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Abstract 

 Generalized linear model (GLM) is commonly used to evaluate impacts of environmental as well as fisheries 

operational variables on fisheries catch per unit fishing effort (CPUE) and to arrive at standardized CPUE which 

could be used as a relative index in fisheries stock abundance. GLM analysis is an effective way of standardization 

of CPUE data with catch rates in which there is a high proportion of zeros in the catch data. This paper describes a 

method for the analysis of yellow fin survey data, incorporating zero and non-zero values into a single model. The 

database contains information on the long line sets carried out by survey vessels of FSI from 1981 to 2012. The 

catch in number of fish per 100 hooks was the response variable. The Standardized hooking rates for yellow fin tuna 

were derived by means of GLM approach. Ten variables, Year, Quarter, Latitude, Longitude, duration (soaking 

time), catch rate of sailfish, skipjack and marlin, gear and Vessel Type were used to build GLM model. Eight 

variables were significant in GLM analysis which account for 26% of the variance in nominal CPUE. The purpose 

of this study is to obtain standardized hooking rate which can be used for yellow fin stock assessment.  

 

 

Introduction  

        Yellow fin tuna (Thunnus albacares) is an important target species for the Indian long line fishery in 

the Indian Ocean. Estimations of relative abundance indices are input data for several stock assessment 

models. The catch and effort data for Indian Ocean yellow fin tuna for the Indian long line fishery was 

little used to study stock dynamics. The time-series of catch per unit effort (CPUE) for tunas seems to be 

appropriate for use as an abundance index for assessing the stock (Hsu, 1996; Uosaki, 1996). Moreover, 

the Generalized Linear Model (GLM) has been used to assess the tuna stock status as presented in many 

international expert forums in recent years. Catchability coefficient (q) can change due to several factors 

related to environment, fishermen behavior, fishing strategy and fishing gears (Cooke and Beddington, 

1984; Hilborn and Walters, 1992). Catch-per-unit-effort (CPUE) of fishing fleets and catch rates of 

scientific surveys have been often used to estimate relative abundance indices. If, catch ability coefficient 

(q) changes across the years, I (abundance indices) is not an acceptable relative abundance Indices and 
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scientific surveys may result in less biased estimations because the experimental design may be enough to 

cope with some of the factors affecting q. 

The data of Catch per fishing unit (CPUE), is often used as a relative index of fisheries stock 

abundance (Hilborn and Walters, 2001; Nishida and Chen, 2004), and it  is often  influenced by many 

factors such as fishing capacity (e.g. characteristics of fleet, fishing gear and equipment), environmental 

factors (e.g. sea water temperature at varied depth, sea surface temperature, dissolved oxygen 

concentration, marine currents and lunar phases), and spatial and temporal factors (e.g. latitude, longitude, 

year and month). The CPUE needs to be standardized so that the impact of these factors can be removed 

or minimized and to got the better performance of CPUE reflecting the changes in population abundance 

only (Maunder and Punt, 2004). 

              There have many hypotheses about sub-stocks of Indian Ocean yellow fin tuna, i.e., two sub-

stocks (Kikawa et al. 1970; Morita and Koto, 1970; Huang et al., 1973), three sub stocks (Kurogane and 

Hiyama, 1958), and four sub-stocks (Nishida, 1992). However, this study considers a single stock as well 

as western and eastern two major sub-stock hypotheses (Nishida, 1992). 

MATERIALS AND METHODS 

The standardized catch per unit of effort for the oceanic yellowfin (Thunnus albacares) was 

obtained by means of a General Linear Model (GLM) based on 6112 set records for the 1981-2012 

periods. Sampling distribution is shown in (Figure 1). The number of zero catch observations was 

considerably high, a trait common with survey data in general. Modeling a species abundance based on a 

data set with a large proportion of zeros can invalidate the assumptions of the analysis and jeopardize the 

validity of model based inference if not properly accounted for (Lambert, 1992; Maunder and Punt, 

2004). Furthermore, the use of ‘nominal’ CPUE (total catch divided by total effort) as an index of 

abundance assumes that all other factors affecting the catch rate have remained constant over time 

(Maunder and Punt, 2004). In reality, factors such as, season, gear type, location, boat size, fishing depth, 

and others are not constant. Therefore, the nominal catch data need to be standardized to account for the 

impact on catch rates of factors other than abundance. Standardization techniques can also account for the 

large proportion of zero observation catches, temporal changes in a species distribution, and the effect of 

changes in fishing efficiency. In the present study catch rates were modeled with an approach, 

incorporating zero and non-zero values into a single mode. The main objective of the analysis is to 

estimate a year effect. The year effect is used to represent the annual relative levels of abundance and is 

used as the relative index of abundance to include in the stock assessment. The year effect is included in 

the GLM as a categorical variable.  

The lognormal error model is historically the most common method of CPUE standardization 

(Ortiz and Arocha, 2004). This model assumes that the natural logarithm of the catch rate is distributed 
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normally. The natural logarithm of zero is undefined therefore these values must be dealt with; 

historically ignoring  zero observations or replacing them by a constant ( c ) was the most common 

approach (Maunder and Punt 2004) ,the latter method is employed in this study.  

In this study the data was analyzed using a lognormal error distribution for only the positive hauls 

(hauls in which the CPUE was non-zero) and by adding a constant equal to 0.1 to every observation from 

the FSI Observer Long line database. This value was chosen because it resulted in the most normal-like 

distribution of residuals (Butterworth 1996). The model provides an analysis technique where many 

problems usually associated with zero values are alleviated.               

A primary goal of catch and effort analysis is to account for and explain as much variability in the 

data as possible. Fishery independent data (i.e. survey data) are often preferred for catch and effort 

analysis because standardized fishing and sampling procedures produce data that are designed to be 

compared from one year to the next. 

The catch and effort data (number of hooks) used in the development of relative indices of 

abundance were collected through the surveys conducted by FSI during 1982-2012. This study is focused 

on standardizing longline vessels data from the FSI fleet operating in Indian EEZ of Indian Ocean and 

Bay of Bengal. 

The data was provided by Fishery Survey of India and subsequently filtered to remove data  

records with missing or faulty information. Records were excluded from the analysis if 

information on the operational variables was not recorded. 

Among the operational variables recorded certain variables were recorded irregularly and thus 

dropped from the analysis. The final variables used for analysis were; catch (recorded in number of fish 

caught in operation) as a response variable, whereas, years, quarters, gear, vessel type, latitude(5*5 

degrees) and longitude(5*5degrees),  soaking time(5 hours strata), catch rate of sailfish, skipjack  and 

marlin.  

The selected final model was as follows: 

glm(formula = log(hr.yftf. + 0.1) ~ factor(latstrat) + factor(year) + factor(q) + factor(lonstrat) + 

factor(vessel) + factor(soaking time) + factor(sailo) + factor(skpm) + factor(marl), data = datanj1,    

na.action = na.exclude) 

 

Results and Discussion 

In this paper, an attempt is made to evaluate the spatial distribution of yellowfin tuna   caught in 

Indian and Bay of Bengal oceans around India with the aim of improving understanding of existing 

patterns of distribution that is a prerequisite for rational and sustainable management, which has to be 

based on sound scientific findings. The main objectives of this study are: 
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i) to quantify some of the explanatory variables accounting for explained variability such as year, 

quarter(fishing seasons), space (over the latitudes and longitudes), soaking time, vessels, gears 

and proportion of other species caught in the long line operation on the response variable, that is 

on the expected hooking rate. 

ii) to understand the variability in the survey hooking rate obtained from the FSI’s  vessels    over 

the  past 30 years. 

 

The GLM technique has been used to estimate the effective extents of various factors because 

GLM allows identification of the factors that influence catch rates as well as computation of standardised 

catch rates, represented by the year effect factor after taking into account the effects of other factors, 

which are used in many stock assessment methods. 

The analysis presented here is done in R, a free statistical software package. R is available from 

the Comprehensive R Archive Network (http://cran.r-project.org). 

  One of the main purposes of GLM analysis of catch rates is to provide year effects. For a main 

effect model, year effects can be derived from the coefficients by setting “options (contrasts=c (“contr. 

treatment”, “contr.poly”)) in the R package. However, the year effects could also be extracted with 

special care, if the model contains interaction term with year. The common approach of extracting the 

year effect alone from a log-linear model can be replaced by an integral of the fitted model over the entire 

scale under consideration. This approach, however, yields catch rate indices that are equivalent to the year 

effects when the model contains no interaction terms (Stefansson 1996). Therefore, only the main effect 

model was used to estimate the variation of the catch rates over year in this study. Model drop1 was used 

to compute all the single terms in the scope argument that can be added to or dropped from the model. 

Model was fitted and computed a table of the changes in fit. 

In this paper, GLM method is used to standardize the nominal yellow fin tuna catch rate of long 

line fishery operating in the Indian Ocean and to evaluate impacts of a list of temporal, spatial and 

fisheries operational variables on the catch rate. The frequency distribution of the standardized residuals 

for all variables combined effects is close to that of the normal distribution as assumed in the model 

(Figure2). The histograms of standardized residuals (%) by year from GLM fitting show likely normality 

as assumed in the model (Figure3).  The results of using the GLM analysis of variance (ANOVA) to 

examine the logged catch rate for differences among variables are shown in (Table 1). 

All the variables except catch rates of sailfish, skipjack and marlin were significant in GLM 

analysis which account for 26 % of the variance in nominal CPUE. The CPUE variability is mainly 

attributed to the year and, secondly, to the factor quarter and followed by latitudes (Table1). The other 

factors such as longitudes, vessels and soaking period were also significant, although less important.  The 
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standardized CPUE of 0.16 fish per 100 hooks in 1982, had been gradually increased to its maximum of 

0. 83 fish per hundred hooks in 1986, decreased again to 0.25 fish per hundred hooks in the year 1993. 

The standardized CPUE had been stable during 1999 - 2005 within a range between 0.22 and 0.29 fish per 

hundred hooks. The hooking rate decreased to a very low in past recent years. A standardized CPUE plot 

indicated that the standardized trend was less variable than the nominal (Figure4). 

The nominal CPUE in 1986 and 1997 (4.11 and 1.5 fish per hundred hooks, respectively) are high 

compared to other years, which need to be further checked. These GLM results represent an appropriate 

beginning to this study, but analytical questions remain. At present, the intention is to include available 

variables in the GLMs and to seek other significant explanatory variables. The lognormal gaussian   

analyses revealed significant effects of several explanatory variables, but did not explain high percentages 

of the probability of negative catch for this species. Attempts to find other significant covariates are 

necessary. Standardized CPUE plot is more stable than the nominal CPUE for the species. This indicated 

that standardization removed some variability attributable to the explanatory variables. 

Deviance analysis results are reported in Table 1. Based on its statistical significance as well as 

the percentage of the deviance explained by each factor, final model for catch in number of fish included 

eight factors, year ,quarter, latitudes, longitudes, gears, soaking time, vessels and catch rate of skipjack, 

marlin and sailfish 

Diagnostic plots (residuals vs. fitted values and cumulative normalized residual plots) are shown 

in (Figure 5). In general, residual patterns are not far from expected under the normal error distribution 

assumption, which suggests a reasonably good fit. 

The data used in this study are highly unbalanced (Figure 6). The GLM in the R-package can take 

the unbalanced data into account, which can be a great advantage, but the precision would be improved 

by a more balanced design. Probably, the precision of the estimates of the coefficients would have 

increased considerably, had the other associated information collected in the surveys on wind direction, 

wind velocity, current speed, current velocity etc. been included in the GLM analysis. The precision 

would definitely have increased considerably had the survey been done in accordance with the planned 

survey scheme. The models can accommodate temporal and spatial variability as well as the variability of 

other categories such as gear type, vessel horse power, length of the vessel, skipper’s skill and 

environmental factors. The environmental factors such as temperature, salinity and oxygen are basically 

responsible for the spatial and temporal distribution of the fish. Most of the FSI’s long liners are well 

equipped with the oceanographic equipments. The environmental data available with FSI, may also be 

tried. The inclusion of these factors in the GLM analysis would definitely affect the estimates of the 

coefficients .This should be a concern in the future computational strategy. 
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Figure 1. Longline stations sampled during the study period 
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Figure 2. The frequency distribution of the standardized residuals by quarters for all variables 

combined effects  
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Figure 3. Frequency distribution of standardized residuals (%) by year from GLM fitting 
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Figure 4. Standardized and nominal CPUE (Hooking Rate) for distant water tuna longline for 

yellow fin during the period 1981-2012 
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Figure 5. Distributions of the standardized residuals and the normal probability plots for the 

standardization model fitted to the catch (in number) and effort (hooks) data of FSI’s fleet for the 

time series 1981-2012 
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Figure 6. Month-wise and year-wise presentation of Hooking Rate of Yellow fin tuna 

 

Table 1. Results of GLM analysis of variance (ANOVA)  

  Df  Deviance 
 Resid. 

Df  
Resid. 

Dev         F   Pr(>F)     

NULL     
  

6109 5263.9 
  factor(latstrat) 4 134.93 6105 5128.9 52.3323  < 2e-16 *** 

factor(year) 31 696.54 6074 4432.4 34.8579 < 2e-16 *** 

factor(q) 3 251.33 6071 4181.1 129.9699  < 2e-16 *** 

factor(lonstrat) 7 89.67 6064 4091.4 19.8734  < 2e-16 *** 
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factor(vessel) 5 177.53 6059 3913.9 55.0828  < 2e-16 *** 
Factor( soaking 

time) 3 5.52 6056 3908.4 2.8563  0.03569 *   

factor(sailo) 3 2.79 6053 3905.6 1.4403 0.22893 

factor(skpm) 3 5.92 6050 3899.6 3.0639  0.02692 *   

factor(marl) 3 1.83 6047 3897.8 0.9484 0.41617 
Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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