | | | | | | hookprop
hookprop
hookprop
hookprop | 31.97
37.08
42.16
62.24
71.25 | 8.936
10.16
15.17
17.36 | .08718
0.1011
0.115
0.1563
0.179 | 21.71
24.69
36.5
41.78 | 36.37
41.35
60.92
69.74 | 56.14
63.83
94.51
108.2 | tunaprop
tunaprop
tunaprop
tunaprop | 24.22
22.08
32.04
45.71 | 5.837
5.322
7.809
11.14 | 0.06605
0.06022
0.0805
0.1148 | 12.93
18.79
26.8 | 21.66
31.37
44.74 | | 0 areaprop
1 areaprop
2 areaprop
3 areaprop | 25.38
30.69
27.75 | 6.184
7.481
6.763 | 0.06375
0.07711
0.06972 | 14.88
18
16.28 | 24.8
30.0
27.1 | 6 26.0
4 38.5
4 46.6
6 42.1 | 3
3
1 | | | | | | | | | | | | | hookprop
hookprop
hookprop
hookprop | 31.97
37.08
42.16
62.24
71.25
80.82 | 8.936
10.16
15.17
17.36
19.7 | .08718
0.1011
0.115
0.1563
0.179
0.203 | 21.71
24.69
36.5
41.78
47.4 | 36.37
41.35
60.92
69.74
79.11 | 56.14
63.83
94.51
108.2
122.7 | tunaprop
tunaprop
tunaprop | 24.22
22.08
32.04
45.71
48.21 | 5.837
5.322
7.809
11.14
11.75 | 0.06605
0.06022
0.0805
0.1148
0.1211 | 12.93
18.79
26.8
28.27 | 21.66
31.37
44.74
47.19 | | 0 areaprop
1 areaprop
2 areaprop
3 areaprop
4 areaprop | 25.38
30.69
27.75
29.82 | 6.184
7.481
6.763
7.268 | 0.06375
0.07711
0.06972
0.07492 | 14.88
18
16.28
17.49 | 24.8
30.0
27.1
29.1 | 6 26.0
4 38.5
4 46.6
6 42.1
9 45.2 | 3
3
1 | | | | | | | | | | | | | hookprop
hookprop
hookprop
hookprop
hookprop
hookprop | 31.97
37.08
42.16
62.24
71.25
80.82
87.29 | 8.936
10.16
15.17
17.36
19.7
21.27 | .08718
0.1011
0.115
0.1563
0.179
0.203
0.2193 | 21.71
24.69
36.5
41.78
47.4
51.2 | 36.37
41.35
60.92
69.74
79.11
85.45 | 56.14
63.83
94.51
108.2
122.7
132.6 | tunaprop
tunaprop
tunaprop
tunaprop | 24.22
22.08
32.04
45.71
48.21
49.63 | 5.837
5.322
7.809
11.14
11.75
12.1 | 0.06605
0.06022
0.0805
0.1148
0.1211
0.1247 | 12.93
18.79
26.8
28.27
29.11 | 21.66
31.37
44.74
47.19
48.58 | | 0 areaprop
1 areaprop
2 areaprop
3 areaprop
4 areaprop
5 areaprop | 25.38
30.69
27.75
29.82
33.87 | 6.184
7.481
6.763
7.268
8.254 | 0.06375
0.07711
0.06972
0.07492
0.08508 | 14.88
18
16.28
17.49
19.86 | 24.8
30.0
27.1
29.1
33.1 | 6 26.0
4 38.5
4 46.6
6 42.1
9 45.2
5 51.4 | 3
3
4
4 | | | | | | | | | | | | | hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop | 31.97
37.08
42.16
62.24
71.25
80.82
87.29
95.42 | 8.936
10.16
15.17
17.36
19.7
21.27
23.26 | .08718
0.1011
0.115
0.1563
0.179
0.203
0.2193
0.2397 | 21.71
24.69
36.5
41.78
47.4
51.2
55.96 | 36.37
41.35
60.92
69.74
79.11
85.45
93.4 | 56.14
63.83
94.51
108.2
122.7
132.6
144.9 | tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop | 24.22
22.08
32.04
45.71
48.21
49.63
60.57 | 5.837
5.322
7.809
11.14
11.75
12.1
14.76 | 0.06605
0.06022
0.0805
0.1148
0.1211
0.1247
0.1522 | 12.93
18.79
26.8
28.27
29.11
35.52 | 21.66
31.37
44.74
47.19
48.58
59.29 | | 0 areaprop
11 areaprop
2 areaprop
3 areaprop
4 areaprop
5 areaprop
6 areaprop | 25.38
30.69
27.75
29.82
33.87
36.07 | 6.184
7.481
6.763
7.268
8.254
7.813 | 0.06375
0.07711
0.06972
0.07492
0.08508
0.08337 | 14.88
18
16.28
17.49
19.86
22.25 | 24.8
30.0
27.1
29.1
33.1
35.4 | 6 26.0
4 38.5
4 46.6
6 42.1
9 45.2
5 51.4
6 51.8 | 3
3
1
4
9
3
5 | | | | | | | | | | | | | hookprop
hookprop
hookprop
hookprop
hookprop
hookprop | 31.97
37.08
42.16
62.24
71.25
80.82
87.29
95.42
117.7 | 8.936
10.16
15.17
17.36
19.7
21.27
23.26
25.49 | .08718
0.1011
0.115
0.1563
0.179
0.203
0.2193
0.2397
0.272 | 21.71
24.69
36.5
41.78
47.4
51.2
55.96
72.59 | 36.37
41.35
60.92
69.74
79.11
85.45
93.4
115.7 | 56.14
63.83
94.51
108.2
122.7
132.6
144.9
169.2 | tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop | 24.22
22.08
32.04
45.71
48.21
49.63
60.57
66.08 | 5.837
5.322
7.809
11.14
11.75
12.1
14.76
14.31 | 0.06605
0.06022
0.0805
0.1148
0.1211
0.1247
0.1522
0.1527 | 12.93
18.79
26.8
28.27
29.11
35.52
40.76 | 21.66
31.37
44.74
47.19
48.58
59.29
64.97 | | D areaprop 1 areaprop 2 areaprop 3 areaprop 4 areaprop 5 areaprop 6 areaprop |
25.38
30.69
27.75
29.82
33.87 | 6.184
7.481
6.763
7.268
8.254 | 0.06375
0.07711
0.06972
0.07492
0.08508
0.08337 | 14.88
18
16.28
17.49
19.86
22.25
24 | 24.8
30.0
27.1
29.1
33.1
35.4
38.2 | 6 26.0
4 38.5
4 46.6
6 42.1
9 45.2
5 51.4
6 51.8
5 55.9 | 3
3
4
9
3
3 | | | | | | | | | | | | | hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop | 31.97
37.08
42.16
62.24
71.25
80.82
87.29
95.42 | 8.936
10.16
15.17
17.36
19.7
21.27
23.26
25.49 | .08718
0.1011
0.115
0.1563
0.179
0.203
0.2193
0.2397
0.272 | 21.71
24.69
36.5
41.78
47.4
51.2
55.96 | 36.37
41.35
60.92
69.74
79.11
85.45
93.4 | 56.14
63.83
94.51
108.2
122.7
132.6
144.9 | tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop | 24.22
22.08
32.04
45.71
48.21
49.63
60.57 | 5.837
5.322
7.809
11.14
11.75
12.1
14.76 | 0.06605
0.06022
0.0805
0.1148
0.1211
0.1247
0.1522 | 12.93
18.79
26.8
28.27
29.11
35.52 | 21.66
31.37
44.74
47.19
48.58
59.29 | | 0 areaprop
1 areaprop
2 areaprop
3 areaprop
4 areaprop
5 areaprop
6 areaprop
7 areaprop
8 areaprop | 25.38
30.69
27.75
29.82
33.87
36.07
38.9
41.52 | 6.184
7.481
6.763
7.268
8.254
7.813
8.427
8.995 | 0.06375
0.07711
0.06972
0.07492
0.08508
0.08337
0.08993
0.09599 | 14.88
18
16.28
17.49
19.86
22.25
24
25.62 | 24.8
30.0
27.1
29.1
33.1
35.4
38.2
40.8 | 6 26.0
4 38.5
4 46.6
6 42.1
9 45.2
5 51.4
6 51.8
5 55.9
3 59.7 | BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB | | | 0.255 | 68.06 | | | | | | | +01 9.03E+0 | | hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop | 31.97
37.08
42.16
62.24
71.25
80.82
87.29
95.42
117.7
133.5
150.6 | 8.936
10.16
15.17
17.36
19.7
21.27
23.26
25.49
28.91
32.63 | .08718
0.1011
0.115
0.1563
0.179
0.203
0.2193
0.2397
0.272
0.3085
0.3482 | 21.71
24.69
36.5
41.78
47.4
51.2
55.96
72.59
82.33
92.93 | 36.37
41.35
60.92
69.74
79.11
85.45
93.4
115.7
131.2 | 56.14
63.83
94.51
108.2
122.7
132.6
144.9
169.2
191.9
216.6 | tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop | 24.22
22.08
32.04
45.71
48.21
49.63
60.57
66.08
69.86
67.59 | 5.837
5.322
7.809
11.14
11.75
12.1
14.76
14.31
15.13
14.64 | 0.06605
0.06022
0.0805
0.1148
0.1211
0.1247
0.1522
0.1527
0.1615
0.1562 | 12.93
18.79
26.8
28.27
29.11
35.52
40.76
43.09
41.7 | 21.66
31.37
44.74
47.19
48.58
59.29
64.97
68.69
66.46 | | 0 areaprop
1 areaprop
2 areaprop
3 areaprop
4 areaprop
5 areaprop
6 areaprop
7 areaprop
8 areaprop | 25.38
30.69
27.75
29.82
33.87
36.07
38.9 | 6.184
7.481
6.763
7.268
8.254
7.813
8.427 | 0.06375
0.07711
0.06972
0.07492
0.08508
0.08337
0.08993 | 14.88
18
16.28
17.49
19.86
22.25
24
25.62
28.71 | 24.8
30.0
27.1
29.1
33.1
35.4
38.2
40.8
45.7 | 6 26.03
4 38.53
4 46.66
6 42.14
9 45.23
5 51.43
6 51.88
5 55.94
3 59.73
6 66.93 | B B B B B B B B B B B B B B B B B B B | P | | 0.255
0.2992 | 68.06
79.85 | 127.3 | 186.1 basii | prop2 1.10 | E+02 2.38E | E+01 2.54E | -01 6.77E | +01 1.08E+0 | 1.58E+02 | hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop | 31.97
37.08
42.16
62.24
71.25
80.82
87.29
95.42
117.7
133.5
150.6
148.1 | 8.936
10.16
15.17
17.36
19.7
21.27
23.26
25.49
28.91
32.63
32.09 | .08718
0.1011
0.115
0.1563
0.179
0.203
0.2193
0.2397
0.272
0.3085
0.3482
0.3424 | 21.71
24.69
36.5
41.78
47.4
51.2
55.96
72.59
82.33 | 36.37
41.35
60.92
69.74
79.11
85.45
93.4
115.7
131.2
148.1
145.6 | 56.14
63.83
94.51
108.2
122.7
132.6
144.9
169.2
191.9
216.6
213 | tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop | 24.22
22.08
32.04
45.71
48.21
49.63
60.57
66.08
69.86 | 5.837
5.322
7.809
11.14
11.75
12.1
14.76
14.31
15.13 | 0.06605
0.06022
0.0805
0.1148
0.1211
0.1247
0.1522
0.1527
0.1615 | 12.93
18.79
26.8
28.27
29.11
35.52
40.76
43.09
41.7
49.67 | 21.66
31.37
44.74
47.19
48.58
59.29
64.97
68.69 | | D areaprop 1 areaprop 2 areaprop 3 areaprop 4 areaprop 5 areaprop 6 areaprop 7 areaprop 9 areaprop 9 areaprop 0 areaprop | 25.38
30.69
27.75
29.82
33.87
36.07
38.9
41.52
46.54
54.25 | 6.184
7.481
6.763
7.268
8.254
7.813
8.427
8.995
10.08
11.75 | 0.06375
0.07711
0.06972
0.07492
0.08508
0.08337
0.08993
0.09599
0.1076
0.1254 | 14.88
18
16.28
17.49
19.86
22.25
24
25.62
28.71
33.46 | 24.8
30.0
27.1
29.1
33.1
35.4
38.2
40.8
45.7
53.3 | 6 26.03
4 38.53
4 46.66
6 42.14
9 45.23
5 51.43
6 51.88
5 55.94
3 59.77
6 66.93 | | pp1 129.
pp1 15 | 4 28.04
6 33.79 | 0.2992
0.3606 | 79.85
96.24 | 127.3
153.4 | 186.1 basii
224.3 basii | nprop2 1.10
nprop2 1.33 | E+02 2.38E
E+02 2.88E | E+01 2.54E
E+01 3.08E | -01 6.77E
-01 8.21E | +01 1.08E+0
+01 1.31E+0 | 1.58E+02
12 1.91E+02 | hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop | 31.97
37.08
42.16
62.24
71.25
80.82
87.29
95.42
117.7
133.5
150.6
148.1 | 8.936
10.16
15.17
17.36
19.7
21.27
23.26
25.49
28.91
32.63
32.09
34.65 | .08718
0.1011
0.115
0.1563
0.179
0.203
0.2193
0.2397
0.272
0.3085
0.3482
0.3424
0.3698 | 21.71
24.69
36.5
41.78
47.4
51.2
55.96
72.59
82.33
92.93
91.38
98.68 | 36.37
41.35
60.92
69.74
79.11
85.45
93.4
115.7
131.2
148.1
145.6
157.3 | 56.14
63.83
94.51
108.2
122.7
132.6
144.9
169.2
191.9
216.6
213
230 | tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop | 24.22
22.08
32.04
45.71
48.21
49.63
60.57
66.08
69.86
67.59 | 5.837
5.322
7.809
11.14
11.75
12.1
14.76
14.31
15.13
14.64
17.44
20.59 | 0.06605
0.06022
0.0805
0.1148
0.1211
0.1247
0.1522
0.1527
0.1615
0.1562
0.1861
0.2197 | 12.93
18.79
26.8
28.27
29.11
35.52
40.76
43.09
41.7
49.67
58.62 | 21.66
31.37
44.74
47.19
48.58
59.29
64.97
68.69
66.46
79.17
93.44 | | D areaprop 1 areaprop 2 areaprop 3 areaprop 4 areaprop 5 areaprop 6 areaprop 7 areaprop 9 areaprop 9 areaprop 0 areaprop | 25.38
30.69
27.75
29.82
33.87
36.07
38.9
41.52
46.54 | 6.184
7.481
6.763
7.268
8.254
7.813
8.427
8.995
10.08 | 0.06375
0.07711
0.06972
0.07492
0.08508
0.08337
0.08993
0.09599
0.1076 | 14.88
18
16.28
17.49
19.86
22.25
24
25.62
28.71 | 24.8
30.0
27.1
29.1
33.1
35.4
38.2
40.8
45.7 | 6 26.03
4 38.53
4 46.66
6 42.14
9 45.23
5 51.43
6 51.88
5 55.94
3 59.77
6 66.93 | basinpro | pp1 129.
pp1 15 | 4 28.04
6 33.79 | 0.2992 | 79.85 | 127.3
153.4 | 186.1 basii
224.3 basii | prop2 1.10 | E+02 2.38E
E+02 2.88E | E+01 2.54E
E+01 3.08E | -01 6.77E
-01 8.21E | +01 1.08E+0
+01 1.31E+0 | 1.58E+02
12 1.91E+02 | hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop | 31.97
37.08
42.16
62.24
71.25
80.82
87.29
95.42
117.7
133.5
150.6
148.1 | 8.936
10.16
15.17
17.36
19.7
21.27
23.26
25.49
28.91
32.63
32.09
34.65 | .08718
0.1011
0.115
0.1563
0.179
0.203
0.2193
0.2397
0.272
0.3085
0.3482
0.3424
0.3698 | 21.71
24.69
36.5
41.78
47.4
51.2
55.96
72.59
82.33
92.93
91.38 | 36.37
41.35
60.92
69.74
79.11
85.45
93.4
115.7
131.2
148.1
145.6 | 56.14
63.83
94.51
108.2
122.7
132.6
144.9
169.2
191.9
216.6
213 | tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop | 24.22
22.08
32.04
45.71
48.21
49.63
60.57
66.08
69.86
67.59
80.52 | 5.837
5.322
7.809
11.14
11.75
12.1
14.76
14.31
15.13
14.64
17.44 | 0.06605
0.06022
0.0805
0.1148
0.1211
0.1247
0.1522
0.1527
0.1615
0.1562
0.1861 | 12.93
18.79
26.8
28.27
29.11
35.52
40.76
43.09
41.7
49.67 | 21.66
31.37
44.74
47.19
48.58
59.29
64.97
68.69
66.46
79.17 | | D areaprop 1 areaprop 2 areaprop 3 areaprop 4 areaprop 5 areaprop 6 areaprop 7 areaprop 9 areaprop 9 areaprop 0 areaprop 1 areaprop |
25.38
30.69
27.75
29.82
33.87
36.07
38.9
41.52
46.54
54.25 | 6.184
7.481
6.763
7.268
8.254
7.813
8.427
8.995
10.08
11.75 | 0.06375
0.07711
0.06972
0.07492
0.08508
0.08337
0.08993
0.09599
0.1076
0.1254 | 14.88
18
16.28
17.49
19.86
22.25
24
25.62
28.71
33.46 | 24.8
30.0
27.1
29.1
33.1
35.4
38.2
40.8
45.7
53.3 | 6 26.0: 4 38.5: 4 46.6: 6 42.1: 9 45.2: 5 51.4: 6 51.8: 5 55.9: 3 59.7: 6 66.9: 4 7: 3 109.: | basinpro
basinpro | pp1 129.
pp1 15
pp1 168. | 4 28.04
6 33.79
5 46.77 | 0.2992
0.3606 | 79.85
96.24 | 127.3
153.4
163.3 | 186.1 basii
224.3 basii
272.7 basii | nprop2 1.10
nprop2 1.33 | E+02 2.38E
E+02 2.88E
E+02 3.83E | E+01 2.54E
E+01 3.08E
E+01 3.83E | -01 6.77E
-01 8.21E
-01 7.57E | +01 1.08E+0
+01 1.31E+0
+01 1.34E+0 | 12 1.58E+02
12 1.91E+02
12 2.23E+02 | hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop | 31.97
37.08
42.16
62.24
71.25
80.82
87.29
95.42
117.7
133.5
150.6
148.1
160
171.5 | 8.936
10.16
15.17
17.36
19.7
21.27
23.26
25.49
28.91
32.63
32.09
34.65
47.59 | .08718
0.1011
0.115
0.1563
0.179
0.203
0.2193
0.2397
0.272
0.3085
0.3482
0.3482
0.3498
0.476 | 21.71
24.69
36.5
41.78
47.4
51.2
55.96
72.59
82.33
92.93
91.38
98.68 | 36.37
41.35
60.92
69.74
79.11
85.45
93.4
115.7
131.2
148.1
145.6
157.3 | 56.14
63.83
94.51
108.2
122.7
132.6
144.9
169.2
191.9
216.6
213
230 | tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop | 24.22
22.08
32.04
45.71
48.21
49.63
60.57
66.08
69.86
67.59
80.52
95.03 | 5.837
5.322
7.809
11.14
11.75
12.1
14.76
14.31
15.13
14.64
17.44
20.59 | 0.06605
0.06022
0.0805
0.1148
0.1211
0.1247
0.1522
0.1527
0.1615
0.1562
0.1861
0.2197 | 12.93
18.79
26.8
28.27
29.11
35.52
40.76
43.09
41.7
49.67
58.62 | 21.66
31.37
44.74
47.19
48.58
59.29
64.97
68.69
66.46
79.17
93.44 | | 0 areaprop 1 areaprop 2 areaprop 3 areaprop 4 areaprop 5 areaprop 6 areaprop 7 areaprop 8 areaprop 9 areaprop 0 areaprop 1 areaprop 1 areaprop 2 areaprop | 25.38
30.69
27.75
29.82
33.87
36.07
38.9
41.52
46.54
54.25
67.52 | 6.184
7.481
6.763
7.268
8.254
7.813
8.427
8.995
10.08
11.75
18.73 | 0.06375
0.07711
0.06972
0.07492
0.08508
0.08337
0.08993
0.09599
0.1076
0.1254
0.1874 | 14.88
18
16.28
17.49
19.86
22.25
24
25.62
28.71
33.46
37.04 | 24.8
30.0
27.1
29.1
33.1
35.4
40.8
45.7
53.3
65.4 | 6 26.0:4 4 38.5:4 4 46.6:6 6 42.1:1 6 51.8:8 5 55.9:7 6 66.9:4 7:1 7:1 7:1 7:1 7:1 7:1 7:1 7:1 7:1 7:1 | basinpro
basinpro
basinpro | pp1 129.
pp1 15
pp1 168.
pp1 177. | 4 28.04
6 33.79
5 46.77
1 49.13 | 0.2992
0.3606
0.4678 | 79.85
96.24
92.46 | 127.3
153.4
163.3
171.6 | 186.1 basii
224.3 basii
272.7 basii
286.5 basii | nprop2 1.10
nprop2 1.33
nprop2 1.38 | E+02 2.38E
E+02 2.88E
E+02 3.83E
E+02 3.99E | E+01 2.54E
E+01 3.08E
E+01 3.83E
E+01 3.99E | -01 6.77E
-01 8.21E
-01 7.57E
-01 7.88E | +01 1.08E+0
+01 1.31E+0
+01 1.34E+0
+01 1.39E+0 | 12 1.58E+02
12 1.91E+02
12 2.23E+02
12 2.32E+02 | hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop | 31.97
37.08
42.16
62.24
71.25
80.82
87.29
95.42
117.7
133.5
150.6
148.1
160
171.5
171.1 | 8.936
10.16
15.17
17.36
19.7
21.27
23.26
25.49
28.91
32.63
32.09
34.65
47.59
47.47 | .08718
0.1011
0.115
0.1563
0.179
0.203
0.2193
0.2397
0.272
0.3085
0.3482
0.3482
0.3698
0.476 | 21.71
24.69
36.5
41.78
47.4
51.2
55.96
72.59
82.33
92.93
91.38
98.68
94.08 | 36.37
41.35
60.92
69.74
79.11
85.45
93.4
115.7
131.2
148.1
145.6
157.3
166.2 | 56.14
63.83
94.51
108.2
122.7
132.6
144.9
169.2
191.9
216.6
213
230
277.5 | tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop | 24.22
22.08
32.04
45.71
48.21
49.63
60.57
66.08
69.86
67.59
80.52
95.03
114.3 | 5.837
5.322
7.809
11.14
11.75
12.1
14.76
14.31
15.13
14.64
17.44
20.59
31.72 | 0.06605
0.06022
0.0805
0.1148
0.1211
0.1247
0.1522
0.1527
0.1615
0.1562
0.1861
0.2197
0.3174 | 12.93
18.79
26.8
28.27
29.11
35.52
40.76
43.09
41.7
49.67
58.62
62.72 | 21.66
31.37
44.74
47.19
48.58
59.29
64.97
68.69
66.46
79.17
93.44
110.8 | | D areaprop L areaprop L areaprop B areaprop A areaprop D | 25.38
30.69
27.75
29.82
33.87
36.07
38.9
41.52
46.54
54.25
67.52
68.34 | 6.184
7.481
6.763
7.268
8.254
7.813
8.427
8.995
10.08
11.75
18.73 | 0.06375
0.07711
0.06972
0.07492
0.08508
0.08337
0.08993
0.09599
0.1076
0.1254
0.1874 | 14.88
18
16.28
17.49
19.86
22.25
24
25.62
28.71
33.46
37.04 | 24.8
30.0
27.1
29.1
33.1
35.4
40.8
45.7
53.3
65.4
66.2 | 6 26.0:4 38.5:4 46.6:6 42.1-9 45.2:5 51.4:5 55.9-3 35.55.9-6 66.69.3 109.3 110.0 7 118.7 | basinpro
basinpro
basinpro
basinpro | pp1 129.
pp1 15
pp1 168.
pp1 177.
pp1 179. | 4 28.04
6 33.79
5 46.77
1 49.13
1 49.69 | 0.2992
0.3606
0.4678
0.4915 | 79.85
96.24
92.46
97.14 | 127.3
153.4
163.3
171.6
173.6 | 186.1 basii
224.3 basii
272.7 basii
286.5 basii
289.8 basii | nprop2 1.10
nprop2 1.33
nprop2 1.38
nprop2 1.44
nprop2 1.40 | E+02 2.38E
E+02 2.88E
E+02 3.83E
E+02 3.99E
E+02 3.89E | E+01 2.54E
E+01 3.08E
E+01 3.83E
E+01 3.99E
E+01 3.89E | -01 6.77E
-01 8.21E
-01 7.57E
-01 7.88E
-01 7.69E | +01 1.08E+0
+01 1.31E+0
+01 1.34E+0
+01 1.39E+0 | 12 1.58E+02
12 1.91E+02
12 2.23E+02
12 2.32E+02
12 2.27E+02 | hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop | 31.97
37.08
42.16
62.24
71.25
80.82
87.29
95.42
117.7
133.5
150.6
148.1
160
171.5
171.1 | 8.936
10.16
15.17
17.36
19.7
21.27
23.26
25.49
28.91
32.63
32.09
34.65
47.59
47.47
47.03 | .08718
0.1011
0.115
0.1563
0.179
0.203
0.2193
0.2397
0.272
0.3085
0.3482
0.3424
0.3698
0.476
0.4749 | 21.71
24.69
36.5
41.78
47.4
51.2
55.96
72.59
82.33
92.93
91.38
98.68
94.08
93.85 | 36.37
41.35
60.92
69.74
79.11
85.45
93.4
115.7
131.2
148.1
145.6
157.3
166.2
165.8 | 56.14
63.83
94.51
108.2
122.7
132.6
144.9
169.2
191.9
216.6
213
230
277.5
276.8 | tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop | 24.22
22.08
32.04
45.71
48.21
49.63
60.57
66.08
69.86
67.59
80.52
95.03
114.3
117.7 | 5.837
5.322
7.809
11.14
11.75
12.1
14.76
14.31
15.13
14.64
17.44
20.59
31.72
32.66 | 0.06605
0.06022
0.0805
0.1148
0.1211
0.1247
0.1522
0.1615
0.16615
0.1562
0.1861
0.2197
0.3174
0.3267 | 12.93
18.79
26.8
28.27
29.11
35.52
40.76
43.09
41.7
49.67
58.62
62.72
64.58 | 21.66
31.37
44.74
47.19
48.58
59.29
64.97
68.69
66.46
79.17
93.44
110.8 | | D areaprop 1 areaprop 2 areaprop 3 areaprop 4 areaprop 5 areaprop 6 areaprop 7 areaprop 8 areaprop 9 areaprop 0 areaprop 1 areaprop 1 areaprop 2 areaprop 3 areaprop 4 areaprop 4 areaprop | 25.38
30.69
27.75
29.82
33.87
36.07
38.9
41.52
46.54
54.25
67.52
68.34
73.03 | 6.184
7.481
6.763
7.268
8.254
7.813
8.427
8.995
10.08
11.75
18.73
18.96
20.26 | 0.06375
0.07711
0.06972
0.07492
0.08508
0.08337
0.08593
0.09599
0.1076
0.1254
0.1874
0.1897
0.2027 | 14.88
18
16.28
17.49
19.86
22.25
24
25.62
28.71
33.46
37.04
37.49 | 24.8
30.0
27.1
29.1
33.1
35.4
40.8
45.7
53.3
65.4
66.2 | 6 26.0:4
4 38.5:4
4 46.6:6
6 42.1:9
9 45.2:5
5 51.4:5
5 55.9:7
6 69.9
4 77:1
3 109.3
3 110.0
7 118.5 | basinpro
basinpro
basinpro
basinpro
basinpro | pp1 129.
pp1 15
pp1 168.
pp1 177.
pp1 179.
pp1 161. | 4 28.04
6 33.79
5 46.77
1 49.13
1 49.69
8 44.9 | 0.2992
0.3606
0.4678
0.4915
0.4971 | 79.85
96.24
92.46
97.14
98.25 | 127.3
153.4
163.3
171.6
173.6
156.8 | 186.1 basii
224.3 basii
272.7 basii
286.5 basii
289.8 basii
261.8 basii | nprop2 1.10
nprop2 1.33
nprop2 1.38
nprop2 1.44
nprop2 1.40 | E+02 2.38E
E+02
2.88E
E+02 3.83E
E+02 3.99E
E+02 3.89E
E+02 3.62E | E+01 2.54E
E+01 3.08E
E+01 3.83E
E+01 3.99E
E+01 3.89E
E+01 3.62E | -01 6.77E
-01 8.21E
-01 7.57E
-01 7.88E
-01 7.69E
-01 7.15E | +01 1.08E+0
+01 1.31E+0
+01 1.34E+0
+01 1.39E+0
+01 1.36E+0
+01 1.26E+0 | 12 1.58E+02
12 1.91E+02
12 2.23E+02
12 2.32E+02
12 2.27E+02
12 2.11E+02 | hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop | 31.97
37.08
42.16
62.24
71.25
80.82
87.29
95.42
117.7
133.5
150.6
148.1
160
171.5
171.1
169.5 | 8.936
10.16
15.17
17.36
19.7
21.27
23.26
25.49
28.91
32.63
32.09
34.65
47.59
47.47
47.03 | .08718
0.1011
0.115
0.1563
0.179
0.203
0.2193
0.2397
0.272
0.3085
0.3482
0.3482
0.3424
0.3698
0.476
0.4749
0.4705 | 21.71
24.69
36.5
41.78
47.4
51.2
55.96
72.59
82.33
92.93
91.38
94.08
93.85
92.98 | 36.37
41.35
60.92
69.74
79.11
85.45
93.4
115.7
131.2
148.1
145.6
157.3
166.2
165.8 | 56.14
63.83
94.51
108.2
122.7
132.6
144.9
169.2
191.9
216.6
213
230
277.5
276.8
274.3 | tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop | 24.22
22.08
32.04
45.71
48.21
49.63
60.57
66.08
69.86
67.59
80.52
95.03
114.3
117.7
132.2 | 5.837
5.322
7.809
11.14
11.75
12.1
14.76
14.31
15.13
14.64
17.44
20.59
31.72
32.66
36.68 | 0.06605
0.06022
0.0805
0.1148
0.12147
0.1522
0.1527
0.1615
0.1562
0.1861
0.2197
0.3174
0.3267
0.3669 | 12.93
18.79
26.8
28.27
29.11
35.52
40.76
43.09
41.7
49.67
58.62
62.72
64.58
72.52 | 21.66
31.37
44.74
47.19
48.58
59.29
64.97
68.69
66.46
79.17
93.44
110.8
114.1
128.1 | | D areaprop 1 areaprop 2 areaprop 3 areaprop 4 areaprop 5 areaprop 6 areaprop 7 areaprop 8 areaprop 9 areaprop 0 areaprop 1 areaprop 1 areaprop 2 areaprop 2 areaprop 3 areaprop 4 areaprop 5 areaprop 5 areaprop 6 areaprop 7 areaprop 8 areaprop 9 | 25.38
30.69
27.75
29.82
33.87
36.07
38.9
41.52
46.54
54.25
67.52
68.34
73.03
64.44 | 6.184
7.481
6.763
7.268
8.254
7.813
8.427
8.995
10.08
11.75
18.73
18.96
20.26 | 0.06375
0.07711
0.06972
0.07492
0.08508
0.08337
0.08593
0.09599
0.1076
0.1254
0.1874
0.1897
0.2027 | 14.88
18
16.28
17.49
19.86
22.25
24
25.62
28.71
33.46
37.04
40.06
35.35 | 24.8
30.0
27.1
29.1
33.1
35.4
40.8
45.7
53.3
65.4
66.2
70.7
62.4 | 6 26.0:4 38.5:4 4 46.6:6 42.1:4 45.2:5 5 51.4:6 51.8:8 55.9:7 55.9:9 3 59.7:6 6 66.9:3 100.3 3 110.1 7 118.8:7 119.6 6 99.9 | basinpro
basinpro
basinpro
basinpro
basinpro
basinpro
basinpro | pp1 129.
pp1 15.
pp1 168.
pp1 177.
pp1 179.
pp1 161.
pp1 156. | 4 28.04
6 33.79
5 46.77
1 49.13
1 49.69
8 44.9
5 43.41 | 0.2992
0.3606
0.4678
0.4915
0.4971
0.4491 | 79.85
96.24
92.46
97.14
98.25
88.77 | 127.3
153.4
163.3
171.6
173.6
156.8
151.6 | 186.1 basii
224.3 basii
272.7 basii
286.5 basii
289.8 basii
261.8 basii
253.1 basii | nprop2 1.10
nprop2 1.33
nprop2 1.38
nprop2 1.44
nprop2 1.40
nprop2 1.30 | E+02 2.38E
E+02 2.88E
E+02 3.83E
E+02 3.99E
E+02 3.62E
E+02 3.58E | E+01 2.54E
E+01 3.08E
E+01 3.83E
E+01 3.99E
E+01 3.89E
E+01 3.62E
E+01 3.58E | -01 6.77E
-01 8.21E
-01 7.57E
-01 7.88E
-01 7.69E
-01 7.15E
-01 7.07E | +01 1.08E+0
+01 1.31E+0
+01 1.34E+0
+01 1.39E+0
+01 1.36E+0
+01 1.26E+0
+01 1.25E+0 | 12 1.58E+02
12 1.91E+02
12 2.23E+02
12 2.32E+02
12 2.27E+02
12 2.11E+02
12 2.09E+02 | hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop | 31.97
37.08
42.16
62.24
71.25
80.82
87.29
95.42
117.7
133.5
150.6
148.1
160
171.5
171.1
169.5
163.2 | 8.936
10.16
15.17
17.36
19.7
21.27
23.26
25.49
28.91
32.63
32.09
34.65
47.59
47.47
47.03
45.29
50.54 | .08718
0.1011
0.115
0.1563
0.179
0.203
0.2193
0.2397
0.272
0.3085
0.3085
0.3482
0.3424
0.3698
0.4749
0.4705
0.4749
0.4705
0.4749 | 21.71
24.69
36.5
41.78
47.4
51.2
55.96
72.59
82.33
92.93
91.38
98.68
94.08
93.85
92.98
89.54 | 36.37
41.35
60.92
69.74
79.11
85.45
93.4
115.7
131.2
148.1
145.6
157.3
166.2
165.8
164.3 | 56.14
63.83
94.51
108.2
122.7
132.6
144.9
169.2
191.9
216.6
213
230
277.5
276.8
274.3
264.1 | tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop
tunaprop | 24.22
22.08
32.04
45.71
48.21
49.63
60.57
66.08
69.86
67.59
80.52
95.03
114.3
117.7
132.2
123.7 | 5.837
5.322
7.809
11.14
11.75
12.1
14.76
14.31
15.13
14.64
20.59
31.72
32.66
36.68
34.33 | 0.06605
0.06022
0.0805
0.1148
0.1211
0.1527
0.1527
0.1615
0.1562
0.1861
0.2197
0.3174
0.3267
0.3669
0.3434 | 12.93
18.79
26.8
28.27
29.11
35.52
40.76
43.09
41.7
49.67
58.62
62.72
64.58
72.52
67.86 | 21.66
31.37
44.74
47.19
48.58
59.29
64.97
68.69
66.46
79.17
93.44
110.8
114.1
128.1 | | O areaprop 1 areaprop 2 areaprop 3 areaprop 3 areaprop 6 areaprop 6 areaprop 6 areaprop 7 areaprop 9 areaprop 0 areaprop 1 areaprop 2 areaprop 2 areaprop 3 areaprop 3 areaprop 5 areaprop 6 | 25.38
30.69
27.75
29.82
33.87
36.07
38.9
41.52
46.54
54.55
67.52
68.34
73.03
64.44
61.77
56 | 6.184
7.481
6.763
7.268
8.254
7.813
8.427
8.995
10.08
11.75
18.73
18.96
20.26
17.88 | 0.06375
0.07711
0.06972
0.07492
0.08508
0.08337
0.08993
0.09599
0.1076
0.1254
0.1874
0.1897
0.1799
0.1714 | 14.88
18
16.28
17.49
19.86
22.25
24
25.62
28.71
33.46
37.04
40.06
35.35
33.88 | 24.8
30.0
27.1
29.1
33.1
35.4
40.8
45.7
53.3
65.4
66.2
70.7
62.4 | 6 26.0.4
4 38.5.3
4 46.6.6
4 2.1.9
9 45.2.5
5 51.4.5
5 55.9.9
5 55.9.3
109.3
3 110.0
3 110.0
118.5
5 104.5
5 99.9
7 90.7 | basinpro
basinpro
basinpro
basinpro
basinpro
basinpro
basinpro | pp1 129.
pp1 15.
pp1 168.
pp1 177.
pp1 179.
pp1 161.
pp1 156.
pp1 14 | 4 28.04
6 33.79
5 46.77
1 49.13
1 49.69
8 44.9
5 43.41
8 41.05 | 0.2992
0.3606
0.4678
0.4915
0.4971
0.4491
0.4342 | 79.85
96.24
92.46
97.14
98.25
88.77
85.82 | 127.3
153.4
163.3
171.6
173.6
156.8
151.6
143.4 | 186.1 basin
224.3 basin
272.7 basin
286.5 basin
289.8 basin
261.8 basin
253.1 basin
239.4 basin | nprop2 1.10
nprop2 1.33
nprop2 1.38
nprop2 1.44
nprop2 1.40
nprop2 1.30
nprop2 1.29 | E+02 2.88E
E+02 3.83E
E+02 3.99E
E+02 3.89E
E+02 3.62E
E+02 3.58E
E+02 3.31E | E+01 2.54E
E+01 3.08E
E+01 3.83E
E+01 3.99E
E+01 3.62E
E+01 3.58E
E+01 3.31E | -01 6.77E
-01 8.21E
-01 7.57E
-01 7.88E
-01 7.69E
-01 7.15E
-01 7.07E
-01 6.55E | +01 1.08E+0
+01 1.31E+0
+01 1.34E+0
+01 1.39E+0
+01 1.36E+0
+01 1.26E+0
+01 1.25E+0
+01 1.16E+0 | 12 1.58E+02
12 1.91E+02
12 2.23E+02
12 2.32E+02
12 2.37E+02
12 2.11E+02
12 2.09E+02
12 1.93E+02 | hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop | 31.97
37.08
42.16
62.24
71.25
80.82
87.29
95.42
117.7
133.5
150.6
148.1
160
171.5
171.1
169.5
163.2
182.1 | 8.936
10.16
15.17
17.36
19.7
21.27
23.26
25.49
28.91
32.63
32.09
34.65
47.59
47.47
47.03
45.29
50.54 | .08718
0.1011
0.115
0.1563
0.179
0.203
0.2193
0.2397
0.272
0.3085
0.3085
0.3482
0.3424
0.3698
0.4749
0.4705
0.4749
0.4705
0.4749 | 21.71
24.69
36.5
41.78
47.4
51.2
55.96
72.59
82.33
92.93
91.38
98.68
94.08
93.85
92.98
89.54 | 36.37
41.35
60.92
69.74
79.11
85.45
93.4
115.7
131.2
148.1
145.6
157.3
166.8
164.3
158.2 | 56.14
63.83
94.51
108.2
122.7
132.6
144.9
169.2
191.9
216.6
213
230
277.5
276.8
274.3
264.1
294.7 | tunaprop | 24.22
22.08
32.04
45.71
48.21
49.63
60.57
66.08
69.86
67.59
80.52
95.03
114.3
117.7
132.2
123.7 | 5.837
5.322
7.809
11.14
11.75
12.1
14.76
14.31
15.13
14.64
17.44
20.59
31.72
32.66
36.68
34.33
31.52 |
0.06605
0.06022
0.0805
0.1141
0.1211
0.1247
0.1522
0.1527
0.1615
0.1861
0.2197
0.3174
0.32669
0.3434
0.3154 | 12.93
18.79
26.8
28.27
29.11
35.52
40.76
43.09
41.7
49.67
58.62
62.72
64.58
72.52
67.86
62.33 | 21.66
31.37
44.74
47.19
48.58
59.29
64.97
68.69
66.46
79.17
93.44
110.8
114.1
1128.1
119.9 | | 90 areaprop 11 areaprop 22 areaprop 23 areaprop 24 areaprop 24 areaprop 26 areaprop 26 areaprop 27 areaprop 28 areaprop 29 areaprop 20 areaprop 21 areaprop 21 areaprop 21 areaprop 22 areaprop 24 areaprop 25 areaprop 26 areaprop 26 areaprop 27 areaprop 27 areaprop 27 areaprop | 25.38
30.69
27.75
29.82
33.87
36.07
38.9
41.52
46.54
54.25
67.52
68.34
73.03
64.44
61.77 | 6.184
7.481
6.763
7.268
8.254
7.813
8.427
8.995
10.08
11.75
18.73
18.96
20.26
17.88
17.14 | 0.06375
0.07711
0.06972
0.07492
0.08508
0.08337
0.08993
0.09599
0.1076
0.1254
0.1874
0.1897
0.2027
0.1789
0.1714
0.1714 | 14.88
18
16.28
17.49
19.86
22.25
24
25.62
28.71
33.46
37.04
37.04
37.04
35.35
33.88 | 24.8
30.0
27.1
29.1
33.1
35.4
40.8
45.7
53.3
65.4
66.2
70.7
62.4
59.8 | 6 26.0.4
4 38.5.3
4 46.6
4 45.2
9 45.2
9 45.2
5 51.4
6 51.8
5 55.9
3 59.7
6 6.9
4 7.1
118.8
104.6
6 99.9
7 99.0
7 118.8 | basinpro
basinpro
basinpro
basinpro
basinpro
basinpro
basinpro
basinpro
basinpro
basinpro
basinpro
basinpro | pp1 129. pp1 15. pp1 168. pp1 177. pp1 179. pp1 161. pp1 156. pp1 14. pp1 196. | 4 28.04
6 33.79
5 46.77
1 49.13
1 49.69
8 44.9
5 43.41
8 41.05
7 53.39 | 0.2992
0.3606
0.4678
0.4915
0.4971
0.4491
0.4342
0.4107 | 79.85
96.24
92.46
97.14
98.25
88.77
85.82
81.17 | 127.3
153.4
163.3
171.6
173.6
156.8
151.6
143.4 | 186.1 basin
224.3 basin
272.7 basin
286.5 basin
289.8 basin
261.8 basin
253.1 basin
239.4 basin
312.1 basin | nprop2 1.10
nprop2 1.33
nprop2 1.38
nprop2 1.44
nprop2 1.40
nprop2 1.30
nprop2 1.30 | E+02 2.38E
E+02 2.88E
E+02 3.83E
E+02 3.99E
E+02 3.62E
E+02 3.58E
E+02 3.58E
E+02 4.35E | E+01 2.54E
E+01 3.08E
E+01 3.83E
E+01 3.99E
E+01 3.89E
E+01 3.62E
E+01 3.58E
E+01 3.31E
E+01 4.96E | -01 6.77E
-01 8.21E
-01 7.57E
-01 7.88E
-01 7.69E
-01 7.07E
-01 6.55E
-01 8.95E | +01 1.08E+0
+01 1.31E+0
+01 1.34E+0
+01 1.34E+0
+01 1.39E+0
+01 1.36E+0
+01 1.25E+0
+01 1.16E+0
+01 1.55E+0 | 12 1.58E+02
12 1.91E+02
12 2.23E+02
12 2.32E+02
12 2.27E+02
12 2.11E+02
12 2.09E+02
12 1.93E+02
12 2.54E+02 | hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop | 31.97
37.08
42.16
62.24
71.25
80.82
87.29
95.42
117.7
133.5
150.6
148.1
160
171.5
163.2
182.1
161.9 | 8.936
10.16
15.17
17.36
19.7
21.27
23.26
25.49
28.91
32.63
32.09
34.65
47.59
47.47
47.03
45.29
50.54
44.91
60.36 | .08718 0.1011 0.115 0.1563 0.179 0.203 0.2193 0.2397 0.272 0.272 0.3085 0.3482 0.3492 0.476 0.4769 0.4705 0.4531 0.04493 | 21.71
24.69
36.5
41.78
47.4
51.2
55.96
72.59
82.33
92.93
91.38
98.68
93.85
92.98
89.54
99.92
124.3 | 36.37
41.35
60.92
69.74
79.11
85.45
93.4
115.7
131.2
148.6
157.3
166.2
165.8
164.3
158.2
176.5
156.9 | 56.14
63.83
94.51
108.2
122.7
132.6
144.9
169.2
216.6
213
230
277.5
276.8
274.3
264.1
294.7
261.9 | tunaprop | 24.22
22.08
32.04
45.71
48.21
49.63
60.57
66.08
69.86
67.59
95.03
114.3
117.7
132.2
123.7
113.6 | 5.837
5.322
7.809
11.14
11.75
12.1
14.76
14.31
15.13
14.64
17.44
20.59
31.72
32.66
36.68
34.33
31.52
29.26 | 0.06605
0.06022
0.0805
0.1148
0.1211
0.1247
0.1522
0.1615
0.1562
0.1861
0.2197
0.3174
0.3267
0.3669
0.3434
0.3154
0.2927 | 12.93
18.79
26.8
28.27
29.11
35.52
40.76
43.09
41.7
49.67
58.62
62.72
64.58
72.52
67.85
62.33
57.85
68.41 | 21.66
31.37
44.74
47.19
48.58
59.29
64.97
68.69
66.46
79.17
93.44
110.8
114.1
128.1
119.9
110.1 | | 90 areaprop 91 areaprop 91 areaprop 91 areaprop 92 areaprop 93 areaprop 94 areaprop 96 areaprop 96 areaprop 97 areaprop 99 areaprop 00 areaprop 01 areaprop 01 areaprop 02 areaprop 03 areaprop 04 areaprop 05 areaprop 06 areaprop 06 areaprop | 25.38
30.69
27.75
29.82
33.87
36.07
38.9
41.52
46.54
54.25
67.52
68.34
73.03
64.44
61.77
56
74.85
71.46 | 6.184
7.481
6.763
7.268
8.254
7.813
8.427
8.995
10.08
11.75
18.73
18.96
20.26
17.88
17.14
15.54
20.32 | 0.06375
0.07711
0.06972
0.07492
0.08508
0.08538
0.08993
0.09599
0.1076
0.1254
0.1874
0.1897
0.2027
0.1789
0.1714
0.1554 | 14.88
18
16.28
17.49
19.86
22.25
24
25.62
28.71
33.46
40.06
35.35
33.88
30.72
41.84
39.95 | 24.8
30.0
27.1
29.1
33.1
35.4
40.8
45.7
53.3
65.4
66.2
70.7
62.4
59.8
54.2
72.6
69.3 | 6 26.0:4 4 38.5:4 4 46.6:4 4 42.1-9 9 45.2:5 5 51.4:6 6 51.8:8 5 55.9-3 3 59.7-7 118.8 5 104.1 7 118.9 9 113.9 | basinpro | pp1 129. pp1 15. pp1 168. pp1 177. pp1 179. pp1 161. pp1 156. pp1 14. pp1 196. pp1 196. | 4 28.04
6 33.79
5 46.77
1 49.13
1 49.69
8 44.9
5 43.41
8 41.05
7 53.39
7 53.66 | 0.2992
0.3606
0.4678
0.4915
0.4971
0.4491
0.4342
0.4107
0.6098
0.613 | 79.85
96.24
92.46
97.14
98.25
88.77
85.82
81.17
109.9
110.5 | 127.3
153.4
163.3
171.6
173.6
156.8
151.6
143.4
191 | 186.1 basin
224.3 basin
272.7 basin
286.5 basin
289.8 basin
261.8 basin
253.1 basin
239.4 basin
312.1 basin
313.7 basin | nprop2 1.10
nprop2 1.33
nprop2 1.38
nprop2 1.44
nprop2 1.40
nprop2 1.20
nprop2 1.29
nprop2 1.19
nprop2 1.60
nprop2 1.60 | E+02 2.38E
E+02 2.88E
E+02 3.83E
E+02 3.99E
E+02 3.62E
E+02 3.58E
E+02 3.31E
E+02 4.35E | E+01 2.54E
E+01 3.08E
E+01 3.83E
E+01 3.99E
E+01 3.89E
E+01 3.62E
E+01 3.58E
E+01 3.31E
E+01 4.96E
E+01 5.21E | -01 6.77E
-01 8.21E
-01 7.57E
-01 7.88E
-01 7.69E
-01 7.15E
-01 7.07E
-01 6.55E
-01 8.95E
-01 9.39E | +01 1.08E+0
+01 1.31E+0
+01 1.34E+0
+01 1.39E+0
+01 1.36E+0
+01 1.26E+0
+01 1.25E+0
+01 1.55E+0
+01 1.55E+0
+01 1.63E+0 | 2 1.58E+02
12 1.91E+02
2 2.23E+02
2 2.32E+02
2 2.27E+02
2 2.11E+02
2 2.09E+02
12 1.93E+02
12 2.54E+02
12 2.67E+02 | hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop | 31.97
37.08
42.16
62.24
71.25
80.82
95.42
117.7
133.5
150.6
148.1
160
171.5
171.1
169.5
163.2
182.1
161.2
182.1 | 8.936
10.16
15.17
17.36
19.7
21.27
23.26
25.49
28.91
32.63
32.09
34.65
47.59
47.47
47.03
45.29
50.54
44.91
60.36
46.73 | .08718 0.1011 0.115 0.1563 0.179 0.203 0.2193 0.2397 0.272 0.3085 0.3482 0.3462 0.3462 0.4749 0.4705 0.4531 0.5056 0.4493 0.6894 0.5337 | 21.71
24.69
36.5
41.78
47.4
51.2
55.96
72.59
82.33
92.93
91.38
98.68
94.08
94.08
99.38
95.4
99.92
88.79
124.3
96.23 | 36.37
41.35
60.92
69.74
79.11
85.45
93.4
115.7
131.2
148.1
145.6
157.3
166.2
165.8
164.3
158.2
176.5
156.5
156.5 | 56.14
63.83
94.51
108.2
122.7
132.6
144.9
216.6
213
230
277.5
276.8
274.3
264.1
294.7
261.9
352.8
273.1 | tunaprop | 24.22
22.08
32.04
45.71
48.21
49.63
60.57
66.08
69.86
67.59
80.52
95.03
114.3
117.7
132.2
123.7
113.6
105.5 | 5.837
5.322
7.809
11.175
12.1
14.76
14.31
15.13
14.64
17.44
20.59
31.72
32.66
36.68
34.33
31.52
29.26
33.22
31.72 | 0.06605
0.06022
0.0805
0.1148
0.1211
0.1247
0.1522
0.1615
0.1562
0.1661
0.2197
0.3174
0.3269
0.3434
0.3154
0.2927
0.3623 | 12.93
18.79
26.8
28.27
29.11
35.52
40.76
43.09
41.7
49.67
58.62
62.72
64.58
72.52
67.86
62.33
57.85
68.41
65.32 | 21.66
31.37
44.74
47.19
48.58
59.29
64.97
68.69
66.46
79.17
93.44
110.8
114.1
128.1
119.9
110.1
102.2
118.8
113.5 | | 90 areaprop 11 areaprop 22 areaprop 23 areaprop 24 areaprop 24 areaprop 26 areaprop 26 areaprop 27 areaprop 28 areaprop 29 areaprop 20 areaprop 21 areaprop 21 areaprop 21 areaprop 22 areaprop 24 areaprop 25 areaprop 26 areaprop 26 areaprop 27 areaprop 27 areaprop 27 areaprop | 25.38
30.69
27.75
29.82
33.87
36.07
38.9
41.52
46.54
54.55
67.52
68.34
73.03
64.44
61.77
56
74.85 |
6.184
7.481
6.763
7.268
8.254
7.813
8.427
8.995
10.08
11.75
18.73
18.96
20.26
17.88
17.14 | 0.06375
0.07711
0.06972
0.07492
0.08508
0.08337
0.08593
0.09593
0.1076
0.1254
0.1874
0.1897
0.2027
0.1789
0.1714
0.1554
0.2321
0.2221
0.2225 | 14.88
18
16.28
17.49
19.86
22.25
24
25.62
28.71
33.46
37.04
37.04
37.49
40.35
33.88
30.72
41.84
39.95
40.11 | 24.8
30.0
27.1
29.1
33.1
35.4
40.8
45.7
53.3
65.4
66.2
70.7
62.4
59.8
54.2
72.6
69.3 | 6 26.0.4
4 38.5:4
4 4.6.6
6 42.1
5 51.4
5 51.4
6 66.9
7 7 90.0
7 90.0
7 90.0
9 113.3
9 113.8
8 113.8 | basinpro
basinpro
basinpro
basinpro
basinpro
basinpro
basinpro
basinpro
basinpro
basinpro
basinpro
basinpro | pp1 129. pp1 15. pp1 168. pp1 177. pp1 179. pp1 161. pp1 156. pp1 156. pp1 156. pp1 196. pp1 196. pp1 197. pp1 197. | 4 28.04
6 33.79
5 46.77
1 49.13
1 49.69
8 44.9
5 43.41
8 41.05
7 53.39
7 53.66
6 54.46 | 0.2992
0.3606
0.4678
0.4915
0.4971
0.4491
0.4342
0.4107
0.6098 | 79.85
96.24
92.46
97.14
98.25
88.77
85.82
81.17
109.9 | 127.3
153.4
163.3
171.6
173.6
156.8
151.6
143.4
191
192
194.8 | 186.1 basin
224.3 basin
272.7 basin
286.5 basin
289.8 basin
261.8 basin
253.1 basin
239.4 basin
312.1 basin
313.7 basin
318.3 basin | nprop2 1.10
nprop2 1.33
nprop2 1.38
nprop2 1.44
nprop2 1.40
nprop2 1.30
nprop2 1.29
nprop2 1.15
nprop2 1.16 | E+02 2.38E
E+02 2.88E
E+02 3.89E
E+02 3.89E
E+02 3.62E
E+02 3.58E
E+02 3.58E
E+02 4.56E
E+02 4.56E | E+01 2.54E
E+01 3.08E
E+01 3.83E
E+01 3.99E
E+01 3.89E
E+01 3.62E
E+01 3.58E
E+01 3.31E
E+01 4.96E
E+01 5.21E | -01 6.77E
-01 8.21E
-01 7.57E
-01 7.88E
-01 7.69E
-01 7.15E
-01 7.07E
-01 6.55E
-01 8.95E
-01 9.39E
-01 9.60E | +01 1.08E+0
+01 1.31E+0
+01 1.34E+0
+01 1.39E+0
+01 1.36E+0
+01 1.26E+0
+01 1.25E+0
+01 1.16E+0
+01 1.55E+0
+01 1.63E+0
+01 1.63E+0
+01 1.67E+0 | 2 1.58E+02
12 1.91E+02
12 2.23E+02
12 2.32E+02
12 2.27E+02
12 2.11E+02
12 2.09E+02
12 1.93E+02
12 2.54E+02
12 2.67E+02
12 2.73E+02 | hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop | 31.97
37.08
42.16
62.24
71.25
80.82
87.29
95.42
117.7
133.5
150.6
148.1
160
171.5
171.1
169.5
163.2
182.1
161.9
222.4 | 8.936
10.16
15.17
17.36
19.7
21.27
23.26
25.49
28.91
32.63
32.09
47.47
47.03
45.29
50.54
44.91
60.36
46.73
46.21 | .08718 0.1011 0.115 0.1563 0.1563 0.179 0.203 0.2193 0.2397 0.272 0.30482 0.3482 0.3482 0.476 0.4779 0.4705 0.4531 0.5056 0.4493 0.6894 0.5337 | 21.71
24.69
36.5
41.78
47.4
51.2
55.96
72.59
82.33
92.93
91.38
98.68
93.85
92.98
89.54
99.92
124.3 | 36.37
41.35
60.92
69.74
79.11
85.45
93.4
115.7
131.2
148.1
145.6
157.3
166.2
165.8
164.3
158.2
176.5
156.9
215.9 | 56.14
63.83
94.51
108.2
122.7
132.6
144.9
169.2
216.6
213
230
277.5
276.8
274.3
264.1
294.7
261.9 | tunaprop | 24.22
22.08
32.04
45.71
48.21
49.63
60.57
66.08
69.86
67.59
95.03
114.3
117.7
132.2
123.7
113.6
105.5 | 5.837
5.322
7.809
11.14
11.75
12.1
14.76
14.31
15.13
14.64
17.44
20.59
31.72
32.66
36.68
34.33
31.52
29.26
33.22 | 0.06605
0.06022
0.0805
0.1148
0.1211
0.1247
0.1522
0.1527
0.1615
0.1562
0.1861
0.2197
0.3267
0.3669
0.3434
0.3154
0.2927
0.3794 | 12.93
18.79
26.8
28.27
29.11
35.52
40.76
43.09
41.7
49.67
58.62
62.72
64.58
72.52
67.85
62.33
57.85
68.41 | 21.66
31.37
44.74
47.19
48.58
59.29
64.97
68.69
66.46
79.17
93.44
110.8
114.1
128.1
119.9
110.1
102.2 | Annex 3. Oceanic whitetip shark results in numerical format (shown in Figures 5 and 7): in number (top) and in biomass (bottom). | node mean so | i M | C_error va | al2.5pc n | nedian v | val97.5pc | node | mean | sd | MC_error v | al2.5pc | median | val97.5pc | node | mean | sd | MC_error v | al2.5pc m | edian val | 197.5pc | node i | mean s | d I | MC_error v | al 2.5pc | median v | al97.5pc | node r | mean s | sd | MC_error | val2.5pc r | median | val97.5 | |--|--
--|--|---|--|--
--|---|--|---|--|---|---|--|--|--
---|---|--|---|---|--|---
---	--	---	---
--|---| | 80 areaprop 0.02277 0 | 0.007214 6 | 5.76E-05 | 0.01045 | 0.02227 | 0.03798 | tunaprop | 0.02219 | 0.007029 | 6.59E-05 | 1.02E-02 | 0.0217 | 0.0 | | 81 areaprop 0.02279 0 | 0.007219 6 | 5.77E-05 | 0.01045 | 0.02229 | 0.038 | tunaprop | 0.02357 | 0.007466 | 7.00E-05 | 0.01081 | 0.02305 | 0.03 | | 82 areaprop 0.02248 0 | 0.007122 6 | 5.67E-05 | 0.01031 | 0.02198 | 0.03749 | tunaprop | 0.02652 | 0.0084 | 7.87E-05 | 0.01216 | 0.02593 | 0.044 | | 83 areaprop 0.02089 0 | 0.006616 6 | 5.20E-05 | 0.00958 | 0.02042 | 0.03483 | tunaprop | 0.0241 | 0.007634 | 7.15E-05 | 0.01105 | 0.02357 | 0.040 | | 84 areaprop 0.02285 0 | 0.007237 6 | 5.78F-05 | 0.01048 | 0.02234 | 0.0381 | | | | | | | | | | | | | | | hookprop | 0.04218 | 0.01336 | 1.25E-04 | 0.01935 | 0.04125 | 0.07034 | tunaprop | 0.03066 | 0.009712 | 9.10F-05 | 0.01406 | 0.02998 | 0.051 | | 85 areaprop 0.02173 0 | 0.006882 6 | 45E-05 C | 0000066 | 0.02124 | 0.03623 | | | | | | | | | | | | | | | | 0.03157 | 0.009999 | 9.37E-05 | 0.01448 | 0.03087 | 0.05264 | tunaprop | 0.03435 | 0.01088 | 1.02E-04 | 0.01576 | 0.03359 | 0.057 | | 86 areaprop 0.02318 0 | | | | | 0.03866 | | | | | | | | | | | | | | | hookprop | | | 1.24E-04 | | | 0.06971 | tunanron | | | 1.08F-04 | | 0.03565 | | | 87 areaprop 0.02318 0 | | | | | 0.03866 | | | | | | | | | | | | | | | hookprop | | | 1.43F-04 | | | | tunaprop | 0.000.0 | 0.000 | 1.37F-04 | 0.000.0 | 0.03363 | 0.000 | | o. a.cop.op. a.az.oa a | | | 0.000 | 0.0266 | 0.04537 | | | | | | | | | | | | | | | | 0.0.000 | 0.0-0-0 | | 0.02206 | 0.05343 | 0.000 | | 0.0.00. | 0.02.00 | | 0.0000 | 0.04493 | 0.0.0 | | 88 areaprop 0.02721 0 | | | | 0.0200 | 0.0.00. | | | | | | | | | | | | | | | hookprop | | 0.01731 | | | 0.000.0 | 0.09112 | tunaprop | | | 1.41E-04 | | 0.04030 | 0.07 | | 89 areaprop 0.02497 0 | | | | 0.02442 | 0.04164 | | | | | | | | | | | | | | | hookprop | | 0.02008 | | 0.02907 | 0.06198 | 0.1057 | tunaprop | | | 1.23E-04 | 0.01899 | 0.04048 | | | 90 areaprop 0.02509 0 | | | | 0.02454 | 0.04184 | | | | | | | | | | | | | | | hookprop | 0.0.0. | 0.02200 | 2.14E-04 | | 0.07047 | 0.1202 | tunaprop | 0.000 | | 1.12E-04 | 0.00.00 | 0.03691 | | | 91 areaprop 0.03708 | | | 0.0200 | 0.03602 | 0.06223 | | | | | | | | | | | | | | | hookprop | 0.2000 | 0.03426 | | 0.0487 | 0.1034 | 0.1787 | tunaprop | 0.05482 | | 1.63E-04 | 0.02508 | 0.05326 | 0.00- | | 92 areaprop 0.04485 | | | 0.0000 | 0.04337 | 0.07527 | | | | | | | | | | | | | | | hookprop | 0 | 0.03922 | | 0.05575 | 0.1184 | 0.2046 | tunaprop | 0.0782 | 0.0-0-0 | 2.32E-04 | 0.03577 | 0.07597 | 0.13 | | 93 areaprop 0.04055 | 0.01305 1 | L.20E-04 | 0.01855 | 0.03939 | 0.06805 | | | | | | | | | | | | | | | hookprop | | 0.04449 | | 0.06325 | 0.1343 | 0.2321 | tunaprop | 0.08248 | 0.02654 | 2.45E-04 | 0.03773 | 0.08013 | 0.13 | | 94 areaprop 0.04358 | 0.01402 1 | L.29E-04 | 0.01993 | 0.04234 | 0.07313 | | | | | | | | | | | | | | | hookprop | 0.1493 | 0.04805 | 4.43E-04 | 0.06831 | 0.1451 | 0.2506 | tunaprop | 0.08492 | 0.02732 | 2.52E-04 | 0.03884 | 0.0825 | 0.14 | | 95 areaprop 0.04948 | 0.01592 1 | L47E-04 | 0.02263 | 0.04808 | 0.08305 | | | | | | | | | | | | | | | hookprop | 0.1633 | 0.05253 | 4.84E-04 | 0.07467 | 0.1586 | 0.274 | tunaprop | 0.1036 | 0.03334 | 3.07E-04 | 0.0474 | 0.1007 | 0.17 | | 96 areaprop 0.05267 | 0.01573 1 | L45E-04 | 0.02472 | 0.05167 | 0.08413 | | | | | | | | | | | | | | | hookprop | 0.2012 | 0.06008 | 5.55E-04 | 0.09443 | 0.1974 | 0.3214 | tunaprop | 0.113 | 0.03374 | 3.12E-04 | 0.05302 | 0.1108 | 0.18 | | 97 areaprop 0.05682 | 0.01696 1 | L57E-04 | 0.02666 | 0.05573 | 0.09075 | | | | | | | | | | | | | | | hookprop | 0.2282 | 0.06815 | 6.30E-04 | 0.1071 | 0.2239 | 0.3645 | tunaprop | 0.1195 | 0.03567 | 3.30E-04 | 0.05605 | 0.1172 | 0.19 | | 98 areaprop 0.06065 | 0.01811 1 | 1.67F-04 | 0.02846 | 0.05949 | 0.09686 | hasinnron | 0.1887 | 0.05633 | 5.21F-04 | 0.08853 | 0.1851 | 0.3013 | hasinnror | 0.1571 | 4.69E-02 | 4.33F-04 | 7.37F-02 1 | .54F-01 2 | 2.51F-01 | hookprop | 0.2576 | 0.07692 | 7.11F-04 | 0.1209 | 0.2527 | 0.4115 | tunaprop | 0.1156 | 0.03451 | 3.19F-04 | 0.05424 | 0.1134 | 0.18 | | | 0.0203 1 | | 0.0319 | | 0.1086 | hasinprop | 0.200. | 0.06609 | | 0.1039 | 0.2171 | | | | 5.60E-02 | | | | | hookprop | | 0.07563 | | 0.1189 | 0.2485 | 0.4046 | tunaprop | 0.2200 | 0.00 | 0.1202 | 0.06461 | 0.1351 | | | 00 areaprop 0.07923 | 0.0200 2 | | 0.00-0 | 0.00008 | 0.1065 | basinprop | 0.2214 | 0.0000 | 0.222 | 0.1059 | | 0.0000 | | | 6.79E-02 | | | | | hookprop | 0.200 | 0.07363 | 0.000 | 0.1189 | 0.2683 | 0.4369 | tunaprop | 0.1625 | | 0.000 | 0.00.00 | 0.1594 | | | 01 areaprop 0.09863 | | | | 0.07771 | 0.1743 | basinprop | 0.2883 | 0.0.00 | | 0.1252 | | | | | 8.22E-02 | | | | |
hookprop | 0.2736 | | 9.64E-04 | 0.1284 | 0.28814 | 0.4369 | tunaprop | 0.1025 | | 6.43E-04 | | 0.1394 | 0.00 | | 01 areaprop 0.09863
02 areaprop 0.09982 | | | | 0.09461 | 0.1764 | | 0.2883 | | | 0.1268 | | | | | 8.22E-02
8.56F-02 | | | | | hookprop | 0.2934 | | 9.64E-04
9.61E-04 | 0.129 | 0.2814 | 0.5185 | | | | 6.62F-04 | 0.08602 | 0.1876 | 0.34 | | | 0100110 | | | 0.000.0 | 012101 | basinprop | 0.000 | 0.2000 | 0.000 | | | 0.000 | | | 0.000 | | | | | | 00-0 | 0.2020 | | | 000. | 0.02.0 | tunaprop | | | | 0.00000 | 0.2002 | | | | 0.03715 3 | | | 0.1023 | 0.1886 | basinprop | 0.3063 | 0.200. | 0.002000 | 0.1347 | 0.2939 | 0.5415 | | | 8.35E-02 | | | | | hookprop | 0.2899 | | 9.53E-04 | 0.1275 | 0.2781 | 0.5125 | tunaprop | 0.2261 | | 7.43E-04 | 0.09945 | 0.2169 | 0.00 | | | 0.03278 3 | | 0.04141 | 0.0903 | 0.1664 | basinprop | 0.2768 | 0.0000 | 0.000 | 0.1217 | | | | | 7.76E-02 | | | | | hookprop | 0.2792 | 0.09722 | | 0.1228 | 0.2678 | 0.4935 | tunaprop | 0.2116 | 0.07369 | | 0.09307 | 0.203 | | | | 0.03142 2 | 2.96E-04 | 0.03969 | 0.08655 | 0.1595 | basinprop | 0.2676 | 0.09319 | 8.79E-04 | 0.1177 | 0.2567 | 0.473 | | | 7.68E-02 | | | | | hookprop | 0.3116 | 0.1085 | 0.001024 | 0.137 | 0.2989 | 0.5507 | tunaprop | 0.1943 | 0.06767 | 6.39E-04 | 0.08548 | 0.1864 | 0.34 | | 06 areaprop 0.0818 | 0.02848 2 | 2.69E-04 | 0.03598 | 0.07847 | 0.1446 | basinprop | 0.2531 | 0.08813 | 8.32E-04 | 0.1113 | 0.2428 | 0.4473 | | | 7.11E-02 | | | | | hookprop | 0.2769 | 0.09641 | 9.10E-04 | 0.1218 | 0.2656 | 0.4894 | tunaprop | 0.1804 | 0.06281 | 5.93E-04 | 0.07934 | 0.173 | 0.31 | | 7 areaprop 0.1093 | 0.03755 3 | 3.72E-04 | 0.04752 | 0.1056 | 0.1942 | basinprop | 0.3364 | 0.1155 | 0.001145 | 0.1462 | 0.325 | 0.5974 | basinprop | 2.74E-01 | 9.40E-02 | 9.32E-04 | 1.19E-01 2 | .65E-01 4 | 1.86E-01 | hookprop | 0.3804 | 0.1306 | 0.001295 | 0.1653 | 0.3674 | 0.6754 | tunaprop | 0.2093 | 0.07189 | 7.13E-04 | 0.09098 | 0.2022 | 0.37 | | 18 areaprop 0.1044 | 0.03585 3 | 3.55E-04 | 0.04537 | 0.1008 | 0.1854 | basinprop | 0.3382 | 0.1161 | 0.001151 | 0.147 | 0.3266 | 0.6005 | basinprop | 2.87E-01 | 9.87E-02 | 9.78E-04 | 1.25E-01 2 | .78E-01 5 | 5.10E-01 | hookprop | 0.2945 | 0.1011 | 0.001002 | 0.128 | 0.2844 | 0.5229 | tunaprop | 0.1999 | 0.06864 | 6.81E-04 | 0.08687 | 0.1931 | 0.35 | | 9 areaprop 0.1048 | 0.036 3 | 3.57E-04 | 0.04556 | 0.1013 | 0.1862 | basinprop | 0.3432 | 0.1178 | 0.001168 | 0.1491 | 0.3315 | 0.6094 | basinprop | 2.94E-01 | 1.01E-01 | 1.00E-03 | 1.28E-01 2 | .84E-01 5 | 5.22E-01 | hookprop | 0.2912 | 0.1 | 9.91E-04 | 0.1266 | 0.2813 | 0.5171 | tunaprop | 0.1944 | 0.06677 | 6.62E-04 | 0.0845 | 0.1878 | 0.34 | | 10 areaprop 0.1086 | 0.0373 3 | 3.70E-04 | 0.0472 | 0.1049 | 0.1928 | basinprop | 0.3527 | 0.1211 | 0.001201 | 0.1533 | 0.3407 | 0.6263 | basinprop | 3.05E-01 | 1.05E-01 | 1.04E-03 | 1.33E-01 2 | .95E-01 5 | 5.42E-01 | hookprop | 0.2933 | 0.1007 | 9.99E-04 | 0.1275 | 0.2833 | 0.5209 | tunaprop | 0.2051 | 0.07045 | 6.98E-04 | 0.08916 | 0.1981 | 0.36 | | 11 areaprop 0.1165 | 0.03999 3 | 96F-04 | 0.05061 | 0.1125 | 0.2068 | basinprop | 0.3862 | 0.1326 | 0.001315 | 0.1678 | 0.373 | 0.6857 | | | 1.15E-01 | | | | | hookprop | 0.2837 | 0.09741 | | 0.1233 | 0.274 | 0.5037 | tunaprop | 0.2229 | 0.07656 | 7.59E-04 | 0.0969 | 0.2153 | 0.39 | | | | | | | | | | | | | | | | | 11150 01 | | 1.452 01 | | | | | | | | | | | | | | | | | | node mean s
80 areaprop 0.8746 | 0.2786 | | 0.414 | 0.8489 | 1.471 | node | mean | sd | MC_error | val2.5pc | median | val97.5pc | node | mean | | | val2.5pc r | | | node | mean | sd | MC_error | val2.5pc | median | val97.5pc | node
tunapro | P1 0.00 | | 715 2.54E- | | 0.8 | 8271 | | | 0.2786 | | | 0.8489
0.8495 | 1.471
1.473 | node | mean | sd | MC_error | val2.5pc | median | val97.5pc | node | mean | | | | | | node | mean | sd | MC_error | val2.5pc | median | val97.5pc | | p[0.85 | 22 0.2 | | -03 0.40 | 0.8 | | | 80 areaprop 0.8746 | 0.2786 | 2.61E-03
2.61E-03 | 0.414 | 0.8489 | 1.471
1.473 | node | mean | sd | MC_error | val 2.5pc | median | val97.5pc | node | mean | | | | | | node | mean | sd | MC_error | val2.5pc | median | val97.5pc | tunapro | p[0.85 | 22 0.2 | 715 2.54E- | -03 0.40
-03 0.42 | 0.8
0.8
0.8 | 8271
8785 | | 80 areaprop 0.8746
81 areaprop 0.8753
82 areaprop 0.8635 | 0.2786
0.2788 | 2.61E-03
2.61E-03
2.58E-03 | 0.414
0.4143 | 0.8489
0.8495 | 1.471
1.473
1.453 | node | mean | sd | MC_error | val2.5pc | median | val97.5pc | node | mean | | | | | | node | mean | sd | MC_error | val2.5pc | median | val97.5pc | tunapro
tunapro | p[0.85
p[0.90
p[1.0 | 22 0.2
52 0.2
18 0.3 | 715 2.54E-
884 2.70E- | -03 0.40
-03 0.42
-03 0.48 | 034 0.8
285 0.8
321 0.9 | 8271
8785
9884 | | 80 areaprop 0.8746
81 areaprop 0.8753
82 areaprop 0.8635
83 areaprop 0.8022 | 0.2786
0.2788
0.2751 | 2.61E-03
2.61E-03
2.58E-03
2.39E-03 | 0.414
0.4143
0.4087 | 0.8489
0.8495
0.838 | 1.471
1.473
1.453
1.35 | node | mean | sd | MC_error | val2.5pc | median | val97.5pc | node | mean | | | | | | node | mean | | MC_error | val 2.5pc | | | tunapro
tunapro
tunapro | pl 0.85
pl 0.90
pl 1.0
pl 0.92 | 22 0.2
52 0.2
18 0.3
56 0.2 | 715 2.54E
884 2.70E
244 3.04E | -03 0.40
-03 0.42
-03 0.48
-03 0.43 | 034 0.8
285 0.8
321 0.9
381 0.8 | 8271
8785
9884 | | 80 areaprop 0.8746
81 areaprop 0.8753
82 areaprop 0.8635
83 areaprop 0.8022
84 areaprop 0.8775 | 0.2786 :
0.2788 :
0.2751 :
0.2555 :
0.2795 : | 2.61E-03
2.61E-03
2.58E-03
2.39E-03
2.62E-03 | 0.414
0.4143
0.4087
0.3797
0.4154 | 0.8489
0.8495
0.838
0.7785 | 1.471
1.473
1.453
1.35
1.476 | node | mean | sd | MC_error | val2.5pc | median | val97.5pc | node | mean | | | | | | hookprop | | 0.5161 | L 4.84E-03 | | 9 1.57 | 2 2.726 | tunapro
tunapro
tunapro
tunapro
tunapro | p[0.85
p[0.90
p[1.0
p[0.92
p[1.1 | 22 0.2
52 0.2
18 0.3
56 0.2
78 0.3 | 715 2.54E
884 2.70E
244 3.04E
949 2.76E
751 3.51E | -03 0.40
-03 0.42
-03 0.48
-03 0.43
-03 0.55 | 034 0.8
285 0.8
321 0.9
381 0.8
574 1. | 8271
8785
9884
8983 | | 80 areaprop 0.8746
81 areaprop 0.8753
82 areaprop 0.8635
83 areaprop 0.8022
84 areaprop 0.8775
85 areaprop 0.8344 | 0.2786 : 0.2788 : 0.2751 : 0.2555 : 0.2795 : 0.2658 : | 2.61E-03
2.61E-03
2.58E-03
2.39E-03
2.62E-03
2.49E-03 | 0.414
0.4143
0.4087
0.3797
0.4154
0.395 | 0.8489
0.8495
0.838
0.7785
0.8517
0.8098 | 1.471
1.473
1.453
1.453
1.476
1.476 | node | mean | sd | MC_error | val2.5pc | median | val97.5pc | node | mean | | | | | | hookprop
hookprop | 1.62 | 0.5161
0.3862 | 1 4.84E-03
2 3.62E-03 | 0.7669
0.5739 | 9 1.57 | 2 2.726
7 2.04 | tunapro
tunapro
tunapro
tunapro
tunapro
tunapro | pl 0.85
pl 0.90
pl 1.0
pl 0.92
pl 1.1
pl 1.3 | 22 0.2
52 0.2
18 0.3
56 0.2
78 0.3 | 715 2.54E
884 2.70E
244 3.04E
949 2.76E
751 3.51E
203 3.94E | -03 0.40
-03 0.42
-03 0.48
-03 0.43
-03 0.55
-03 0.62 | 034 0.8
285 0.8
321 0.9
381 0.8
574 1. | 8271
8785
9884
8983
143
1.28 | | 80 areaprop 0.8746
81 areaprop 0.8753
82 areaprop 0.8635
83 areaprop 0.8022
84 areaprop 0.8775
85 areaprop 0.8344
86 areaprop 0.8903 | 0.2786 : 0.2788 : 0.2751 : 0.2555 : 0.2795 : 0.2658 : 0.2836 : | 2.61E-03
2.61E-03
2.58E-03
2.59E-03
2.62E-03
2.49E-03
2.66E-03 | 0.414
0.4143
0.4087
0.3797
0.4154
0.395
0.4214 | 0.8489
0.8495
0.838
0.7785
0.8517
0.8098
0.8641 | 1.471
1.473
1.453
1.453
1.476
1.476
1.404
1.498 | node | mean | sd | MC_error | val2.5pc | median | val97.5pc | node | mean | | | | | | hookprop
hookprop
hookprop | 1.62
1.212
1.606 | 0.5161
0.3862
0.5115 | L 4.84E-03
2 3.62E-03
5 4.79E-03 | 0.7669
0.5739
0.76 | 9 1.57
9 1.17
5 1.55 | 2 2.726
7 2.04
3 2.701 | tunapro
tunapro
tunapro
tunapro
tunapro
tunapro
tunapro | p[0.85.
p[0.90.
p[1.0
p[0.92.
p[1.1
p[1.3
p[1.3 | 22 0.2
52 0.2
18 0.3
56 0.2
78 0.3
19 0.4 | 715 2.54E
884 2.70E
244 3.04E
949 2.76E
751 3.51E
203 3.94E
446 4.18E | -03 0.40
-03 0.42
-03 0.48
-03 0.43
-03 0.55
-03 0.62
-03 0.66 | 034 0.8
285 0.8
321 0.9
381 0.8
574 1.
245 1 | 8271
8785
9884
8983
143
1.28
359 | | 30 areaprop 0.8746
81 areaprop 0.8753
82 areaprop 0.8635
83 areaprop 0.8022
84 areaprop 0.8775
85 areaprop 0.8344
86 areaprop 0.8903
87 areaprop 1.059 | 0.2786
0.2788
0.2751
0.2555
0.2795
0.2658
0.2836
0.3374 | 2.61E-03
2.61E-03
2.58E-03
2.39E-03
2.62E-03
2.49E-03
2.66E-03
3.16E-03 | 0.414
0.4143
0.4087
0.3797
0.4154
0.395
0.4214
0.5014 | 0.8489
0.8495
0.838
0.7785
0.8517
0.8098
0.8641
1.028 | 9 1.471
5 1.473
8 1.453
5 1.35
7 1.476
8 1.404
1.498
8 1.782 | node | mean | sd | MC_error | val2.5pc | median | val97.5pc | node | mean | | | | | | hookprop
hookprop
hookprop
hookprop | 1.62
1.212
1.606
1.847 | 0.5161
0.3862
0.5115
0.5883 | 4.84E-03
2 3.62E-03
5 4.79E-03
3 5.51E-03 | 0.766
0.573
0.76 | 9 1.57.
9 1.17
5 1.55
2 1.79. | 2 2.726
7 2.04
3 2.701
2 3.107 | tunapro
tunapro
tunapro
tunapro
tunapro
tunapro
tunapro
tunapro | p[0.85.
p[0.90.
p[1.0
p[0.92.
p[1.1
p[1.3
p[1.7 | 22 0.2
52 0.2
18 0.3
56 0.2
78 0.3
19 0.4
1.4 0. | 715 2.54E
884 2.70E
244 3.04E
949 2.76E
751 3.51E
203 3.94E
446 4.18E
624 5.27E | -03 0.40
-03 0.42
-03
0.48
-03 0.43
-03 0.55
-03 0.62
-03 0.62
-03 0.83 | 034 0.8
285 0.8
321 0.9
381 0.8
574 1.
245 1
528 1. | 8271
8785
9884
8983
143
1.28
359 | | 80 areaprop 0.8746
81 areaprop 0.8753
82 areaprop 0.8635
83 areaprop 0.8025
84 areaprop 0.8775
85 areaprop 0.8344
86 areaprop 0.8903
87 areaprop 1.059
88 areaprop 1.059 | 0.2786
0.2788
0.2751
0.2555
0.2795
0.2658
0.2836
0.3374
0.3329 | 2.61E-03
2.61E-03
2.58E-03
2.39E-03
2.62E-03
2.49E-03
2.66E-03
3.16E-03
3.12E-03 | 0.414
0.4143
0.4087
0.3797
0.4154
0.395
0.4214
0.5014
0.4946 | 0.8489
0.8495
0.838
0.7785
0.8517
0.8098
0.8641
1.028 | 9 1.471
5 1.473
8 1.453
6 1.35
7 1.476
8 1.404
1 1.498
8 1.782
1 1.758 | node | mean | sd | MC_error | val2.5pc | median | val97.5pc | node | mean | | | | | | hookprop
hookprop
hookprop
hookprop
hookprop | 1.62
1.212
1.606
1.847
2.099 | 0.5161
0.3862
0.5115
0.5883
0.6685 | 1 4.84E-03
2 3.62E-03
5 4.79E-03
3 5.51E-03
6 6.26E-03 | 0.7669
0.5739
0.77
0.8741
0.993 | 9 1.57
9 1.17
6 1.55
2 1.79
4 2.03 | 2 2.726
7 2.04
3 2.701
2 3.107
7 3.531 | tunapro
tunapro
tunapro
tunapro
tunapro
tunapro
tunapro
tunapro
tunapro | p[0.85;
p[0.90;
p[1.0
p[0.92;
p[1.1;
p[1.3;
p[1.7;
p[1.7; | 22 0.2
52 0.2
18 0.3
56 0.2
78 0.3
19 0.4
1.4 0.
65 0.5
22 0.5 | 715 2.54E
884 2.70E
244 3.04E
949 2.76E
751 3.51E
203 3.94E
446 4.18E
624 5.27E
804 5.44E | -03 0.40
-03 0.42
-03 0.48
-03 0.43
-03 0.55
-03 0.62
-03 0.63
-03 0.83
-03 0.86 | 034 0.8
285 0.8
321 0.9
381 0.8
574 1.
245 1
528 1.
357 1. | 8271
8785
9884
8983
143
1.28
359
713 | | 30 areaprop 0.8746
31 areaprop 0.8753
32 areaprop 0.8635
33 areaprop 0.8022
34 areaprop 0.8775
35 areaprop 0.8344
36 areaprop 0.8903
37 areaprop 1.059
38 areaprop 1.059
39 areaprop 0.9589 | 0.2786
0.2788
0.2751
0.2555
0.2795
0.2658
0.2836
0.3374
0.3329
0.3055 | 2.61E-03
2.61E-03
2.58E-03
2.39E-03
2.62E-03
2.49E-03
2.66E-03
3.16E-03
3.12E-03
2.86E-03 | 0.414
0.4143
0.4087
0.3797
0.4154
0.395
0.4214
0.5014
0.4946
0.4539 | 0.8489
0.8495
0.838
0.7785
0.8517
0.8098
0.8641
1.028
1.014 | 9 1.471
5 1.473
8 1.453
5 1.35
7 1.476
8 1.404
1 1.498
8 1.782
4 1.758
7 1.613 | node | mean | sd | MC_error | val2.5pc | median | val97.5pc | node | mean | | | | | | hookprop
hookprop
hookprop
hookprop
hookprop
hookprop | 1.62
1.212
1.606
1.847
2.099
2.434 | 0.5161
0.3862
0.5115
0.5883
0.6685
0.7755 | 1 4.84E-03
2 3.62E-03
5 4.79E-03
3 5.51E-03
6 6.26E-03
7.27E-03 | 0.7669
0.5739
0.74
0.8741
0.9934
1.153 | 9 1.57
9 1.17
5 1.55
2 1.79
4 2.03
2 2.36 | 2 2.726
77 2.04
3 2.701
2 3.107
7 3.531
4.095 | tunapro
tunapro
tunapro
tunapro
tunapro
tunapro
tunapro
tunapro
tunapro
tunapro | p[0.85;
p[0.90;
p[1.0
p[0.92;
p[1.1;
p[1.3;
p[1.7;
p[1.8;
p[1.8; | 22 0.2
52 0.2
18 0.3
56 0.2
78 0.3
19 0.4
1.4 0.
65 0.5
22 0.5 | 715 2.54E
884 2.70E
244 3.04E
949 2.76E
751 3.51E
203 3.94E
446 4.18E
624 5.27E
804 5.44E
065 4.75E | -03 0.40 -03 0.42 -03 0.48 -03 0.43 -03 0.55 -03 0.62 -03 0.66 -03 0.83 -03 0.86 -03 0.75 | 034 0.8
285 0.8
321 0.9
381 0.8
574 1.
245 1
528 1.
528 1.
524 1. | 8271
8785
9884
8983
143
1.28
359
713
768 | | 0 areaprop 0.8746 11 areaprop 0.8753 13 areaprop 0.8635 13 areaprop 0.8022 14 areaprop 0.8022 14 areaprop 0.8374 16 areaprop 0.8903 17 areaprop 1.059 18 areaprop 1.059 19 areaprop 0.9589 0 areaprop 0.9583 | 0.2786
0.2788
0.2751
0.2555
0.2795
0.2658
0.2836
0.3374
0.3329
0.3055
0.307 | 2.61E-03
2.61E-03
2.58E-03
2.39E-03
2.62E-03
2.49E-03
3.16E-03
3.12E-03
2.86E-03
2.88E-03 | 0.414
0.4143
0.4087
0.3797
0.4154
0.395
0.4214
0.5014
0.4946
0.4539
0.4562 | 0.8489
0.8495
0.838
0.7785
0.8517
0.8098
0.8641
1.028
1.014
0.9307
0.9353 | 9 1.471
5 1.473
8 1.453
5 1.35
7 1.476
8 1.404
1 1.498
8 1.782
1 1.758
7 1.613
8 1.621 | node | mean | sd | MC_error | val2.5pc | median | val97.5pc | node | mean | | | | | | hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi | 1.62
1.212
1.606
1.847
2.099
2.434
2.768 | 0.5161
0.3862
0.5115
0.5883
0.6685
0.7755
0.8817 | 4.84E-03
2 3.62E-03
5 4.79E-03
3 5.51E-03
6 6.26E-03
7 7.27E-03
8 8.26E-03 | 0.7669
0.5739
0.77
0.8741
0.993-
1.151 | 9 1.57
9 1.17
5 1.55
2 1.79
4 2.03
2 2.36
1 2.68 | 2 2.726
7 2.04
3 2.701
2 3.107
7 3.531
3 4.095
4.656 | tunapro | p[0.85; p[0.90; p[1.0; p[0.92; p[1.1; p[1.3; p[1.7; p[1.8; p[1.8; p[1.8; | 22 0.2
552 0.2
118 0.3
56 0.2
78 0.3
119 0.4
1.4 0.6
65 0.5
22 0.5
59 0.5 | 715 2.54E
884 2.70E
244 3.04E
949 2.76E
751 3.51E
203 3.94E
446 4.18E
624 5.27E
804 5.44E
065 4.75E
618 4.33E | -03 0.40 -03 0.42 -03 0.48 -03 0.43 -03 0.55 -03 0.62 -03 0.66 -03 0.83 -03 0.86 -03 0.75 -03 0.68 | 034 0.8
285 0.8
321 0.9
381 0.8
574 1.
245 1
528 1.
357 1.
524 1.
362 1. | 8271
8785
9884
8983
143
1.28
359
713
768
543 | | 0 areaprop 0.8746 1 areaprop 0.8753 2 areaprop 0.8035 3 areaprop 0.8022 4 areaprop 0.8022 5 areaprop 0.8344 6 areaprop 0.8304 6 areaprop 0.8903 8 areaprop 1.045 9 areaprop 1.045 9 areaprop 0.9589 0 areaprop 0.9637 1 areaprop 0.9637 | 0.2786
0.2788
0.2751
0.2555
0.2795
0.2658
0.2836
0.3374
0.3329
0.3055
0.307 | 2.61E-03
2.61E-03
2.58E-03
2.39E-03
2.62E-03
2.49E-03
3.16E-03
3.12E-03
2.86E-03
2.86E-03
4.24E-03 | 0.414
0.4143
0.4087
0.3797
0.4154
0.395
0.4214
0.5014
0.4946
0.4539
0.4562
0.6689 | 0.8489
0.8495
0.838
0.7785
0.8517
0.8098
0.8641
1.028
1.014
0.9307
0.9353
1.373 | 9 1.471
5 1.473
8 1.453
7 1.476
8 1.404
1 1.498
8 1.782
1 1.758
7 1.613
8 1.621
8 2.409 | node | mean | sd | MC_error | val2.5pc | median | val97.5pc | node | mean | | | | | | hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi | 1.62
1.212
1.606
1.847
2.099
2.434
2.768
4.089 | 0.5161
0.3862
0.5115
0.5883
0.6685
0.7755
0.8817
1.323 | 4.84E-03
2 3.62E-03
5 4.79E-03
3 5.51E-03
6 6.26E-03
7 7.27E-03
8 2.26E-03
1 1.22E-02 | 0.7669
0.5739
0.70
0.8741
0.9934
1.151
1.321 | 3 1.57
3 1.17
5 1.55
2 1.79
4 2.03
2 2.36
1 2.68
1 3.94 | 2 2.726
7 2.04
3 2.701
2 3.107
7 3.531
4.095
4.656
4.656 | tunapro | p[0.85; p] 0.90; p[1.0 p] 0.92; p[1.1 p] 1.3 p[1.7 p] 1.8 p[1.9 p] 1.9 p[1.7 p] 1.8 p[1.7 p] 1.8 p[1.7 p] 1.8 p[1.7 p] 1.8 p[1.7 p] 1.9 | 22 0.2
552 0.2
553 0.2
556 0.2
778 0.3
19 0.4
1.4 0.
655 0.5
522 0.5
559 0.5
45 0.4 | 715 2.54E- 884 2.70E- 244 3.04E- 949 2.76E- 751 3.51E- 203 3.94E- 446 4.18E- 624 5.27E- 804 5.44E- 065 4.75E- 618 4.33E- 813 6.27E- | -03 0.40 -03 0.42 -03 0.43 -03 0.43 -03 0.55 -03 0.62 -03 0.63 -03 0.83 -03 0.86 -03 0.75 -03 0.68 -03 0.98 | 0.84 0.885 0.885 0.8861 0.8861 0.8861 0.8861 0.8861 0.8861 0.86674 1.245 | 8271
8785
9884
8983
143
1.28
359
713
768
543
407 | | areaprop 0.8746
areaprop 0.8753 areaprop 0.8635 areaprop 0.8032 areaprop 0.8775 areaprop 0.8344 areaprop 0.8903 areaprop 1.045 areaprop 0.9589 areaprop 0.9589 areaprop 0.9589 areaprop 1.722 | 0.2786
0.2788
0.2751
0.2555
0.2795
0.2658
0.2836
0.3374
0.3329
0.3055
0.307
0.4608
0.5573 | 2.61E-03
2.61E-03
2.58E-03
2.39E-03
2.62E-03
2.49E-03
3.16E-03
3.12E-03
2.86E-03
2.88E-03
4.24E-03
5.13E-03 | 0.414
0.4143
0.4087
0.3797
0.4154
0.395
0.4214
0.5014
0.4946
0.4539
0.4562
0.6689
0.8091 | 0.8489
0.8495
0.838
0.7785
0.8517
0.8098
0.8641
1.028
1.014
0.9307
0.9353
1.373 | 9 1.471
1.473
3 1.453
5 1.35
7 1.476
8 1.404
1 1.498
8 1.782
7 1.613
8 1.621
2.409
2.914 | node | mean | sd | MC_error | val2.5pc | median | val97.5pc | node | mean | | | | | | hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi | 1.62
1.212
1.606
1.847
2.099
2.434
2.768 | 0.5161
0.3862
0.5115
0.5883
0.6685
0.7755
0.8817
1.323 | 4.84E-03
2 3.62E-03
4.79E-03
5 5.51E-03
6 6.26E-03
7 8.26E-03
1.22E-02
1.39E-02 | 0.7669
0.5739
0.70
0.8741
0.9934
1.151
1.321
2.1921 | 3 1.57.
3 1.17
5 1.55.
2 1.79.
4 2.03
2 2.36.
1 2.68
1 3.94
9 4.51 | 2 2.726
2 2.04
3 2.701
7 3.531
3 4.095
4.656
4.656
1 6.918
5 7.919 | tunapro | p 0.85
p 0.90
p 1.0
p 0.92
p 1.1
p 1.3
p 1.7
p 1.8
p 1.9
p 1 | 22 0.2
52 0.2
53 0.2
56 0.2
78 0.3
69 0.4
1.4 0.6
65 0.5
52 0.5
59 0.5
45 0.4
0.5
0.3
0.3
0.3 | 715 2.54E- 884 2.70E- 244 3.04E- 949 2.76E- 751 3.51E- 203 3.94E- 446 4.18E- 624 5.27E- 804 5.44E- 065 4.75E- 618 4.33E- 813 6.27E- 718 8.94E- | -03 | 0.84 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 | 8271
8785
9884
8983
143
1.28
359
713
768
543
407
031 | | 0 areaprop 0.8746 1 areaprop 0.8753 2 areaprop 0.8635 3 areaprop 0.8022 4 areaprop 0.8753 5 areaprop 0.8775 5 areaprop 0.8775 7 areaprop 0.8344 6 areaprop 0.9903 7 areaprop 1.095 9 areaprop 0.9537 0 areaprop 0.9537 1 areaprop 0.9637 1 areaprop 1.722 | 0.2786
0.2788
0.2751
0.2555
0.2795
0.2658
0.2836
0.3374
0.3329
0.3055
0.307 | 2.61E-03
2.61E-03
2.58E-03
2.39E-03
2.62E-03
2.49E-03
3.16E-03
3.12E-03
2.86E-03
2.88E-03
4.24E-03
5.13E-03 | 0.414
0.4143
0.4087
0.3797
0.4154
0.395
0.4214
0.5014
0.4946
0.4539
0.4562
0.6689 | 0.8489
0.8495
0.838
0.7785
0.8517
0.8098
0.8641
1.028
1.014
0.9307
0.9353
1.373 | 9 1.471
1.473
3 1.453
5 1.35
7 1.476
8 1.404
1 1.498
8 1.782
7 1.613
8 1.621
2.409
2.914 | node | mean | sd | MC_error | val2.5pc | median | val97.5pc | node | mean | | | | | | hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi | 1.62
1.212
1.606
1.847
2.099
2.434
2.768
4.089 | 0.5161
0.3862
0.5115
0.5883
0.6685
0.7755
0.8817
1.323 | 4.84E-03
2 3.62E-03
5 4.79E-03
3 5.51E-03
6 6.26E-03
7 7.27E-03
8 2.26E-03
1 1.22E-02 | 0.7669
0.5739
0.70
0.8741
0.9934
1.151
1.321 | 3 1.57.
3 1.17
5 1.55.
2 1.79.
4 2.03
2 2.36.
1 2.68
1 3.94
9 4.51 | 2 2.726
2 2.04
3 2.701
7 3.531
3 4.095
4.656
4.656
1 6.918
5 7.919 | tunapro | p 0.855 p 0.905 p 1.0 p 0.925 p 1.1 p 1.3 p 1.7 p 1.8 p 1.8 p 1.9 p 1.9 p 1.8 p 1.9 p 1.9 p 1.0 | 22 0.2
52 0.2
53 0.2
56 0.2
78 0.3
69 0.4
1.4 0.6
65 0.5
52 0.5
59 0.5
45 0.4
0.5
0.3
0.3
0.3 | 715 2.54E- 884 2.70E- 244 3.04E- 949 2.76E- 751 3.51E- 203 3.94E- 446 4.18E- 624 5.27E- 804 5.44E- 065 4.75E- 618 4.33E- 813 6.27E- | -03 | 0.84 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 | 8271
8785
9884
8983
143
1.28
359
713
768
543
407 | | areaprop 0.8746 areaprop 0.8753 areaprop 0.8635 areaprop 0.8035 areaprop 0.8022 areaprop 0.8344 areaprop 0.8903 areaprop 1.059 areaprop 1.059 areaprop 0.9637 areaprop 1.424 areaprop 1.422 areaprop 1.557 | 0.2786
0.2788
0.2751
0.2555
0.2795
0.2658
0.2836
0.3374
0.3329
0.3055
0.307
0.4608
0.5573 | 2.61E-03
2.61E-03
2.58E-03
2.39E-03
2.49E-03
2.66E-03
3.16E-03
3.12E-03
2.88E-03
4.24E-03
5.13E-03
4.64E-03 | 0.414
0.4143
0.4087
0.3797
0.4154
0.395
0.4214
0.5014
0.4946
0.4539
0.4562
0.6689
0.8091 | 0.8489
0.8495
0.838
0.7785
0.8517
0.8098
0.8641
1.028
1.014
0.9307
0.9353
1.373 | 1.471
1.473
1.453
1.453
1.35
1.476
1.404
1.498
1.782
1.758
1.1613
1.621
2.409
2.914 | node | mean | sd | MC_error | val2.5pc | median | val97.5pc | node | mean | | | | | | hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop
hookprop | 1.62
1.212
1.606
1.847
2.099
2.434
2.768
4.089
4.681
5.31 | 0.5161
0.3862
0.5115
0.5883
0.6685
0.7755
0.8817
1.323
1.515 | 4.84E-03
2 3.62E-03
4.79E-03
5 5.51E-03
6 6.26E-03
7 8.26E-03
1.22E-02
1.39E-02 | 0.7669
0.5739
0.70
0.8741
0.9934
1.151
1.321
2.1921 | 9 1.57.
9 1.17
5 1.55:
1.79
4 2.36:
1 2.68:
1 3.944
5 5.12: | 2 2.7262
3 2.701
3 2 3.107
7 3.531
3 4.095
4 6.918
5 7.919
2 8.984 | tunapro | pi 0.85; pi 0.90; pi 1.0,90; pi 1.1; pi 1.3; pi 1.7; pi 1.8; pi 1.9; pi 1.9; pi 1.8; pi 1.9; pi 1.9; pi 1.9; pi 1.9; pi 1.9; pi 1.9; pi 3.0; pi 3.1; | 22 0.2
52 0.2
53 0.2
54 0.2
56 0.2
57 0.3
59 0.4
50 0.5
50 0.6
60 0.5
60 0.5 | 715 2.54E- 884 2.70E- 244 3.04E- 949 2.76E- 751 3.51E- 203 3.94E- 446 4.18E- 624 5.27E- 804 5.44E- 065 4.75E- 618 4.33E- 813 6.27E- 718 8.94E- | -03 | 0.84 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 | 8271
8785
9884
8983
143
1.28
359
713
768
543
407
031 | | 0 areaprop 0.8746 1 areaprop 0.8753 2 areaprop 0.8635 3 areaprop 0.8022 2 areaprop 0.8022 6 areaprop 0.8022 6 areaprop 0.8022 7 areaprop 0.8344 6 areaprop 1.059 8 areaprop 1.059 9 areaprop 0.9589 0 areaprop 0.9589 0 areaprop 1.424 2 areaprop 1.422 3 areaprop 1.573 | 0.2786
0.2788
0.2751
0.2555
0.2795
0.2658
0.2836
0.3374
0.3329
0.3055
0.307
0.4608
0.4508
0.5573
0.5039 | 2.61E-03
2.61E-03
2.58E-03
2.39E-03
2.49E-03
2.66E-03
3.16E-03
3.12E-03
2.88E-03
4.24E-03
5.13E-03
4.64E-03 | 0.414
0.4143
0.4087
0.3797
0.4154
0.395
0.4214
0.5014
0.4946
0.4539
0.4562
0.6689
0.8091
0.7315 | 0.8489
0.8495
0.838
0.7785
0.8517
0.8098
0.8641
1.028
1.014
0.9307
0.9353
1.373
1.661 | 1.471
1.473
1.473
1.453
1.453
1.476
1.476
1.476
1.498
1.782
1.758
1.613
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.622
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1. | node | mean | sd | MC_error | val2.5pc | median | val97.5pc | node | mean | | | | | | hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi | 1.62
1.212
1.606
1.847
2.099
2.434
2.768
4.089
4.681
5.31 |
0.5161
0.3862
0.5115
0.5883
0.6685
0.7755
0.8817
1.323
1.515
1.718 | 4.84E-03
2 3.62E-03
5 4.79E-03
3 5.51E-03
6 6.26E-03
5 7.27E-03
7 8.26E-03
3 1.22E-02
5 1.39E-02
3 1.58E-02 | 0.7669
0.5739
0.70
0.8741
0.9934
1.155
1.33
1.922
2.199 | 9 1.57.
9 1.17
9 1.55.
2 1.79.
4 2.03
2 2.36
1 2.68
1 3.94
4 5.5
5 5.12
4 5.53 | 2 2.726
7 2.04
7 2.04
3 2.701
2 3.107
7 3.531
3 4.095
4 6.918
5 7.919
2 8.984
2 9.703 | tunapro | pi 0.85; pi 0.90; pi 1.0,90; pi 1.1; pi 1.3; pi 1.7; pi 1.8; pi 1.9; pi 1.9; pi 3.0; pi 3.1; pi 3.2; | 22 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0 | 715 2.54E. 884 2.70E. 244 3.04E. 949 2.76E. 751 3.51E. 203 3.94E. 446 4.18E. 624 5.27E. 804 5.44E. 6065 4.75E. 618 4.33E. 813 6.27E. 718 8.94E. 025 9.43E. | -03 | 0.84 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 | 8271
8785
9884
8983
143
1.28
359
713
768
543
407
031
897 | | 0 areaprop 0.8746 1 areaprop 0.8736 1 areaprop 0.8732 2 areaprop 0.8635 3 areaprop 0.8022 4 areaprop 0.8022 5 areaprop 0.8304 6 areaprop 0.8903 8 areaprop 1.059 8 areaprop 1.059 9 areaprop 0.9589 0 areaprop 0.9589 1 areaprop 0.9537 1 areaprop 1.424 2 areaprop 1.722 3 areaprop 1.557 4 areaprop 1.557 4 areaprop 1.673 | 0.2786
0.2788
0.2751
0.2555
0.2795
0.2658
0.2836
0.3374
0.3329
0.3055
0.307
0.4608
0.4508
0.5573
0.5039 | 2.61E-03
2.61E-03
2.58E-03
2.39E-03
2.62E-03
2.49E-03
3.16E-03
3.16E-03
3.12E-03
2.86E-03
2.88E-03
4.24E-03
5.13E-03
4.94E-03
5.13E-03 | 0.414
0.4143
0.4087
0.3797
0.4154
0.395
0.4214
0.5014
0.4946
0.4549
0.4562
0.6689
0.8091
0.7315
0.7861 | 0.8489
0.8495
0.838
0.7785
0.8517
0.8098
0.8641
1.028
1.014
0.9307
0.9353
1.373
1.661 | 9 1.471
1.473
1.453
1.453
1.35
1.476
1.476
1.404
1.498
1.782
1.758
1.613
1.621
2.409
2.2634
2.2634
2.2831
3.215 | node | mean | sd | MC_error | val2.5pc | median | val97.5pc | node | mean | | | | | | hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi | 1.62
1.212
1.606
1.847
2.099
2.434
2.768
4.089
4.681
5.31
5.736 | 0.5161
0.3862
0.5115
0.5883
0.6685
0.7755
0.8817
1.323
1.515
1.718
1.856
2.029 | 1. 4.84E-03
2. 3.62E-03
5. 4.79E-03
3. 5.51E-03
5. 6.26E-03
5. 7.27E-03
7. 8.26E-03
8. 1.22E-02
5. 1.39E-02
5. 1.58E-02
5. 1.71E-02 | 0.7669
0.5739
0.70
0.8741
0.9934
1.155
1.33
1.922
2.199
2.499 | 3 1.57.
3 1.57.
5 1.55.
2 1.79.
4 2.03.
2 2.36.
1 2.68.
1 2.68.
1 3.94.
4 5.53.
5 6.04 | 2 2.7266
7 2.043
3 2.7012
2 3.107
7 3.531
3 4.095
6 4.656
4 6.918
5 7.919
2 8.984
2 9.703
7 10.61 | tunapro | pi 0.85; pi 0.90; pi 1.0 pi 0.92; pi 1.1* ppi 1.3 ppi 1.7 ppi 1.8 ppi 1.0 ppi 1.9 3.0 ppi 3.0 ppi 3.2 ppi 3.2 | 22 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0 | 715 2.54E. 884 2.70E. 244 3.04E. 949 2.76E. 250 3.54EE. 250 3.54EE. 262 5.27E. 804 5.44E. 265 4.75E. 2618 4.33E. 813E. | -03 | 0.84 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 | 8271
8785
9884
8983
143
1.28
359
713
768
543
407
2.031
2.897
5.055
5.145 | | D areaprop 0.8746 a areaprop 0.8753 a areaprop 0.8753 a areaprop 0.8022 a areaprop 0.8022 a areaprop 0.8022 a areaprop 0.8344 a areaprop 0.8344 a areaprop 1.059 1.573 a areaprop 1.573 a areaprop 1.573 a areaprop 1.202 | 0.2786
0.2788
0.2751
0.2555
0.2555
0.2658
0.2836
0.3374
0.3325
0.3075
0.4608
0.5573
0.5039
0.5415
0.6079 | 2.61E-03
2.61E-03
2.58E-03
2.39E-03
2.62E-03
2.49E-03
3.16E-03
3.16E-03
3.12E-03
2.86E-03
2.88E-03
4.24E-03
5.13E-03
4.94E-03
5.98E-03
4.98E-03
5.66E-03
5.66E-03 | 0.414
0.4143
0.4087
0.3797
0.4154
0.395
0.4214
0.5014
0.4946
0.4539
0.4562
0.6689
0.8091
0.7315
0.7315
0.7861
0.8928
0.9789 | 0.8489
0.8495
0.838
0.7785
0.8517
0.8098
0.8641
1.028
1.014
0.9307
0.9353
1.373
1.660
1.5024
1.5024
1.5034
1.5034
1.969 | 1.471
1.473
1.453
1.453
1.453
1.454
1.454
1.498
1.782
1.758
1.613
1.621
1.2914
2.634
1.283
1.282
1.383
1.494
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1.498
1 | node | mean | sd | MC_error | val2.5pc | median | val97.5pc | node | mean | | | | | | hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi | 1.62
1.212
1.606
1.847
2.099
2.434
2.768
4.089
4.681
5.31
5.736
6.27 | 0.5161
0.3862
0.5115
0.5883
0.6685
0.7755
0.8817
1.323
1.515
1.718
1.856
2.029
2.322 | 1. 4.84E-03
2. 3.62E-03
5. 4.79E-03
8. 5.51E-03
5. 6.26E-03
7. 8.26E-03
8. 1.22E-02
5. 1.39E-02
9. 1.87E-02
9. 1.87E-02
2. 2.15E-02 | 0.7669
0.5739
0.77
0.874
0.993
1.15;
1.32
2.199
2.499
2.699
2.949 | 3 1.57.
3 1.57.
5 1.55.
2 1.79.
4 2.03.
2 2.36.
1 2.688.
1 3.944.
4.51.
5 5.12.
4 5.53.
5 6.04.
4 7.52. | 2 2.7262
7 2.043
8 2.701
2 3.107
3 4.095
4 6.918
5 7.919
2 8.984
7 10.61
8 12.46 | tunapro | pi 0.85; pi 0.90; pi 1.0 pi 0.92; pi 1.1 pp 1.3 pp 1.7 pp 1.8 pp 1.0 | 22 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0 | 715 2.54E- 884 2.70E- 884 2.70E- 884 2.70E- 884 2.70E- 975 3.51E- 975 3.51E- 975 3.54E- 975 3.54E- 976 4.18E- 976 4.18E- 976 5.44E- 976 4.33E- 977 8.8.94E- 977 9.43E- 977 9.43E- 978 9.43E | -03 0.40 -03 0.40 -03 0.42 -03 0.48 -03 0.48 -03 0.52 -03 0.52 -03 0.66 -03 0.88 -03 0.86 -03 0.86 -03 0.86 -03 0.86 -03 0.86 -03 0.75 -03 0.75 -03 0.75 -03 0.86 -03 0.98 -03 1.4 -03 1.4 -03 1.4 -03 1.4 -03 1.8 | 0.84 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 | 8271
8785
9884
8983
143
1.28
359
713
768
543
407
031
897
055
145
838
224 | | 0 areaprop 0.8746 1 areaprop 0.8736 1 areaprop 0.8732 2 areaprop 0.8032 3 areaprop 0.8032 3 areaprop 0.8032 5 areaprop 0.8032 5 areaprop 0.8304 6 areaprop 0.8303 8 areaprop 1.059 8 areaprop 0.9589 0 areaprop 0.9589 0 areaprop 0.9589 0 areaprop 1.424 2 areaprop 1.722 3 areaprop 1.722 5 areaprop 1.673 | 0.2786
0.2788
0.2755
0.2755
0.2555
0.2658
0.2836
0.3374
0.3329
0.3055
0.307
0.4608
0.5573
0.5039
0.5415
0.6079
0.66557 | 2.61E-03
2.61E-03
2.58E-03
2.39E-03
2.49E-03
2.49E-03
3.16E-03
3.12E-03
2.88E-03
4.24E-03
5.13E-03
4.64E-03
4.98E-03
5.66E-03
5.66E-03
6.07E-03 | 0.414
0.4143
0.4087
0.3797
0.4154
0.395
0.4214
0.5014
0.4946
0.4562
0.6689
0.8091
0.7315
0.7861
0.8928
0.9789
1.056 | 0.8489
0.8495
0.838
0.7785
0.8517
0.8098
0.8641
1.028
1.014
0.9307
1.373
1.661
1.502
1.614
1.833
1.969
2.124 |
1.471
1.473
1.473
1.453
1.153
1.453
1.476
1.476
1.498
1.498
1.4782
1.4782
1.613
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621 | | | | | | | | | | sd | MC_error | val2.5pc r | nedian v | val97.5pc | hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi | 1.62
1.212
1.606
1.847
2.099
2.434
2.768
4.089
4.681
5.31
5.736
6.27
7.728
8.765 | 0.5161
0.3862
0.5115
0.5883
0.6685
0.7755
0.8817
1.323
1.515
1.718
1.856
2.029
2.322
2.634 | 1 4.84E-03
2 3.62E-03
5 4.79E-03
8 5.51E-03
5 7.27E-03
7 8.26E-03
8 1.22E-02
5 1.39E-02
5 1.71E-02
9 1.87E-02
2 2.15E-02 | 0.7669
0.5739
0.77
0.8741
0.993
1.151
1.921
2.199
2.694
2.694
3.77 | 9 1.57.
9 1.17
6 1.556
2 1.79
4 2.03
2 1.79
4 2.03
1 2.68
1 3.94
9 4.51
5 5.12
5 6.04
4 7.52
2 8.53 | 2 2.726
7 2.043
8 2.701
2 3.107
2 3.531
3 4.095
6 4.656
4 6.918
5 7.919
2 8.984
2 8.984
7 10.61
3 12.46
2 14.13 | tunapro | pi 0.85. pi 0.90. pi 1.0 pi 0.92. pp 1.1. pp 1.1. pp 1.7. pp 1.8. pp 1 pp 1 pp 1 pp 1 pp 1 pp 3.0 pp 3.2 pp 3.2 pp 4.5 | 22 0.2
52 0.2
55 0.2
56 0.2
56 0.2
56 0.3
56 0.3
56 0.5
56 0.5
57 0.5
59 0.5
45 0.4
60 0.3
60 0.3
60 0.3
60 0.5
60 0.5 | 715 2.54E. 884 2.70E. 244 3.04E. 949 2.76E. 751 3.51E. 203 3.94E. 446 4.18E. 624 5.27E. 8804 5.47E. 6618 4.33E. 813 6.27E. 718 8.94E. 025 9.43E. 025 9.71E. 288 1.19E. 2804 1.21E. | -03 0.40 -03 0.42 -03 0.48 -03 0.48 -03 0.48 -03 0.55 -03 0.55 -03 0.56 -03 0.56 -03 0.86 -03 | 0.84 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 | 8271
8785
9884
8988
1.143
1.28
8.359
8.713
8.554
8.543
8.6031
8.897
8.0055
8.145
8.838
8.224 | | areaprop 0.8746 | 0.2786
0.2788
0.2751
0.2555
0.2995
0.2658
0.2836
0.3374
0.3329
0.3075
0.307
0.4608
0.5573
0.5573
0.5039
0.5415
0.6079
0.6557
0.6999 | 2.61E-03
2.61E-03
2.58E-03
2.39E-03
2.62E-03
2.66E-03
3.16E-03
2.86E-03
2.88E-03
2.88E-03
4.24E-03
5.13E-03
4.64E-03
4.98E-03
6.66E-03
6.07E-03
6.48E-03 | 0.414
0.4143
0.4087
0.3797
0.4154
0.4154
0.5014
0.5014
0.4946
0.4562
0.6689
0.8091
0.7315
0.7861
0.9789
1.056
1.127 | 0.8489
0.8495
0.838
0.7785
0.8517
0.8098
0.8641
1.028
1.014
0.9307
0.9353
1.373
1.661
1.502
1.614
1.833
1.969
2.124 | 1.471
1.473
1.453
1.453
1.453
1.453
1.476
1.476
1.498
1.782
1.613
1.613
1.621
2.409
2.2914
2.634
2.831
3.215
3.215
3.358
3.358
3.358 | basinpro | p 7.24 | 16 2.17 | 77 0.02015 | 3.506 | 7.053 | 11.68 | basinpro | 0 6.03 | sd sd 2 1.81E+00 | MC_error | val2.5pc r | nedian v | 9.72E+00 | hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi | 1.62
1.212
1.606
1.847
2.099
2.434
2.768
4.089
4.681
5.31
5.736
6.27
7.728
8.765
9.893 | 0.5161
0.3862
0.5115
0.5883
0.6688
0.7755
0.8817
1.323
1.515
1.718
1.856
2.029
2.322
2.634
2.973 | L 4.84E-03
2 3.62E-03
3 5.51E-03
3 5.51E-03
5 6.26E-03
7 8.26E-03
3 1.22E-02
5 1.39E-02
9 1.87E-02
9 1.87E-02
2 2.15E-02
1 2.44E-02 | 0.7669
0.573
0.74
0.993
1.15
1.3
1.92
2.199
2.699
2.949
3.77
4.244 | 9 1.57.
9 1.17
5 1.55;
2 2.36;
1 2.68
1 2.68
1 5.53;
5 6.04
4 5.53;
5 6.04
7 9.66 | 2 2.726
7 2.04
8 2.701
7 3.531
8 4.095
5 4.656
6 9.18
5 7.919
2 8.984
2 9.703
7 10.61
8 12.46
2 14.13
8 15.95 | tunapro | pi 0.85. pi 0.90. pi 1.0 pp 1.0. pp 1.1. pp 1.1. pp 1.7. pp 1.8. pp 1 pp 1 pp 1 pp 1 pp 1 pp 1 pp 3.0 pp 3.0 pp 3.1 pp 3.2 pp 4.5 pp 4.5 | 22 0.2 52 0.2 55 0.2 56 0.2 57 0.3 56 0.2 56 0.3 59 0.5 50 0.5 50 0.5 50 0.5 50 0.6 60 0.3 60
0.3 60 | 715 2.54E.884 2.70E.884 2.70E.884 2.70E.949 2.76E.9751 3.51E.203 3.94E.446 4.18E.605 4.75E.618 4.33E.813 6.27E.718 8.94E.025 9.43E.025 9.43E.025 9.71E.8881 1.9E.3334 1.23E.334 1.23E.334 1.23E.334 2.23E. | 03 0.400 03 0.400 03 0.420 03 0.480 03 0.480 03 0.550 03 0.620 03 0.620 03 0.660 03 0.830 03 0.830 03 0.830 03 0.830 03 0.830 03 0.880 | 0.84 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 | 8271
8785
99884
89983
1.143
1.28
1.359
1.713
1.768
1.543
1.407
1.031
1.897
1.015
1.145
1.838
1.224
1.466
1.321 | | areaprop 0.8746 areaprop 0.8736 areaprop 0.8635 areaprop 0.8022 areaprop 0.8027 areaprop 0.8036 areaprop 0.8036 areaprop 0.8036 areaprop 0.8036 areaprop 0.9589 area | 0.2786
0.2788
0.2751
0.2555
0.2795
0.2658
0.2836
0.3374
0.3329
0.3055
0.5053
0.5573
0.5603
0.5615
0.6079
0.6557
0.6699
0.6557 | 2.61E-03
2.61E-03
2.58E-03
2.39E-03
2.62E-03
2.49E-03
2.66E-03
3.16E-03
3.12E-03
2.86E-03
2.88E-03
4.24E-03
5.13E-03
4.94E-03
5.62E-03
6.07E-03
6.48E-03
7.26E-03 | 0.414
0.4143
0.4087
0.3797
0.4154
0.395
0.4214
0.5014
0.4946
0.4539
0.4562
0.6689
0.8091
0.7315
0.7861
0.8928
0.9789
1.056
1.127
1.263 | 0.8489
0.8495
0.838
0.7785
0.8517
0.8098
0.8641
1.028
1.014
0.9307
0.9353
1.373
1.660
1.502
1.614
1.833
1.969
2.124
2.267 | 1.471
1.473
1.473
1.453
1.153
1.153
1.476
1.476
1.498
1.758
1.613
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1.621
1. | basinpro
basinpro | p 7.24 | 166 2.17
01 2.555 | 77 0.02015
54 0.02364 | 3.506
4.114 | 5 7.053
8.275 | 11.68 | basinproj | p 6.03: | sd sd 2 1.81E+00 2.17E+00 | MC_error | val 2.5pc r | 5.87E+00 | 9.72E+00
1.16E+01 | hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi | 1.62
1.212
1.606
1.847
2.099
2.434
2.768
4.089
4.681
5.31
5.736
6.27
7.728
8.765
9.893
9.728 | 0.5161
0.3862
0.5115
0.5883
0.66885
0.7755
0.8817
1.323
1.515
1.718
1.856
2.029
2.322
2.634
2.933
2.923 | 1 4.84E-03
2 3.62E-03
3 4.79E-03
3 5.51E-03
5 6.26E-03
5 7.27E-03
3 1.22E-02
5 1.39E-02
9 1.87E-02
9 1.87E-02
2 2.15E-02
1 2.44E-02
3 2.75E-02
3 2.75E-02 | 0.7669
0.573
0.77
0.874;
0.993
1.15;
1.92;
2.199
2.699
2.94;
3.77
4.24;
4.78; | 9 1.577
9 1.175
5 1.555
4 2.03
2 2.366
1 2.689
1 3.944
5.53
5 5.122
4 5.53
5 6.044
4 7.52
2 7.96
7 9.466 | 2 2.726
2 2.701
3 2.701
2 3.107
7 3.531
3 4.095
5 4.698
4 6.918
5 7.919
5 7.919
6 9.703
7 10.61
8 12.46
8 12.46
8 12.46
8 15.68 | tunapro | p 0.85. p 0.90 p 1.0 p 0.90 p 1.1 p 1.3 p 1.7 p 1.7 p 1.8 p 1.7 p 3.0 p 3.0 p 3.0 p 3.0 p 3.4 p 4.4 p 4.4 | 22 0.2
52 0.2
53 0.2
54 0.3
56 0.2
57 0.3
59 0.4
50 0.5
50 0.5 | 715 2.54E- 884 2.70E- 884 2.70E- 884 2.70E- 884 2.70E- 884 2.70E- 884 3.94E- 884 46 4.18E- 886 4.52E- 880 5.44E- 880 5.44E- 880 5.44E- 881 6.27E- 881 6.27E- 888 9.43E- 888 1.19E- | -03 0.40 -03 0.42 -03 0.42 -03 0.48 -03 0.48 -03 0.55 -03 0.62 -03 0.62 -03 0.63 -03 0.86 -03 0.75 -03 0.86 -03 0.75 -03 0.88 -03 0.88 -03 0.75 -03 0.88
-03 0.88 -03 | 0.885 0.8 0.885 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 | 8271
8785
99884
89983
.143
1.28
.359
.713
.768
.543
.407
.031
.897
.055
.145
.888
.224
.466
.321
.147 | | areaprop 0.8746 areaprop 0.8736 areaprop 0.8753 areaprop 0.8022 areaprop 0.8022 areaprop 0.8034 areaprop 0.8034 areaprop 0.8039 areaprop 0.9539 areaprop 0.9537 areaprop 0.9537 areaprop 0.9537 areaprop 1.424 areaprop 1.557 areaprop 1.557 areaprop 1.573 areaprop 1.573 areaprop 1.573 areaprop 1.573 areaprop 1.573 areaprop 1.573 areaprop 2.023 areaprop 2.023 areaprop 2.232 areaprop 2.232 areaprop 2.303 | 0.2786 0.2788 0.2781 0.2555 0.2795 0.2658 0.2836 0.3374 0.3329 0.3055 0.3077 0.4608 0.5573 0.5039 0.5415 0.615 0.6079 0.6557 0.6999 0.7844 0.9143 | 2.61E-03
2.61E-03
2.58E-03
2.39E-03
2.49E-03
3.16E-03
3.12E-03
2.86E-03
3.12E-03
5.13E-03
4.24E-03
4.24E-03
4.98E-03
5.66E-03
5.66E-03
6.07E-03
6.48E-03
7.26E-03
8.46E-03 | 0.414
0.4143
0.4087
0.3797
0.4154
0.395
0.4214
0.4946
0.4539
0.4562
0.6689
0.8091
0.7315
0.7861
0.8928
0.9789
1.056
1.127
1.263
1.472 | 0.8489
0.8495
0.838
0.7785
0.8517
0.8098
0.8641
1.028
1.014
0.9307
0.9353
1.373
1.661
1.502
1.614
1.833
1.969
2.124
2.267
2.541 | 1.471
1.473
1.453
1.453
1.453
1.453
1.494
1.494
1.498
1.782
1.782
1.782
1.621
2.2914
2.2634
2.2831
3.215
3.3215
3.3251
4.4209
4.4205 | basinpro
basinpro
basinpro | p 7.24 p 8.5(p 10.2) | 16 2.17
11 2.55
25 3.07 | 77 0.02015
54 0.02364
99 0.02849 | 3.506
4.114
4.958 | 5 7.053
1 8.275
3 9.974 | 11.68
13.71
16.52 | basinpro _i
basinpro _i
basinpro _i | D 6.033 | sd 2 1.81E+00 0 2.17E+00 0 2.63E+00 1 2.65E+00 1 2.65E+00 1 2.65E+ | MC_error 1.68E-02 2.00E-02 2.43E-02 | 2.92E+00
3.49E+00
4.23E+00 | 5.87E+00
7.02E+00
8.51E+00 | 9.72E+00
1.16E+01 | hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi | 1.62
1.212
1.606
1.847
2.099
2.434
2.768
4.089
4.681
5.31
5.736
6.27
7.728
8.765
9.893
9.728 | 0.5161
0.3862
0.5115
0.5883
0.6685
0.7755
0.8817
1.323
1.515
1.718
1.856
2.029
2.322
2.634
2.973
2.923
3.157 | 4.84E-03 2 3.62E-03 5 4.79E-03 3 5.51E-03 6 .62E-03 7 8.26E-03 3 1.22E-02 5 1.71E-02 2 2.15E-02 1 2.44E-02 3 2.75E-02 7 2.92E-02 7 2.92E-02 | 0.7666
0.573
0.77
0.874
0.993
1.15:
1.3
1.92:
2.199
2.499
2.949
3.77
4.244
4.783 | 9 1.57.
9 1.17
9 1.17
5 2 1.79
4 2.03
2 2.366
1 3.94
4 51
5 5.12
5 5.12
2 8.53
5 6.04
4 7.52
2 8.53
7 9.46
7 9.46
4 10.2 | 2 2.726
7 2.04
8 2.701
2 3.107
7 3.531
3 4.099
4 6.918
5 7.919
2 8.984
2 8.984
2 14.13
3 12.46
2 14.13
3 15.95
9 15.68 | tunapro | pi 0.85
pi 0.90
pi 1.0
pi 0.92
pi 1.1
pi 1.3
pi 1.7
pi 1.7
pi 1.8
pi 1.9
pi 1.9
pi 1.9
pi 3.0
pi 3.0
pi 3.0
pi 3.1
pi 1.9
pi 4.5
pi 4.4
pi 4.5
pi 4.5
pi 4.5
pi 4.5
pi 4.5
pi 4.5
pi 3.0 | 22 0.2
52 0.2
55 0.2
56 0.2
57 0.3
56 0.2
57 0.3
50 0.4
50 0.5
50 0.5
50 0.5
50 0.5
50 0.5
50 0.5
50 0.5
50 0.6
60 0.3
60 0.3 | 715 2.54E.884 2.70E.884 2.70E.888 2.70E.8888 2.70E.8888 2.70E.8888 2.70E.8888 2.70E.8888 2.70E.8888 2.70E.88888 2.70E.888888 2.70E.88888 2.70E.888 | -03 | 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 | 8271
8785
99884
8983
.143
1.28
.359
.713
.768
.543
.407
2.031
2.897
3.014
5.145
8.87
8.224
4.466
4.321
5.075 | | areaprop 0.8746 areaprop 0.8753 areaprop 0.8635 areaprop 0.8022 areaprop 0.8022 areaprop 0.8934 areaprop 0.8938 areaprop 0.8938 areaprop 1.095 areaprop 1.095 areaprop 1.095 areaprop 0.9589 areapro | 0.2786 0.2788 0.2781 0.2555 0.2795 0.2658 0.2836 0.3374 0.3329 0.3055 0.307 0.4608 0.5573 0.5039 0.5415 0.615 0.6079 0.66597 0.66999 0.7844 0.9143 1.326 | 2.61E-03
2.61E-03
2.58E-03
2.39E-03
2.66E-03
3.16E-03
3.12E-03
2.88E-03
4.24E-03
5.13E-03
4.64E-03
4.98E-03
5.66E-03
5.66E-03
6.07E-03
6.48E-03
7.26E-03 | 0.414
0.4143
0.4087
0.3797
0.4154
0.395
0.4214
0.4946
0.4539
0.4562
0.6689
0.8091
0.7315
0.8928
0.9789
1.056
1.127
1.263
1.472
1.708 | 0.8489
0.8495
0.838
0.7858
0.8517
0.8098
0.8641
1.014
0.9307
0.9353
1.661
1.502
1.614
1.833
1.969
2.124
2.267
2.541
2.962
3.615 | 1.471
1.473
1.453
1.453
1.453
1.476
1.476
1.476
1.476
1.478
1.478
1.782
1.782
1.783
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.623
1.624
1.624
1.624
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1.625
1. | basinpro
basinpro
basinpro
basinpro | p 7.24
p 8.55
p 10.2
p 11.0 | 16 2.17
11 2.55
3.07
17 3.87 | 77 0.02015
44 0.02364
99 0.02849
75 0.03655 | 3.506
4.114
4.958
4.991 | 5 7.053
8 8.275
8 9.974
10.57 | 11.68
13.71
16.52
19.69 | basinpro _l
basinpro _l
basinpro _l | 0 6.03
0 7.21£+0
0 8.74£+0
0 9.07E+0 | 2 1.81E+00
0 2.17E+00
0 2.63E+00
0 3.17E+00 | MC_error 1.68E-02 2.00E-02 2.43E-02 | 2.92E+00
3.49E+00
4.23E+00 | 5.87E+00
7.02E+00
8.65E+00 | 9.72E+00
1.16E+01
1.41E+01 | hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi | 1.62
1.212
1.606
1.847
2.099
4.681
5.31
5.736
6.27
7.728
8.765
9.893
9.728
10.51
11.27 | 0.5161
0.3862
0.5115
0.5883
0.6685
0.7755
0.8817
1.718
1.856
2.029
2.322
2.634
2.973
2.923
3.1575 | L 4.84E-03
2 3.62E-03
3 5.51E-03
3 5.51E-03
5 6.26E-03
7 8.26E-03
8 1.22E-02
1 1.39E-02
5 1.71E-02
9 1.87E-02
2 2.15E-02
4 2.44E-03
2 2.75E-02
3 2.71E-02
7 2.92E-02
3 3.72E-02
3 3.72E-02 | 0.7669
0.573
0.70
0.874
0.993
1.15;
1.3;
1.92;
2.199
2.699
2.949;
4.78;
4.78;
4.78;
5.08;
5.07; | 9 1.57.
9 1.57.
5 1.55.
2 1.79.
4 2.03.
2 2.68.
1 2.68.
1 3.944.
5 5.12.
5 5.12.
6 6.04.
7 9.6.
7 9.6.
9 4.61. | 2 2.726
7 2.04
8 2.701
2 3.107
7 3.531
8 4.095
6 4.656
4 6.918
4 6.918
2 8.984
2 9.703
7 10.61
8 15.68
8 15.95
9 15.68
8 16.94
9 16.94 | tunapro | pi 0.85
pi 0.90
pi 1.0
pi 1.1
pp 1.1
pp 1.3
pp 1.1
pp 1.7
pp 1.8
pp 1.8
pp 1.8
pp 2.1
pp 3.0
pp 3.0
pp 3.1
pp 3.2
pp 4.5
pp 4.5
pp 4.5
pp 4.5
pp 4.5
pp 4.5
pp 5.2
pp 5.2
pp 5.2
pp 5.2
pp 6.2
pp 6.2 | 22 0.2
52 0.2
53 0.2
54 0.2
56 0.2
57 0.3
56 0.2
57 0.3
59 0.4
50 0.5
50 0.5
50 0.5
50 0.5
50 0.5
50 0.5
60 0.5 | 715 2.54E 884 2.70E 884
2.70E 884 2.70E 884 2.70E 949 2.76E 955 3.94E 846 4.18E 662 5.27E 804 5.44E 665 4.75E 661 4.33E 6.27E 718 8.94E 6025 9.43E 6055 9.71E 888 1.19E 6059 9.12E | -03 0.40 -03 0.42 -03 0.42 -03 0.48 -03 0.48 -03 0.55 -03 0.55 -03 0.62 -03 0.83 -03 0.83 -03 0.86 -03 0.86 -03 0.86 -03 0.86 -03 0.86 -03 0.55 -03 0.86 -03 | 0.84 0.8881 0.88 | 8271
8785
99884
8983
.143
1.28
.359
.713
768
543
407
031
897
055
145
838
224
466
321
147
568 | | areaprop 0.8746 areaprop 0.8756 areaprop 0.8635 areaprop 0.8022 areaprop 0.8022 areaprop 0.8022 areaprop 0.8036 areaprop 0.8036 areaprop 0.8036 areaprop 1.059 areaprop 1.059 areaprop 1.059 areaprop 1.059 areaprop 1.722 areaprop 1.722 areaprop 1.722 areaprop 1.573 areaprop 1.573 areaprop 1.573 areaprop 1.573 areaprop 1.573 areaprop 2.023 areaprop 2.023 areaprop 2.032 areaprop 2.182 areaprop 2.182 areaprop 3.182 areaprop 3.384 | 0.2786 0.2788 0.2781 0.2555 0.2795 0.2658 0.2636 0.3334 0.3329 0.307 0.4608 0.5573 0.5039 0.5415 0.6079 0.6557 0.6699 0.7844 0.9143 1.326 | 2.61E-03
2.61E-03
2.58E-03
2.58E-03
2.49E-03
2.66E-03
3.16E-03
3.12E-03
2.86E-03
2.88E-03
4.24E-03
4.24E-03
5.66E-03
5.62E-03
6.07E-03
6.48E-03
7.26E-03
8.46E-03
0.0125
0.01265 | 0.414
0.4143
0.4087
0.395
0.4214
0.5014
0.5014
0.4539
0.4562
0.6689
0.8091
0.7315
0.7861
0.8928
0.9789
1.1263
1.472
1.708
1.728 | 0.8489
0.8495
0.838
0.7785
0.8517
0.8098
1.014
0.9307
1.661
1.502
1.614
1.833
1.969
2.124
2.267
2.541
2.962
3.6153 | 1.471
1.473
1.473
1.453
1.135
1.464
1.494
1.498
1.782
1.782
1.613
1.621
2.409
2.294
2.294
2.294
2.294
2.313
3.215
3.3215
3.3215
3.325
4.409
4.409
4.409
4.409
6.634
6.634 | basinpro
basinpro
basinpro | p 7.24
p 8.55
p 10.2
p 11.0 | 16 2.17
11 2.55
3.07
17 3.87 | 77 0.02015
34 0.02364
99 0.02849
75 0.03655
11 0.0384 | 3.506
4.114
4.958
4.991
5.244 | 5 7.053
8.275
8 9.974
1 10.57 | 11.68
13.71
16.52 | basinproj
basinproj
basinproj
basinproj | D 6.03:
D 7.21E+00
D 8.74E+00
D 9.07E+00
D 9.07E+00 | 2 1.81E+00
0 2.17E+00
0 2.63E+00
0 3.37E+00 | 1.68E-02
2.00E-02
2.43E-02
2.99E-02 | 2.92E+00
3.49E+00
4.23E+00
4.09E+00 | 5.87E+00
7.02E+00
8.51E+00
9.01E+00 | 9.72E+00
1.16E+01
1.41E+01
1.63E+01 | hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi | 1.62
1.212
1.606
1.847
2.099
4.681
5.31
5.736
6.27
7.728
8.765
9.893
9.728
10.51
11.27 | 0.5161
0.3862
0.5115
0.5883
0.6685
0.7755
0.8817
1.515
1.718
1.856
2.029
2.322
2.634
2.973
2.923
3.157
3.933
3.933 | 1. 4.84E-03
2. 3.62E-03
5. 4.79E-03
3. 5.51E-03
6. 6.26E-03
6. 7.27E-03
7. 8.26E-03
8. 1.58E-02
1.71E-02
1.87E-02
1.24E-02
2. 2.15E-02
1.24E-02
3. 2.75E-02
3. 2.71E-02
7. 2.92E-02
3. 3.72E-02
3. 3.72E-02 | 0.7666
0.573
0.70
0.874:
0.993
1.15:
1.3:
1.92:
2.199
2.49:
2.69-
2.94:
4.78:
4.70:
5.08:
5.07:
5.06: | 3 1.57.
3 1.57.
5 1.55.
2 1.79.
4 2.03.
4 2.03.
1 3.94.
1 3.94.
9 4.51.
5 5.12.
4 5.53.
5 6.04.
4 7.52.
2 8.53.
7 9.46.
7 9.46.
9 10.2.
9 10.7. | 2 2.7266
7 2.043
3 2.701
2 3.107
7 3.531
3 4.095
5 4.656
5 7.919
2 8.984
5 7.919
2 8.984
1 12.46
3 12.46
3 15.98
9 15.68
3 16.94
9 15.68 | tunapro | pi 0.85
pi 0.90
pi 1.0
pi 1.1
pp 1.1
pp 1.3
pp 1.1
pp 1.7
pp 1.8
pp 1.8
pp 1.8
pp 2.1
pp 3.0
pp 3.0
pp 3.1
pp 3.2
pp 4.5
pp 4.5
pp 4.5
pp 4.5
pp 4.5
pp 4.5
pp 5.2
pp 5.2
pp 5.2
pp 5.2
pp 6.2
pp 6.2 | 22 0.2 252 0.2 252 0.2 252 0.2 252 0.2 252 0.2 253 0.3 256 0.2 2578 0.3 259 0.5 259 0.5 259 0.5 259 0.5 268 1.0
268 1.0 268 1.0 268 1.0 268 1.0 268 1.0 268 1.0 268 1.0 268 1.0 268 1.0 268 1.0 268 1.0 268 1.0 268 1. | 715 2.54E- 884 2.70E- 884 2.70E- 884 2.70E- 949 2.76E- 751 3.51E- 203 3.94E- 4446 4.18E- 624 5.27E- 8804 5.44E- 605 4.75E- 618 4.33E- 618 6.27E- 718 8.94E- 8.94E | -03 0.400 -03 0.420 -03 0.420 -03 0.480 -03 0.480 -03 0.55 -03 0.650 -03 0.650 -03 0.830 -03 0.860 -03 0.860 -03 0.860 -03 0.870 -03 0.880 -03 0.8 | 0.84 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 | 8271
8785
9884
8983
.143
1.28
.359
.7713
768
543
407
031
897
005
145
838
224
466
321
321
321
321
321
322
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323
323 | | areaprop 0.8746 areaprop 0.8736 areaprop 0.8635 areaprop 0.8022 areaprop 0.8022 areaprop 0.8024 areaprop 0.8344 areaprop 0.8348 areaprop 0.9589 0.023 areaprop 0.023 areaprop 0.023 areaprop 0.023 areaprop 0.023 areaprop 0.038 areaprop 0.038 areaprop 0.3788 areaprop 0.3788 areaprop 0.3788 areaprop 0.3788 areaprop 0.3788 areaprop 0.3788 areaprop 0.388 areaprop 0.4097 areaprop 0.3788 areaprop 0.4097 areaprop 0.3788 areaprop 0.4097 0 | 0.2786 0.2788 0.2781 0.2555 0.2795 0.2555 0.2995 0.2658 0.2836 0.3374 0.3329 0.3055 0.307 0.4608 0.5573 0.5039 0.5415 0.615 0.6079 0.7844 0.9143 1.326 1.326 | 2-61E-03
2-61E-03
2-58E-03
2-39E-03
2-62E-03
2-49E-03
3-16E-03
3-12E-03
2-88E-03
4-24E-03
5-13E-03
4-98E-03
5-62E-03
6-07E-03
6-48E-03
7-26E-03
8-46E-03
0-0125
0-0125 | 0.414
0.4143
0.4087
0.3797
0.4154
0.395
0.4214
0.5014
0.4539
0.4562
0.6689
0.8091
0.7315
0.7861
0.9789
1.056
1.127
1.277
1.708
1.472
1.708 | 0.8489
0.8495
0.838
0.7785
0.8517
0.8098
0.8641
1.014
0.9307
1.661
1.502
1.661
1.502
2.124
2.267
2.541
2.962
3.615
3.693
3.993 | 1.471
1.473
3 1.453
5 1.35
6 1.35
6 1.476
8 1.404
1 1.498
8 1.782
1 1.613
1 1.621
8 2.409
1 2.914
2 2.934
2 2.834
3 3.215
3 3.25
6 3.358
7 4.909
6 6.734
9 6.734 | basinpro
basinpro
basinpro
basinpro | p 7.24
p 8.55
p 10.2
p 11.6
p 11.6 | 166 2.17
101 2.55
125 3.07
17 3.87
183 4.07
17 4.11 | 77 0.02015
54 0.02364
9 0.02849
75 0.03655
71 0.03884
17 0.03884 | 3.506
4.114
4.958
4.991
5.244
5.304 | 5 7.053
8.275
3 9.974
10.57
11.11 | 11.68
13.71
16.52
19.69
20.68
20.92 | basinproj
basinproj
basinproj
basinproj
basinproj | D 6.03
D 7.21E+00
D 9.07E+00
D 9.44E+00
D 9.21E+0 | 2 1.81E+00
2 2.17E+00
3 2.17E+00
3 3.17E+00
3 3.30E+00
3 3.30E+00
3 3.22E+00 | 1.68E-02
2.00E-02
2.43E-02
3.12E-02
3.04E-02 | 2.92E+00
3.49E+00
4.23E+00
4.29E+00
4.25E+00 | 5.87E+00
7.02E+00
8.51E+00
8.65E+00
9.01E+00
8.79E+00 | 9.72E+00
1.16E+01
1.41E+01
1.61E+01
1.68E+01 | hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi | 1.62
1.212
1.606
1.847
2.099
4.681
5.31
5.736
6.27
7.728
8.765
9.893
9.728
10.51
11.27 | 0.5161
0.3862
0.5115
0.5883
0.6685
0.7755
0.8817
1.323
1.515
2.029
2.322
2.634
2.973
2.923
3.157
3.943
3.943
3.833 | 1. 4.84E-03
2. 3.62E-03
5. 4.79E-03
5. 6.26E-03
5. 7.27E-03
7. 8.26E-03
5. 1.22E-02
5. 1.39E-02
5. 1.71E-02
9. 1.87E-02
9. 2.47E-02
1. 2.75E-02
1. 2.75E-02
1. 2.75E-02
1. 2.75E-02
1. 2.75E-02
1. 2.75E-02
1. 2.75E-02
1. 3.77E-02
1. 3.77E-02
1. 3.77E-02 | 0.7669
0.573
0.70
0.993
1.15:
1.92:
2.199
2.699
2.944
4.789
4.700
5.089
5.079
5.000
5.000 | 9 1.57,
9 1.57,
9 1.177
5 1.55,
2 1.79,
2 2.36,
1 2.68,
1 2.68,
1 3.94,
9 4.51,
5 5.12,
4 5.53,
6 6.04,
4 7.52,
2 8.53,
7 9.46,
7 9.46,
7 9.46,
7 9.46,
7 9.46,
7 9.46,
7 9.46,
7 9.46,
7 9.46,
8 10.2,
9 10.7,
9 10.7 | 2 2.7262
7 2.043
3 2.701
2 3.107
2 3.107
3 4.099
5 4.656
4 6.918
2 8.984
2 9.703
7 10.61
8 12.44
2 14.13
9 15.68
8 16.94
8 16.94
9 15.88
9 15.88 | tunapro | p 0.85 p 0.90 p 0.90 p 0.90 p 1.1 p 1.3 p 1.7 p 1.7 p 1.8 p 2.1 p 3.0 p 3.2 p 3.2 p 4.5 p 4.5 p 5.2 p 5.2 p 5.7 p 6.2 p 7.7 | 22 0.2 252 0.2 252 0.2 252 0.2 252 0.2 252 0.2 253 0.3 256 0.2 2578 0.3 259 0.5 259 0.5 259 0.5 259 0.5 260 0.3 279 0.5 281 1.1 288 1.1 288 1.1 288 1.1 288 1.1 288 1.1 288 1.1 39 1.1 | 715 2.54E- 884 2.70E- 884 2.70E- 884 2.70E- 944 3.04E- 949 2.76E- 951 3.51E- 962 3.34E- 964 4.18E- 965 4.75E- 965 4.75E- 965 9.71E- 965 9.71E- 965 9.71E- 966 2.55E- 979 1.28E- 9304 1.21E- 875 1.74E- 9628 2.48E- 9706 2.55E- | -03 0.400 -03 0.484 -03 0.488 -03 0.488 -03 0.55 -03 0.62 -03 0.666 -03 0.63 -03 0.65 -03 0.66 -03 0.86 -03 0.86 -03 0.86 -03 0.86 -03 0.98 -03 1.4 -03 1.4 -03 1.5 -02 1.8 -02 2.5 -02 2.5 -02 3.3 -02 3.3 -02 3.3 -02 3.3 -02 3.3 -02 3.4 | 0.84 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 | 8271
8785
99884
89983
.143
1.28
.359
.713
.768
543
407
1.031
2.897
1.055
3.145
8.838
1.224
4.466
4.321
5.147
6.075
7.38 | | areaprop 0.8746 areaprop 0.8736 areaprop 0.8635 areaprop 0.8022 areaprop 0.8022 areaprop 0.8024 areaprop 0.8036 areaprop 0.8036 areaprop 0.8037 areaprop 0.9589 0.023 areapro | 0.2786 0.2788 0.2781 0.2555 0.2795 0.2555 0.2995 0.2658 0.2836 0.3374 0.3329 0.3055 0.307 0.4608 0.5573 0.5039 0.5415 0.615 0.6079 0.7844 0.9143 1.326 1.326 |
2.61E-03
2.61E-03
2.58E-03
2.58E-03
2.49E-03
2.66E-03
3.16E-03
3.12E-03
2.86E-03
2.88E-03
4.24E-03
4.24E-03
5.66E-03
5.62E-03
6.07E-03
6.48E-03
7.26E-03
8.46E-03
0.0125
0.01265 | 0.414
0.4143
0.4087
0.395
0.4214
0.5014
0.5014
0.4539
0.4562
0.6689
0.8091
0.7315
0.7861
0.8928
0.9789
1.1263
1.472
1.708
1.728 | 0.8489
0.8495
0.838
0.7785
0.8517
0.8098
1.014
0.9307
1.661
1.502
1.614
1.833
1.969
2.124
2.267
2.541
2.962
3.6153 | 1.471
1.473
3 1.453
5 1.35
6 1.35
6 1.476
8 1.404
1 1.498
8 1.782
1 1.613
1 1.621
8 2.409
1 2.914
2 2.934
2 2.834
3 3.215
3 3.25
6 3.358
7 4.909
6 6.734
9 6.734 | basinpro
basinpro
basinpro
basinpro | p 7.24
p 8.55
p 10.2
p 11.6
p 11.6 | 166 2.17
101 2.55
125 3.07
17 3.87
183 4.07
17 4.11 | 77 0.02015
54 0.02364
99 0.02849
75 0.03655
71 0.03884
17 0.03884 | 3.506
4.114
4.958
4.991
5.244
5.304 | 5 7.053
8.275
3 9.974
10.57
11.11 | 11.68
13.71
16.52
19.69
20.68 | basinproj
basinproj
basinproj
basinproj
basinproj | D 6.03
D 7.21E+00
D 9.07E+00
D 9.44E+00
D 9.21E+0 | 2 1.81E+00
0 2.17E+00
0 2.63E+00
0 3.37E+00 | 1.68E-02
2.00E-02
2.43E-02
3.12E-02
3.04E-02 | 2.92E+00
3.49E+00
4.23E+00
4.29E+00
4.25E+00 | 5.87E+00
7.02E+00
8.51E+00
8.65E+00
9.01E+00
8.79E+00 | 9.72E+00
1.16E+01
1.41E+01
1.61E+01
1.68E+01 | hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl | 1.62
1.212
1.606
1.847
2.099
2.434
2.768
4.089
4.681
5.31
5.736
6.27
7.728
8.765
9.893
9.728
10.51
11.27 | 0.5161
0.3862
0.5115
0.5883
0.6685
0.7755
0.8817
1.323
1.515
1.718
2.029
2.322
2.634
2.973
2.923
3.157
3.943
3.943
3.837 | 1. 4.84E-03
2. 3.62E-03
5. 4.79E-03
3. 5.51E-03
6. 6.26E-03
6. 7.27E-03
7. 8.26E-03
8. 1.58E-02
1.71E-02
1.87E-02
1.24E-02
2. 2.15E-02
1.24E-02
3. 2.75E-02
3. 2.71E-02
7. 2.92E-02
3. 3.72E-02
3. 3.72E-02 | 0.7666
0.573
0.70
0.874:
0.993
1.15:
1.3:
1.92:
2.199
2.49:
2.69-
2.94:
4.78:
4.70:
5.08:
5.07:
5.06: | 9 1.57,
9 1.57,
9 1.177
5 1.55,
2 1.79,
2 2.36,
1 2.68,
1 2.68,
1 3.94,
9 4.51,
5 5.12,
4 5.53,
6 6.04,
4 7.52,
2 8.53,
7 9.46,
7 9.46,
7 9.46,
7 9.46,
7 9.46,
7 9.46,
7 9.46,
7 9.46,
7 9.46,
8 10.2,
9 10.7,
9 10.7 | 2 2.7262
7 2.043
3 2.701
2 3.107
2 3.107
3 4.099
5 4.656
4 6.918
2 8.984
2 9.703
7 10.61
8 12.44
2 14.13
9 15.68
8 16.94
8 16.94
9 15.88
9 15.88 | tunapro | pi 0.85 pi 0.90 pi 0.90 pi 0.92 pi 1.1 pi 1.3 pi 1.7 pi 1.8 pi 1.7 pi 1.8 pi 1.9 pi 1.9 pi 1.0 pi 3.0 pi 3.0 pi 3.1 pi 3.2 pi 4.4 pi 4.5 pi 4.2 pi 6.2 pi 7.5 pi 6.2 pi 7.5 pi 8.6 | 22 0.2 252 0.2 252 0.2 252 0.2 252 0.2 252 0.2 253 0.3 256 0.2 2578 0.3 259 0.5 259 0.5 259 0.5 259 0.5 260 0.3 279 0.5 281 1.1 288 1.1 288 1.1 288 1.1 288 1.1 288 1.1 288 1.1 39 1.1 | 715 2.54E- 884 2.70E- 884 2.70E- 884 2.70E- 949 2.76E- 751 3.51E- 203 3.94E- 4446 4.18E- 624 5.27E- 8804 5.44E- 605 4.75E- 618 4.33E- 618 6.27E- 718 8.94E- 8.94E | -03 0.400 -03 0.484 -03 0.488 -03 0.488 -03 0.55 -03 0.62 -03 0.666 -03 0.63 -03 0.65 -03 0.66 -03 0.86 -03 0.86 -03 0.86 -03 0.86 -03 0.98 -03 1.4 -03 1.4 -03 1.5 -02 1.8 -02 2.5 -02 2.5 -02 3.3 -02 3.3 -02 3.3 -02 3.3 -02 3.3 -02 3.4 | 0.84 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 | 8271
8785
9884
8983
.143
1.28
.359
.713
768
543
407
031
897
0055
145
838
224
466
321
321
321
321
321
322
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332
332 | | Dareaprop 0.8746 areaprop 0.8753 areaprop 0.8753 areaprop 0.8022 a areaprop 0.8022 a areaprop 0.8025 a areaprop 0.8033 a areaprop 0.8033 a areaprop 0.8033 a areaprop 1.0059 a areaprop 1.059 a areaprop 1.059 a areaprop 1.052 a areaprop 1.052 a areaprop 1.052 a areaprop 1.053 a areaprop 1.053 a areaprop 1.053 a areaprop 1.052 a areaprop 1.053 a | 0.2786 0.2788 0.2781 0.2555 0.2795 0.2555 0.2795 0.2658 0.2836 0.3334 0.3329 0.3055 0.307 0.4608 0.5573 0.5039 0.4608 0.5573 0.5039 0.7844 0.6557 0.6999 0.7844 0.9143 1.326 1.342 1.342 | 2-61E-03
2-61E-03
2-58E-03
2-39E-03
2-62E-03
2-49E-03
3-16E-03
3-12E-03
2-88E-03
4-24E-03
5-13E-03
4-98E-03
5-62E-03
6-07E-03
6-48E-03
7-26E-03
8-46E-03
0-0125
0-0125 | 0.414
0.4143
0.4087
0.3797
0.4154
0.395
0.4214
0.5014
0.4539
0.4562
0.6689
0.8091
0.7315
0.7861
0.9789
1.056
1.127
1.277
1.708
1.472
1.708 | 0.8489
0.8495
0.838
0.7785
0.8517
0.8098
0.8641
1.014
0.9307
1.661
1.502
1.661
1.502
2.124
2.267
2.541
2.962
3.615
3.693
3.993 |
1.471
1.473
1.473
1.453
1.155
1.35
1.476
1.498
1.782
1.613
1.621
2.914
2.634
2.2914
2.634
3.215
3.261
3.3518
3.3518
4.209
4.905
6.6734
6.816
6.816
6.824
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836
6.836 | basinpro
basinpro
basinpro
basinpro
basinpro | p 7.24
p 8.55
p 10.02
p 11.6
p 11.7
p 11.7 | 66 2.17
101 2.555
3.070
77 3.87
33 4.07
74 4.11
53 3.7. | 77 0.02015
54 0.02364
97 0.0388
71 0.0388
72 0.0358
72 0.0358 | 3.506
4.114
4.958
4.991
5.244
5.304 | 5 7.053
8 8.275
8 9.974
10.57
11.13
11.23
2 10.14 | 11.68
13.71
16.52
19.69
20.68
20.92 | basinproj
basinproj
basinproj
basinproj
basinproj
basinproj | p 6.033
p 7.21E+00
p 8.74E+00
p 9.42E+00
p 9.42E+00
p 8.56E+00 | 2 1.81E+00
2 2.17E+00
3 2.17E+00
3 3.17E+00
3 3.30E+00
3 3.30E+00
3 3.22E+00 | 1.68E-02
2.00E-02
2.43E-02
3.04E-02
2.83E-02 | 2.92E+00
3.49E+00
4.23E+00
4.25E+00
4.15E+00
3.86E+00 | 5.87E+00
7.02E+00
8.51E+00
9.01E+00
8.17E+00
8.17E+00 | 9.72E+00
1.16E+01
1.41E+01
1.63E+01
1.63E+01
1.62E+01 | hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi | 1.62
1.212
1.606
1.847
2.099
2.434
2.768
4.089
4.681
5.336
6.27
7.728
8.765
9.893
9.728
10.51
11.27
11.24
11.13 | 0.5161
0.3862
0.5115
0.5883
0.6685
0.7755
0.8817
1.322
1.515
1.718
1.856
2.029
2.322
2.634
2.973
2.923
3.157
3.943
3.933
3.899
3.752 | 1. 4.84E-03
2. 3.62E-03
5. 4.79E-03
8. 5.51E-03
5. 7.27E-03
7. 8.26E-03
8. 1.22E-02
5. 1.39E-02
9. 1.87E-02
9. 1.87E-02
9. 2.75E-02
9. 2.75E-02
9. 2.75E-02
9. 2.75E-02
9. 3.72E-02
9. 3.72E-02
9. 3.72E-02
9. 3.72E-02
9. 3.72E-02 | 0.7669
0.573
0.70
0.993
1.15:
1.92:
2.199
2.699
2.944
4.789
4.700
5.089
5.079
5.000
5.000 | 9 1.57.
9 1.17.
9 1.17.
9 1.17.
1 2.03.
2 2.36.
1 3.94.
1 3.94.
1 5.53.
5 6.04.
4 7.52.
2 8.53.
7 9.66.
4 10.2.
9 10.7.
7 10.7.
9 10.7.
9 10.7. | 2 2.7266
7 2.048
8 2.701
7 3.531
8 4.095
4 6.918
5 7.919
2 9.703
7 10.61
8 12.46
8 15.68
9 15.68
9 15.68
9 15.68
9 19.88
8 19.88 | tunapro | p 0.85 p 0.90 p 0.90 p 0.92 p 1.1 p 1.3 p 1.7 p 1.8 p 1.0 p 2.11 p 3.0 p 3.1 p 3.2 p 3.2 p 4.4 p 4.5 p 4.5 p 6.2 p 6.2 p 7.5 p 7.5 p 7.6 | 222 0.2 252 0.2 252 0.2 252 0.2 252 0.2 253 0.3 256 0.2 278 0.3 256 0.2 278 0.3 257 0.5 250 0.5 250 0.5 250 0.5 250 0.5 250 0.5 260 0.5 270 0.5 280 0.5 290 0. | 715 2.54E- 884 2.70E- 884 2.70E- 884 2.70E- 944 3.04E- 949 2.76E- 951 3.51E- 962 3.34E- 964 4.18E- 965 4.75E- 965 4.75E- 965 9.71E- 965 9.71E- 965 9.71E- 966 2.55E- 979 1.28E- 9304 1.21E- 875 1.74E- 9628 2.48E- 9706 2.55E- | -03 0.400 -03 0.424 -03 0.424 -03 0.434 -03 0.55 -03 0.666 -03 0.83 -03 0.75 -03 0.666 -03 0.83 -03 0.83 -03 1.4 -03 1.4 -03 1.5 -02 1.8 -02 2.5 -02 2.1 -02 3.4 -02 3.4 -02 3.4 -02 3.4 -02 3.4 -02 3.4 -02 3.4 -02 3.4 -02 3.4 -02 3.4 -02 3.4 | 0.8885 0.8885 0.8885 0.8885 0.8885 0.8885 0.8885 0.8885 0.8885 0.8885 0.8885 0.8885 0.8886 7.8 | 8271
8785
99884
89983
.143
1.28
.359
.713
.768
543
407
1.031
2.897
1.055
3.145
8.838
1.224
4.466
4.321
5.147
6.075
7.38 | | 0 areaprop 0.8746 1 areaprop 0.8753 1 areaprop 0.8635 2 areaprop 0.8032 2 areaprop 0.8032 3 areaprop 0.8022 6
areaprop 0.8022 6 areaprop 0.8022 7 areaprop 1.059 9 areaprop 1.059 9 areaprop 0.9637 1 areaprop 1.424 2 areaprop 1.557 4 areaprop 1.557 4 areaprop 1.557 4 areaprop 1.572 7 areaprop 2.023 7 areaprop 2.023 9 areaprop 2.182 9 areaprop 2.182 9 areaprop 3.483 1 areaprop 3.483 1 areaprop 3.483 2 areaprop 3.483 3 areaprop 4.097 4 areaprop 3.384 3 areaprop 3.383 3 areaprop 4.097 4 areaprop 3.384 | 0.2786 0.2788 0.2781 0.2555 0.2795 0.2555 0.2795 0.3658 0.2836 0.3374 0.3329 0.3055 0.3077 0.4608 0.5573 0.3079 0.6557 0.6099 0.5415 0.615 0.6079 0.6557 0.6999 1.342 1.434 1.265 | 2.61E-03
2.61E-03
2.58E-03
2.39E-03
2.62E-03
2.49E-03
3.16E-03
3.12E-03
2.86E-03
4.24E-03
5.13E-03
4.24E-03
5.66E-03
5.66E-03
7.26E-03
8.46E-03
7.26E-03
8.46E-03
7.26E-03
8.46E-03
7.26E-03 | 0.414 0.4143 0.4087 0.3797 0.4154 0.395 0.4214 0.5014 0.4946 0.4539 0.4562 0.6689 0.8991 0.7315 0.7861 0.8928 0.9789 1.056 1.127 1.263 1.472 1.708 1.728 1.847 1.847 1.633 | 0.8489
0.8495
0.8317
0.8517
0.8098
1.014
0.9307
0.9353
1.373
1.661
1.502
2.124
2.267
2.541
2.962
3.615
3.659
3.913 | 1.471
1.473
3 1.453
5 1.355
6 1.354
6 1.404
1 1.498
8 1.782
1 1.621
2 2.914
2 2.634
3 3.215
3 3.215
4 2.99
9 4 2.934
6 6.734
6 6.734
6 6.734
6 6.428 | basinpro
basinpro
basinpro
basinpro
basinpro
basinpro
basinpro | p 7.24
p 8.55
p 10.0
p 11.0
p 11.0
p 10.6 | 166 2.17
101 2.55
103 3.07
103 3.7
104 1.11
105 3.7
105 3.7
10 | 77 0.02015
54 0.02364
79 0.02849
75 0.03655
71 0.03884
77 0.03884
70 0.03509
70 0.03509 | 3.506
4.114
4.958
4.991
5.244
5.304
4.792
4.633 | 5 7.053
1 8.275
3 9.974
1 10.57
1 11.13
2 10.14
3 9.808 | 11.68
13.71
16.52
19.69
20.68
20.92
18.9 | basinproj
basinproj
basinproj
basinproj
basinproj
basinproj
basinproj | p 6.033
p 7.21E+0
p 9.07E+0
p 9.07E+0
p 9.21E+0
p 9.21E+0
p 8.847E+0
p 8.847E+0 | 2 1.81E+00
2 1.87E+00
3 2.17E+00
3 .30E+00
3 .30E+00
3 .30E+00
3 .30E+00
3 .30E+00
3 .30E+00
3 .30E+00 | 1.68E-02
2.00E-02
2.43E-02
2.99E-02
3.12E-02
2.83E-02
2.88E-02 | 2.92E+00
3.49E+00
4.23E+00
4.15E+00
3.86E+00
3.86E+00 | 5.87E+00
7.02E+00
8.51E+00
8.65E+00
9.01E+00
8.79E+00
8.17E+00 | 9.72E+00
1.16E+01
1.41E+01
1.61E+01
1.68E+01
1.52E+01 | hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl | 1.62
1.212
1.606
1.847
2.099
2.434
2.768
4.089
4.681
5.336
6.27
7.728
8.765
9.893
9.728
10.51
11.27
11.24
11.13 | 0.5161
0.3862
0.5115
0.5883
0.6685
0.7755
0.8817
1.323
1.515
1.718
2.029
2.322
2.634
2.923
3.157
3.933
3.933
3.897
3.752 | 1. 4.84E-03
2. 3.62E-03
5. 4.79E-03
5. 5.51E-03
6. 26E-03
5. 7.27E-03
7. 8.26E-03
3. 1.28E-02
5. 1.71E-02
9. 1.87E-02
2. 2.15E-02
1. 2.44E-02
1. 2.44E-02
1. 2.75E-02
1. 2.75E-02
1. 2.75E-02
1. 2.75E-02
1. 2.75E-02
1. 3.75E-02
1. 3.75E | 0.7666
0.5737
0.77
0.874
0.993
1.153
1.32
2.199
2.499
2.499
3.77
4.78
4.707
5.08
5.07
5.06
5.03
5.03
5.03
5.03
5.03
5.03
5.03
5.03 | 9 1.57,
9 1.57,
9 1.175,
1.55,
2 1.79,
4 2.03,
2 2.36,
1 2.68,
1 2.68,
1 2.68,
1 4.51,
5 5.12,
4 7.52,
5 6.04,
4 7.52,
7 9.66,
7 9.46,
4 10.2,
9 10.7,
7 10.7,
7 10.7,
7 10.7,
7 10.7,
9 10.6,
1 10.2,
1 10.2, | 2 2.726
7 2.043
8 2.701
7 3.531
8 4.095
6 4.656
6 4.656
9 7.919
2 8.984
2 9.703
8 12.44
15.85
9 15.68
9 15.85
9 15.83
9 19.83
8 19.98
8 19.96
9 19.06 | tunapro | pi 0.85 pi 0.90 pi 0.90 pi 1.00 pi 1.00 pi 1.30 pi 1.7 pi 1.7 pi 1.8 pi 1.7 pi 1.9 pi 3.0 pi 3.0 pi 3.1 pi 3.2 pi 4.5 pi 4.5 pi 6.2 pi 6.2 pi 6.2 pi 7.7 pi 8.6 | 222 0.2
52 0.2
52 0.2
53 0.3
556 0.2
78 0.3
556 0.5
78 0.3
65 0.5
65 0.5
65 0.5
65 0.5
65 0.5
66 0.5
66 0.5
68 1.1
61 1.1
61 1.1
62 0.5
63 0.6
64 1.1
65 0.5
66 0.5
66 0.5
67 0.5
68 1.1
68 | 715 2.54E 715 2.54E 834 2.70E 834 2.70E 834 2.70E 835 2.76E 835 2.76E 836 4.18E 836 6.24 5.27E 836 4.75E 836 6.34E 837 8.94E 837 9.71E 837 1.28E 837 1.28E 887 1.47E 887 1.74E 888 1.47E 888 1.47E 8886 1.47E 8886 1.48E | -03 0.400 -03 0.424 -03 0.424 -03 0.434 -03 0.55 -03 0.666 -03 0.666 -03 0.666 -03 0.666 -03 0.666 -03 0.55 -03 0.666 -03 0.83 -03 0.83 -03 0.75 -03 0.86 -03 0.83 -03 0.75 -03 0.83 -03 0.75 -03 0.83 -0 | 0.8885 0.8885 0.8885 0.8885 0.8886 7.8886 7.8886 7.8886 7.8886 7.8886 7.8886 7.8886 7.8886 7.8886 7.88664 7.8665 7.8885 0.88885 0.8886 7.88664 7.8665 7.8665 7.8665 7.8665 7.8665 7.8886 7.86664 7.8665 7.8665 7.8886 7.8666 |
8271
8785
9884
8983
1.143
1.28
1.359
1.768
1.543
1.407
1.031
1.887
1.055
1.145
1.838
1.224
1.466
1.321
1.145
1.345
1.345
1.346
1.321
1.346
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347
1.347 | | 00 areaprop 0.8746 100 areaprop 0.8753 120 areaprop 0.8753 121 areaprop 0.8753 131 areaprop 0.8052 132 areaprop 0.8052 133 areaprop 0.8052 135 areaprop 0.8075 155 areaprop 0.8902 157 areaprop 1.059 188 areaprop 1.059 189 areaprop 0.9589 100 areaprop 0.9589 100 areaprop 1.424 120 areaprop 1.557 131 areaprop 1.573 155 areaprop 1.573 156 areaprop 2.023 170 areaprop 2.033 170 areaprop 2.033 170 areaprop 2.033 170 areaprop 3.043 180 areaprop 3.043 101 areaprop 3.788 120 areaprop 3.815 120 areaprop 3.815 121 areaprop 3.815 121 areaprop 3.815 122 areaprop 3.815 123 areaprop 3.615 124 areaprop 3.615 125 areaprop 3.615 125 areaprop 3.615 125 areaprop 3.615 125 areaprop 3.415 | 0.2786 0.2788 0.2751 0.2555 0.2555 0.2658 0.2836 0.3374 0.3329 0.3055 0.307 0.4608 0.5573 0.5039 0.5415 0.6079 0.6557 0.6699 0.7844 0.9143 1.326 1.342 1.434 1.265 | 2.61E-03
2.61E-03
2.58E-03
2.39E-03
2.62E-03
2.49E-03
3.16E-03
3.16E-03
3.12E-03
2.88E-03
2.88E-03
4.64E-03
4.98E-03
5.66E-03
5.66E-03
6.07E-03
6.48E-03
0.0125
0.0125
0.0125
0.0125
0.0125 | 0.414
0.4143
0.4087
0.3797
0.4154
0.5914
0.5914
0.4539
0.4562
0.6689
0.8091
0.7315
0.7861
0.8928
1.056
1.127
1.263
1.472
1.708
1.472
1.708
1.472
1.633
1.562
1.471
1.633 | 0.8489
0.8495
0.838
0.8517
0.8641
1.028
0.9307
0.9353
1.373
1.502
1.614
1.833
2.124
2.267
2.541
2.541
2.543
3.305
3.345 | 1.471
1.473
1.473
1.473
1.476
1.1476
1.498
1.1758
1.1613
1.2499
1.613
1.2914
2.264
2.231
3.261
3.3215
3.3215
4.409
4.2914
2.634
2.831
3.261
3.261
3.261
3.261
3.758
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
4.209
6.616
6.616
6.616
6.616
6.658 | basinpro
basinpro
basinpro
basinpro
basinpro
basinpro
basinpro
basinpro | p 7.24
p 8.55
p 11.6
p 11.6
p 10.6
p 10.0
p 10.0
p 10.0 | 166 2.17
161 2.55
155 3.07
177 3.87
187 4.11
183 3.7.9
183 3.59
182 3.59
182 3.40 | 77 0.02015
54 0.02364
99 0.02849
71 0.0384
72 0.03509
66 0.03392
10 0.03308 | 3.506
4.114
4.958
4.991
5.244
5.304
4.792
4.633
4.382 | 5 7.053
8.275
8 9.974
1 10.57
1 11.23
2 10.14
9.808
9.808
9.9276 | 11.68
13.71
16.52
19.69
20.68
20.92
18.9
18.27
17.28 | basinproj
basinproj
basinproj
basinproj
basinproj
basinproj
basinproj
basinproj | D 6.03
D 7.21E+00
D 8.74E+00
D 9.07E+00
D 9.21E+00
D 9.21E+00
D 8.56E+00
D 8.47E+00
D 7.84E+00 | 2 1.81E+00
2 1.81E+00
3 2.17E+00
3 3.00E+00
3 3.00E+00
2 2.96E+00
2 2.74E+00
2 2.74E+00 | 1.68E-02
2.00E-02
2.99E-02
3.12E-02
3.12E-02
2.88E-02
2.88E-02
2.80E-02 | 2.92E+00
3.49E+00
4.23E+00
4.25E+00
4.15E+00
3.86E+00
3.82E+00
3.53E+00 | 55.87E+00
55.87E+00
9.01E+00
8.65E+00
9.01E+00
8.87E+00
8.87E+00
8.87E+00
8.87E+00
8.87E+00
8.87E+00 | 9.72E+00
1.16E+01
1.41E+01
1.63E+01
1.63E+01
1.52E+01
1.52E+01
1.51E+01 | hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl | 1.62
1.212
1.606
1.847
2.099
2.434
4.089
4.681
5.316
6.27
7.728
8.765
9.893
9.728
10.51
11.27
11.13
10.72 | 0.5161
0.3862
0.5115
0.5883
0.7755
0.8817
1.323
1.515
2.029
2.322
2.634
2.973
3.943
3.933
3.837
3.752
4.187 | 1. 4.84E-03
2. 3.62E-03
3. 4.79E-03
3. 5.51E-03
5. 2.62E-03
5. 2.72E-03
5. 1.39E-02
5. 1.39E-02
5. 1.71E-02
6. 1.71E-02
7. 2.72E-03
7. 2.72E-03
7. 2.72E-03
7. 2.72E-03
7. 2.72E-02
7. 2.72E-02
7. 2.72E-02
7. 2.72E-02
7. 2.72E-02
7. 2.72E-02
7. 2.72E-02
7. 3.68E-02
7. 3. | 0.7666
0.5732
0.77.
0.8747
1.155
1.32
2.499
2.499
2.494
4.787
4.727
5.084
5.070
5.06
5.070
4.833
5.479
4.797 | 9 1.57.
9 1.17
5 1.555
1.79,
4 2.03
2 2.368
1 3.94
9 4.51;
5 5.12
4 5.53,
7 9.66
4 10.2
2 8.53,
7 9.46;
4 10.2
2 10.6 | 2 2.7266
7 2.048
8 2.701
7 3.531
8 4.095
4 6.918
5 7.919
5 7.919
6 2 14.13
8 15.95
8 16.96
8 16.96
8 19.88
8 19.88
8 19.88
8 19.88
8 19.88 | tunapro | p 0.85
p 0.90
p 1.0
p 1.0
p 1.0
p 1.0
p 1.3
p 1.3
p 1.7
p 1.7
p 1.8
p 1.8
p 3.2
p 3.2
p 3.2
p 3.2
p 4.5
p 6.2
p 6.2 | 222 0.22 22 0.22 22 0.22 22 0.22 22 0.22 22 0.22 22 0.22 23 0.22 24 0.22 25 0.22 25 0.22 26 0.22 27 0.22 27 0.22 28 0.22 28 0.22 29 0.22 20
0.22 20 0. | 715 2.54E- 715 2.54E- 716 2.70E- 717 2.70E- 718 | -03 0.400 -03 0.420 -03 0.424 -03 0.434 -03 0.434 -03 0.55 -03 0.666 -03 0.83 -03 0.75 -03 0.666 -03 0.83 -03 0.88 -03 0.75 -03 0.68 -03 0.88 -03 1.4 -03 1.4 -03 1.5 -02 1.8 -02 2.5 -02 2.1 -02 2.5 -02 3.3 -02 3.4 -02 3.9 -02 3.6 -02 3.3 -02 3.3 -02 3.3 | 0.886 | 8271
8785
9884
1.128
8.359
1.143
1.128
8.359
1.713
1.768
8.407
1.031
8.897
1.031
8.897
1.045
1.145
1.145
1.145
1.145
1.145
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.147
1.1 | | 80 areaprop 0.8746 11 areaprop 0.8746 12 areaprop 0.8751 13 areaprop 0.8752 14 areaprop 0.86035 13 areaprop 0.80022 15 areaprop 0.80022 15 areaprop 0.8304 16 areaprop 0.8304 16 areaprop 0.8903 18 areaprop 0.9589 10 areaprop 0.9589 10 areaprop 0.9637 11 areaprop 1.424 12 areaprop 1.424 13 areaprop 1.573 15 areaprop 1.573 16 areaprop 1.573 17 areaprop 2.182 18 areaprop 1.573 19 areaprop 2.329 19 areaprop 2.329 19 areaprop 2.330 10 areaprop 3.043 10 areaprop 3.043 10 areaprop 3.043 10 areaprop 3.788 10 areaprop 3.788 10 areaprop 3.788 10 areaprop 3.615 | 0.2786 0.2788 0.2781 0.2555 0.2795 0.2555 0.2795 0.3658 0.2836 0.3374 0.3329 0.3055 0.307 0.4608 0.5573 0.50415 0.6079 0.7844 0.9143 1.326 1.342 1.434 1.265 1.213 1.099 | 2 61E-03 2 63E-03 2 58E-03 2 39E-03 2 39E-03 2 39E-03 2 56E-03 3 16E-03 3 13E-03 3 13E-03 3 13E-03 3 13E-03 5 13E-03 6 648E-03 6 648E-03 7 26E-03 0 01125 0 01125 0 011193 | 0.414 0.4143 0.4163 0.3797 0.4154 0.3797 0.4154 0.4946 0.4539 0.4562 0.4562 0.7861 0.7861 1.056 1.127 1.263 1.708 1.718 1.708 1.718 1.718 | 0.8489
0.8495
0.8383
0.7785
0.8517
1.028
0.8641
1.024
0.9307
0.9353
1.661
1.502
2.124
2.267
2.214
2.267
3.659
3.659
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.307
3.30 |
1.471
1.473
1.473
1.473
1.476
1.476
1.476
1.498
1.782
1.782
1.782
1.613
1.249
2.914
2.634
1.2831
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1 | basinpro
basinpro
basinpro
basinpro
basinpro
basinpro
basinpro
basinpro
basinpro | p 7.22p p 8.50p 10.2p 11.6p 11.7p 11.0p 11.2p 10.0p 10.2p 9.7p 9.7p 10.2p p 9.7p 12.5c 10.2p p 9.7p 12.5c 10.2p 12 | 166 2.17
101 2.55
155 3.07
177 3.87
33 4.07
4.11
33 3.75
88 3.59
23 3.40
22 4.4 | 77 0.02015
34 0.02364
99 0.02849
17 0.03884
17 0.0389
60 0.03392
10 10 0.03208
16 0.04417 | 3.506
4.114
4.958
4.991
5.244
5.340
4.792
4.633
4.382
4.382
5.795 | 5 7.053
1 8.275
3 9.974
1 11.1
1 11.23
1 0.14
3 9.808
2 9.276
5 12.41 | 11.68
13.71
16.52
19.68
20.92
18.97
18.27
17.28
23.12 | basinproj
basinproj
basinproj
basinproj
basinproj
basinproj
basinproj
basinproj | 0 6.03:
0 7.21E+0
0 8.74E+0
0 9.90Fe+0
0 9.44E+0
0 8.56E+0
0 8.47E+0
0 8.47E+0
0 1.05E+0 | 2 1.81E+00
2 1.7E+00
3 .30E+00
3 .30E+00
3 .30E+00
2 .96E+00
2 .74E+00
1 3.63E+00 | 1.68E-02
2.00E-02
2.43E-02
3.04E-02
2.80E-02
2.80E-02
2.59E-02
2.59E-02 | 2.92E+00
3.49E+00
4.23E+00
4.09E+00
4.25E+00
3.86E+00
3.82E+00
3.53E+00
4.72E+00 | 5.5.87E+00 5.5.87E+00 9.01E+00 9.01E+00 8.08E+00 1.01E+01 | 9.72E+00
1.16E+01
1.41E+01
1.61E+01
1.64E+01
1.52E+01
1.52E+01
1.39E+01 | hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi | 1.62
1.212
1.606
1.847
2.099
2.434
2.768
4.089
4.681
5.31
5.736
6.27
7.728
8.765
9.893
9.728
10.51
11.27
11.24
11.13
10.72
11.97 | 0.5161
0.3862
0.5115
0.5883
0.7755
0.8817
1.323
1.515
1.718
2.029
2.322
2.973
3.943
3.933
3.933
3.933
3.752
4.187
3.721
5.042 | 1. 4.84E-03
2. 3.62E-03
3. 5.51E-03
5. 6.26E-03
5. 7.27E-03
7. 8.26E-03
5. 1.39E-02
9. 1.88E-02
9. 1.87E-02
9. 1.87E-02
9. 2.47E-02
1. 2.44E-02
1. 2.44E-02
1. 2.44E-02
1. 2.44E-02
1. 2.44E-02
1. 2.44E-02
1. 2.44E-02
1. 3. 3. 7. 2. 2. 3. 3. 3. 7. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | 0.76660
0.5733
0.77.0
0.8742
1.153
1.33
1.92
2.199
2.699
2.944
4.787
4.244
4.787
4.244
4.787
4.244
4.787
4.244
4.787
4.244
4.787
4.244
4.787
4.244
4.787
4.244
4.787
4.244
4.787
4.244
6.55
6.55 | 9 1.57.
9 1.17
5 1.55;
1 2.68
1 2.68
1 3.944
1 3.944
1 5.53;
5 5.12;
4 5.53;
7 9.66
4 10.2
9 10.7
7 10.7
7 10.7
7 10.7
1 10.2
1 | 2 2.726
7 2.04
8 2.701
7 3.531
8 4.095
6 4.655
6 4.655 | tunapro | 0.855 0.909 0.855 0.909 0.925 0.92 | 222 0.22 22 0.22 22 0.22 22 0.22 22 0.22 22 0.22 22 0.22 22 0.22 22 0.22 22 0.22 22 0.22 22 0.22 22 0.22 23 0.22 24 0.22 25 0.22 25 0.25 26 0.22 27 0.22 28 0.22 28 0.22 29 0.25 29 0.25 20 0. | 7.15 2. \$42. \$42. \$43. \$43. \$43. \$43. \$43. \$43. \$43. \$43 | -03 0.400 -03 0.420 -03 0.420 -03 0.484 -03 0.434 -03 0.55 -03 0.666 -03 0.666 -03 0.56 -03 0.666 -03 0.75 -03 0.666 -03 0.75 -03 0.866 -03 0.75 -03 0.866 -03 0.98 -03 0.43 -03 0.43 -03 0.43 -03 0.45 -03 0.866 -03 0.866 -03 0.98
-03 0.98 | 334 0.8 3.8 4 0.8 3.8 4 0.8 4 | 8271
8785
99884
89883
1.143
1.28
9.359
9.713
1.28
9.359
1.713
8.97
1.031
1.28
1.359
1.407
1.031
1.407
1.543
1.407
1.543
1.445
1.446
1.321
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543
1.543 | | 90 areaprop 0.8746 90 areaprop 0.8753 312 areaprop 0.8753 32 areaprop 0.8052 33 areaprop 0.8052 35 areaprop 0.8052 55 areaprop 0.8052 56 areaprop 0.9303 57 areaprop 1.059 58 areaprop 1.045 59 areaprop 1.045 10 areaprop 1.424 12 areaprop 1.424 12 areaprop 1.424 12 areaprop 1.573 15 areaprop 1.573 15 areaprop 1.573 16 areaprop 2.033 17 areaprop 1.573 18 areaprop 2.182 19 areaprop 3.153 10 areaprop 3.183 10 areaprop 3.363 10 areaprop 3.883 10 areaprop 3.615 10 areaprop 3.8363 10 areaprop 3.615 | 0.2786 0.2788 0.2751 0.2555 0.2555 0.2658 0.2836 0.3374 0.3329 0.3055 0.3077 0.4608 0.5573 0.5039 0.5415 0.615 0.6557 0.6999 0.7844 0.3126 1.326 1.326 1.326 1.326 1.326 1.327 | 2.61E-03 2.61E-03 2.61E-03 2.58E-03 2.39E-03 2.59E-03 2.59E-03 2.65E-03 2.66E-03 3.312E-03 2.86E-03 3.312E-03 2.86E-03 4.24E-03 5.36E-03 6.07E-03 6 | 0.4141 0.4143 0.4163 0.3797 0.4154 0.395 0.4214 0.9946 0.4539 0.6689 0.8091 0.7315 0.7861 1.127 1.708 1.472 1.718 1.847 1.718 1.847 1.718 1.847 1.1562 1.416 |
0.8489
0.8495
0.7785
0.8517
1.028
1.028
1.0320
1.0320
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.04 | 1.471 1473 1.473 1.473 1.473 1.473 1.473 1.473 1.473 1.474 1.498 1.498 1.498 1.498 1.498 1.498 1.498 1.498 1.498 1.498 1.498 1.498 1.499 1 | basinpro
basinpro
basinpro
basinpro
basinpro
basinpro
basinpro
basinpro
basinpro | p 7.24
p 8.55
p 10.2
p 11.6
p 11.7
p 10.6
p 9.7
p 9.7
p 12.5
p 12.5 | 166 2.17
2.55
15 3.07
7 3.87
33 4.07
7 4.11
33 3.7.
22 3.40
94 4.88 | 77 0.02015
44 0.02364
97 0.0365
71 0.0386
72 0.0350
96 0.0339
10 0.03208
10 0.03208
10 0.03208 | 3.506
4.114
4.958
4.991
5.244
5.304
4.792
4.382
5.795
5.825
5.825 | 5 7.053
8 8.275
8 9.974
10.57
11.1
1 11.23
9.808
9.276
1 2.47
1 2.47 | 11.68
13.71
16.52
19.69
20.68
20.92
18.97
17.28
23.12
23.24 | basinproj
basinproj
basinproj
basinproj
basinproj
basinproj
basinproj
basinproj
basinproj | 0 6.03
0 7.21E+00
0 9.74E+00
0 9.21E+00
0 8.47E+00
0 8.47E+00
0 8.47E+00
0 8.47E+00
0 8.47E+00
0 1.10E+00
0 1.10E+00 | 2 1.81E+00
2 1.7E+00
3 3.7F+00
3 3.7F+00
3 3.2E+00
3 2.2E+00
3 2.2E+00
3 2.2E+00
3 3.2E+00
3 3.2 | 1.68E-02
2.00E-02
2.99E-02
3.12E-02
2.83E-02
2.59E-02
3.60E-02
3.60E-02
3.60E-02 | 2.92E+00 3.49E+00 4.23E+00 3.86E+00 3.86E+00 3.85E+00 3.55E+00 | 55.87E+00 7.02E+00 9.01E+00 8.85E+00 9.01E+00 7.48E+00 1.01E+01 | 9.72E+00
1.16E+01
1.5E+01
1.5E+01
1.5E+01
1.5E+01
1.5E+01
1.5E+01
1.5E+01
1.5E+01
1.5E+01
1.5E+01 | hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi | 1.62
1.212
1.606
1.847
2.099
2.434
4.681
5.736
6.27
8.765
9.899
9.728
10.51
11.72
11.13
10.72
11.03
14.61
11.61 |
0.5161
0.3862
0.5115
0.5883
0.6685
1.323
1.515
2.029
2.634
2.973
3.943
3.897
3.752
3.943
3.752
3.943
3.933
3.897
3.752
4.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3.943
3 | 1. 4.84E-03
2. 3.62E-03
3. 5.51E-03
5. 6.26E-03
5. 7.27E-03
7. 8.26E-03
7. 8.26E-03
7. 8.26E-03
7. 1.78E-02
7. 1.7 | 0.76660
0.5733
0.77
0.87474
1.135
1.33
1.92
2.499
3.7.
4.244
4.70
5.08
5.07
5.06
5.07
5.39
4.79
5.39
6.39
6.39
6.39
6.39
6.39
6.39
6.39
6 | 3 1.577
3 1.577
3 2 1.579
4 2.03
2 2.363
5 1.559
4 2.03
3.544
5 3.544
6 3.544
6 3.544
7 9.464
7 9.464
1 10.2
2 10.66
7 9.464
1 10.2
2 10.66
1 10.2
1 10.2 | 2 2.7262
7 2.043
3.107
7 3.531
8 4.095
6 4.656
4 6.918
4 6.918
7 10.61
8 12.44
11.51
8 15.95
8 19.98
8 19.98
8 19.98
8 19.88
9 19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88
19.88 | tunapro | P 0.855 0.909 0.925 | 222 0.2 22
0.2 22 0.2 2 | 715 2 - S4E84 2 - Z70E- 244 3.04E- 244 3.04E- 245 3.04E- 246 3 - 3.04E- 246 4 1.8E- 246 4 1.8E- 246 5 - 27E- 246 5 - 27E- 246 5 - 27E- 247 5 - 27E- 248 1 1.9E- 24 | -03 | 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 | 8271
8785
8785
89884
89883
.143
.1.28
.7.713
.7.713
.7.713
.7.68
.1.407
.0.031
.1.45
.1.45
.1.45
.1.45
.1.45
.1.224
.1.466
.1.321
.1.47
.1.68
.7.756
.7.756
.7.756
.7.756
.7.756 | | 00 areaprop 0.8746 312 areaprop 0.8753 312 areaprop 0.8753 313 areaprop 0.8052 313 areaprop 0.8052 313 areaprop 0.8052 315 areaprop 0.8002 315 areaprop 0.8903 317 areaprop 0.8903 317 areaprop 1.0455 318 areaprop 0.9589 30 areaprop 0.9589 30 areaprop 0.9589 30 areaprop 0.9589 310 areaprop 1.557 313 areaprop 1.572 313 areaprop 1.573 315 areaprop 1.573 315 areaprop 2.182 316 areaprop 2.329 317 areaprop 2.329 319 areaprop 2.611 30 areaprop 3.043 31 areaprop 3.788 32 areaprop 3.884 32 areaprop 3.884 32 areaprop 3.885 32 areaprop 3.8141 31 areaprop 3.815 35 areaprop 3.915 35 areaprop 3.915 36 areaprop 3.915 36 areaprop 3.915 37 areaprop 3.915 38 areaprop 3.915 39 areaprop 3.915 31 4.099 31 areaprop 4.006 | 0.2786 0.2788 0.2781 0.2555 0.2555 0.2595 0.2638 0.2836 0.3374 0.3329 0.3055 0.3075 0.4608 0.5573 0.5039 0.5415 0.615 0.6079 0.6557 0.6999 0.7844 0.9143 1.342 1.434 1.265 1.213 1.099 1.449 1.384 | 2.61E-03 2.61E-03 2.61E-03 2.59E-03 2.39E-03 2.39E-03 3.12E-03 3.1 | 0.414 0.4143 0.4163 0.4087 0.3797 0.3797 0.3797 0.4214 0.4562 0.4562 0.6589 0.7315 0.7861 0.8721 1.263 0.8722 1.263 1.127 1.263 1.4708 1.728 1.526 | 0.84899 0.84959 0.87858 0.7785 0.85171 1.0282 0.8641 1.0284 1.0307 1.6614 1.8333 1.9699 2.1242 2.267 2.5441 3.4533 3.457 3.457 4.032 3.856 | 9 1.471
1.473
3 1.453
5 1.355
6 1.356
8 1.404
8 1.498
1.782
1.758
1.613
8 1.621
2.914
2.634
2.634
3.215
3.3518
3.3518
3.3518
4.209
4.409
6.816
7.284
6.6428
6.6428
6.6428
6.653
7.554
7.554
7.554
7.555
7.755
7.705
7.705 | basinpro
basinpro
basinpro
basinpro
basinpro
basinpro
basinpro
basinpro
basinpro
basinpro
basinpro | p 7.22
p 8.55
p 10.2
p 11.6
p 11.6
p 10.6
p 10.9
p 10.2
p 12.5
p 12.5
p 12.5
p 12.5 | 2.55
2.57
2.57
2.57
2.57
2.57
2.57
2.57 | 77 0.02015
44 0.02364
99 0.02849
17 0.0384
17 0.0382
10 0.0392
10 0.0392
10 0.0441
19 0.0445 | 3.506
4.114
4.958
4.959
4.792
4.633
5.795
5.825
5.825 | 7.053
18.275
10.14
9.808
9.276
11.12
9.276
12.41
12.25 | 11.68
13.71
16.52
19.69
20.68
20.92
18.97
17.28
23.12
23.24
23.52 | basinproj
basinproj
basinproj
basinproj
basinproj
basinproj
basinproj
basinproj
basinproj
basinproj | D 6.03
D 7.21E-00
D 9.49E-00
D 9.21E-00
D 8.75E-00
D 8.75E-00
D 1.05E-00
D 1.13E-00
D 1.13E-00 | 2 1.81E+00
2 2.187E+00
3 2.69E+00
3 3.00E+00
1 3.69E+00
1 3.69E+00
1 3.69E+00
1 3.69E+00
1 3.69E+00
3 3.81E+00 | 1.68E-02
2.00E-02
2.49E-02
2.99E-02
3.04E-02
2.88E-02
2.88E-02
3.60E-02
3.77E-02
3.77E-02
3.77E-02
3.77E-02 | 2.92E+00
3.49E+00
4.23E+00
4.25E+00
3.88E+00
3.88E+00
4.72E+00
4.72E+00
4.72E+00
4.72E+00
4.72E+00 | 5.87F+00 7.02F+00 9.851F+00 9.81F+00 9.80F+00 1.01F+01 1.06F+01 1.06F+01 1.06F+01 | 9.72E+00
1.16E+01
1.6E+01
1.6E+01
1.5E+01
1.5E+01
1.5E+01
1.5E+01
1.5E+01
1.5E+01
1.5E+01
1.5E+01 | hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl
hookpropl | 1.62
1.212
1.606
1.847
2.099
4.681
5.31
5.736
8.765
9.728
10.51
11.13
10.72
11.93
11.13
11.13 | 0.5161
0.3862
0.5115
0.5883
0.6685
0.7755
1.323
1.515
2.029
2.322
2.634
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933
3.933 | 1. 4.84E-03
2. 3.62E-03
3. 5.51E-03
3. 5.51E-03
3. 5.52E-03
7. 8.26E-03
7. 8.26E-03
3. 1.58E-02
5. 1.71E-02
1. 2.44E-02
1. 2.44E-02
1. 2.44E-02
1. 2.44E-02
1. 2.44E-02
1. 2.44E-02
1. 2.44E-02
1. 2.44E-02
1. 2.44E-02
1. 3.71E-02
1. 3.71E-02
1. 3.54E-02
1. 3.54E-02
2. 0.0395
3. 3.54E-02
3. 3.54E-02
5. 3.54E-02
5. 3.54E-02
5. 3.54E-02
6. 0.0395
6. 3.54E-02
6. 0.0395
6. 3.54E-02
7. 0.0395
6. 3.54E-02
8. 3.54E-02
9. |
0.7666
0.57337
0.74.0.8744
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.153.1
1.1 | 1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1.57.
1. | 2 2 2.726
2 2 2.726
3 2.701
3 3 2.701
4 95
4 55
4 55
5 4 55
5 4 55
5 4 55
5 4 55
5 5
6 15
6 15 | tunapro | P 0.855 P 0.900 P 0.855 P 0.900 | 222 0.22 22 0. | 7375 2.54844 2.68849 2 | 03 | 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 |
8271
8785
8785
89884
89883
1.143
1.28
8.543
1.768
8.543
1.055
1.055
1.145
1.055
1.145
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.32 | | areaprop 0.8746 areaprop 0.8736 areaprop 0.8635 areaprop 0.8022 areaprop 0.8022 areaprop 0.8036 areaprop 0.8036 areaprop 0.8037 areaprop 0.8037 areaprop 1.059 areaprop 1.059 areaprop 1.059 areaprop 0.9589 areaprop 0.9589 areaprop 0.9589 areaprop 0.9587 areaprop 0.957 areaprop 0.957 areaprop 0.9589 | 0.2786 2.2781 2.2782 2.2782 2.2783 2.2783 2.2785 2. | 2.61E-03 2.61E-03 2.61E-03 2.58E-03 2.39E-03 2.59E-03 2.59E-03 2.65E-03 2.66E-03 3.312E-03 2.86E-03 3.312E-03 2.86E-03 4.24E-03 5.36E-03 6.07E-03 6 | 0.4141 0.4143 0.4163 0.3797 0.4154 0.395 0.4214 0.9946 0.4539 0.6689 0.8091 0.7315 0.7861 1.127 1.708 1.472 1.718 1.847 1.718 1.847 1.718 1.847 1.1562 1.416 | 0.8489
0.8495
0.7785
0.8517
1.028
1.028
1.0320
1.0320
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.0420
1.04 | 1.471.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | basinpro
basinpro
basinpro
basinpro
basinpro
basinpro
basinpro
basinpro
basinpro | p 7.24
p 8.55
p 10.2
p 11.6
p 11.7
p 10.6
p 10.2
p 9.3.2
p 12.9
p 12.9
p 12.9 | 16 2111 12 2.555
3.07 337 34.11
3.07 4.11 4.11 4.11 4.11 4.11 4.11 4.11 4.1 | 77 0.02015
44 0.02364
97 0.02849
75 0.03655
77 0.0384
77 0.0382
10 0.03208
10 0.03208
10 0.04403
10 0.04413
10 0.04413 | 3.506
4.114
4.958
4.991
5.244
5.304
4.792
4.382
5.795
5.825
5.825 | 5 7.053
1 8.275
3 9.974
10.57
11.1
11.22
10.14
9.808
9.276
12.47
12.65
12.47
13.01 | 11.68
13.71
16.52
19.69
20.68
20.92
18.97
17.28
23.12
23.24 | basinpron
basinpron
basinpron
basinpron
basinpron
basinpron
basinpron
basinpron
basinpron
basinpron
basinpron | D 6.03
D 7.21E+00
D 8.74E+00
D 9.07E+00
D 9.21E+00
D 7.84E+00
D 1.10E+00
D 1.10E+00
D 1.11E+00 | 2 1.81E+00
2 1.7E+00
3 3.7F+00
3 3.7F+00
3 3.2E+00
3 2.2E+00
3 2.2E+00
3 2.2E+00
3 3.2E+00
3 3.2 | 1.68E-02
2.00E-02
2.99E-02
3.04E-02
2.83E-02
2.59E-02
3.77E-02
3.86E-02
3.77E-02 |
2.92E+00
3.49E+00
4.25E+00
4.15E+00
3.56E+00
3.56E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.75E+00
4.7 | 55.87E+00 55.87E+00 55.87E+00 55.87E+00 56.85E+00 56.85E+00 56.87E+00 | 9,72E+00
1.16E+01
1.6E+01
1.5E+01
1.5E+01
1.5E+01
1.5E+01
1.5E+01
2.0E+01 | hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi
hookpropi | 1.62
1.212
1.606
1.847
2.099
4.681
5.31
5.736
8.765
9.728
10.51
11.13
10.72
11.93
11.13
11.13 | 0.5161
0.3862
0.5115
0.5883
0.6685
0.7755
1.323
1.515
1.856
2.029
2.322
2.634
2.973
2.923
3.933
3.933
3.875
4.187
3.721
4.187
5.042
4.187
5.042
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043
5.043 | 1. 4.84E-03
2. 3.62E-03
3. 5.51E-03
5. 6.26E-03
5. 7.27E-03
7. 8.26E-03
7. 8.26E-03
7. 8.26E-03
7. 1.78E-02
7. 1.7 | 0.76660
0.5733
0.77
0.87474
1.135
1.33
1.92
2.499
3.7.
4.244
4.70
5.08
5.07
5.06
5.07
5.39
4.79
5.39
6.39
6.39
6.39
6.39
6.39
6.39
6.39
6 | 9 1.575 5 1.555 1. | 2 2 2.726 2 3.107 7 2.04 4.55 4.656 6.51 8.51 8.51 8.51 8.51 8.51 8.51 8.51 8 | tunapro | P 0.855 0.909 0.922
0.922 | 222 0.2 22 0.2 22 0.2 22 0.2 22 0.2 22 0.2 22 0.2 22 0.2 22 0.2 22 0.2 22 0.2 22 0.2 23 0.2 24.4 24.4 25 0.2 25 0.5 26 0.2 27 0.5 26 0.2 27 0.2 28 0.2 27 0.2 28 0.2 27 0.2 28 0.2 27 0.2 28 0.2 28 0.2 29 0.2 20 0. | 715 2 - S4E84 2 - Z70E- 244 3.04E- 244 3.04E- 245 3.04E- 246 3 - 3.04E- 246 4 1.8E- 246 4 1.8E- 246 5 - 27E- 246 5 - 27E- 246 5 - 27E- 247 5 - 27E- 248 1 1.9E- 24 | 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 | 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 | 8271
8785
99884
99884
1.143
1.28
9983
1.143
1.28
1.359
1.768
1.359
1.768
1.407
1.051
1.145
1.145
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321
1.321 |