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DRAFT: STOCK ASSESSMENT PAPERS 
 

 

The material in this publication is a DRAFT stock assessment developed by the authors for the consideration 

of the relevant subsidiary body of the Commission. Its contents will be peer reviewed at the upcoming 

Working Party meeting and may be modified accordingly.  

Based on the ensemble of Stock Assessments to be presented and debated during the meeting, the Working 

Party will develop DRAFT advice for the IOTC Scientific Committee’s consideration, which will meet later 

this year. 

It is not until the IOTC Scientific Committee has considered the advice, and modified it as it sees fit, that the 

Assessment results are considered final. 

The designations employed and the presentation of material in this publication and its lists do not imply the 

expression of any opinion whatsoever on the part of the Indian Ocean Tuna Commission (IOTC) or the Food 

and Agriculture Organization (FAO) of the United Nations concerning the legal or development status of any 

country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. 
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Abstract: A Fox-form Bayesian biomass dynamics model was developed to assess the stock status of 

yellowfin tuna (Thunnus albacares) in the Indian Ocean (1950-2014). The results showed that the 

median of Maximum sustainable yield (MSY) was 344,200 t, and the medians of B2014/BMSY and 

F2014/FMSY were 0.74 and 1.87, respectively. Thus, the stock was subject to overfishing and overfished 

at the end of 2014. The risk assessments suggest that the current catch level in 2014 (430, 331 t) is 

higher than MSY and this level can result in high risk for the stock to be overfished and subject to 

overfishing. Future catch should be reduced to 67% of the current level, which will lead to a 60% of 

probability for the biomass exceeding BMSY by 2024. The results are more pessimistic than those 

assessed with integrated age-structured models in 2012 and this year. Because there are high 

uncertainties in the present assessment, we suggest that the results not be used for developing 

management advices, but for comparison with other model results. 

 
1 Introduction  

 The Indian Ocean yellowfin tuna (Thunnus albacares) (YFT) was recently assessed by models in 

their complexity ranging from highly aggregated biomass dynamics models (e.g., ASPIC, Lee et al., 

2013) to integrated age-structured models (e.g., Age structured production model, Nishida et al., 2012; 

Multifan-cl, Langley et al., 2012; and Stock Synthesis, Langley, 2015). However, considerable 

uncertainties remain in the assessment results, due to the uncertainties in catch at age/size data (IOTC, 

2012), biological parameters (e.g. population spatial structure, sex ratio and growth), and the 

assumptions of key model parameters (e.g. steepness and natural mortality, Langley, 2015).  
 In this study, we chose biomass dynamics model to assess the YFT stock in order to avoid using 

some size data or assumptions which were considered to be uncertain. In addition, instead of using the 

traditional ASPIC model, we developed a continuous Fox-form Bayesian biomass dynamics model for 

the YFT assessment. The benefit of using Bayesian method is that prior information about model 

parameters from other studies or sources can be used. The results can be used to provide an 

opportunity to compare with other stock assessment models. 

 

2 Data and methods 
2.1 Data 

   Catch and standardized CPUE data were obtained from the IOTC secretariat website for the 

tropical tuna working party (http://www.iotc.org/meetings/17th-working-party-tropical-tunas-wptt17). 

Annual catch data were available from 1950 to 2014. There were two sources of standardized longline 

CPUE data available to be used as abundance indices, which were based on the Japanese longline 

fishery (Ochi, et al., 2015) and Taiwan, China longline fishery (Yeh and Chang, 2013). The Taiwan, 

China longline CPUE time series from 1980 to 2012 for the whole Indian Ocean was used in this 

assessment. The Japanese CPUE time series in region 2, 3, 4 and 5 was available from 1963 to 2014. 

However, following previous assessments (Langley, 2015), only the Japanese CPUE data from 1972 

to 2014 were used in this assessment.  

   To improve computational stability, we normalized the catch and CPUE by using Eqs. (1) and (2): 
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where Ct, Yt, CPUEt, and It are the catch, normalized catch, CPUE, and normalized abundance index 

in year t, respectively. CMax and CPUEMax are the maximum annual catch and the maximum CPUE 

value in the time series, respectively. 

 
2.2 Model 

The continuous non-equilibrium Fox-form biomass dynamic model was used, in which the 

population dynamics can be expressed as follows (Guan et al., 2014): 
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where r is the intrinsic rate of increase, K is carrying capacity, Bt and Ft are stock biomass and fishing 

mortality in year t, Δt is the time interval within one year, and tB  is the average biomass in year t. If 

r, K, Yt, and the biomass in the first year of the fishery are known, then Ft and Bt can be solved 

numerically. To estimate the parameters, the observation model for the unobserved “state” tB  is 

written as:  
teBqBqI ttt

 ,,|                                                              (7) 

where q is catchability, εt is an independent and identical normal distribution with mean 0 and 

precision τ (i.e., 1/variance), and Y|X denotes the conditional distribution of Y given X. To improve the 

quality of estimation, the biomass in the first year of the fishery was reparamaterized as: 

KBBs 0 ,                                                                    (8) 

where Bs is the biomass in the first year of the fishery (i.e. 1950), and B0 is the ratio of Bs to K.  

 
2.3 Priors for parameters  
2.3.1 Prior distribution of q, τ and K 

According to Eq. (2), the upper limit of q should be less than 1.0. The prior for q was assumed to 

be an uninformative uniform distribution from 0.0 to 1.0, denoted as U [0.0, 1.0]. The prior for the 

precision τ was assumed to be an uninformative gamma distribution with shape parameter and rate 

parameter both assigned as 0.001, denoted as G (0.001, 0.001). The prior for K was also assumed to be 

an uninformative uniform distribution. We assumed that the minimum and maximum values for K 

were those of 2 times (1.06×106 tonne) and 32 times (1.69×107 tonne) the maximum annual catch 

(5.29×105 tonne), which are wide enough to cover the reasonable range of the population’s carrying 

capacity. The prior of K was denoted as U [2, 32]. 

 

2.3.2 Prior for B0  

An uninformative prior distribution was assigned to B0. According to the assumption of the 

biomass dynamics model and the recent stock assessment (Lee et al., 2013; Langley, 2015), the 

maximum value of B0 is less than 1.0 and the minimum value is greater than 0.1. Therefore, the prior 

for B0 was denoted as U [0.1, 1]. We also considered scenarios with B0 fixed at 0.90. 

 

2.3.3 Prior for r 

   Three prior distributions were considered for r, i.e. one uniform distribution and two lognormal 

distributions with different parameter values. The lower and upper limits of the uniform distribution 

were assigned as 0.05 and 1.5 and the prior denoted as U [0.05, 1.5]. The median and coefficient of 

variance for one lognormal distribution were assigned as 0.46 and 0.22, and the prior was denoted as 

LM (0.46, 0.22), which was similar to Carruthers and McAllister’s results (2011); the other 
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informative prior was denoted as LM and its median and coefficient of variance were estimated as 

follows: 

(1) Computing r by using the Euler-Lotka equation  

The relationship between the intrinsic rate of increase and other life-history parameters (McAllister 

et al., 2001; Maravelias et al., 2010) can be described as: 

1
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where a is age，A is the maximum age，ma is maturity at age a，wa is weight at age a and calculated by 

Eqs (10)，Sa is the fraction of individuals surviving from ages 0 to a and calculated by Eq. (11), and γ 

is the recruits-per-spawner biomass at zero spawners or maximum recruits-per-spawner and is 

calculated by Eqs (12) and (13).  
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where c is a scaling constant, b is the allometric growth parameter, h is the steepness of the 

stock-recruit relationship, Ma is natural mortality at age a. According to Ijima et al. (2012), c and b 

were 1.89×10-5 and 3.0195, respectively. The maximum age was set at 15. The steepness was assumed 

to follow a beta distribution with a mean and standard deviation of 0.8 and 0.05, respectively. The 

other parameters were assigned as in Table 1. The natural mortality was drawn from uniform 

distribution between low and high value and fish length was drawn from normal distribution with the 

mean and standard deviation. If these parameters are known, the r can be solved by iteration according 

to Eq. (9). 

 
Table 1. Values of parameters for Euler-Lotka equation. The data was taken from SSS3_YFT.zip and 

YFMFCL.zip, which were downloaded from website 

http://www.iotc.org/meetings/14th-session-working-party-tropical-tunas. The value of parameter at 

age 0 was assigned as the value at second quarter and the rest were deduced by analogy. The values of 

parameters for age 7 and elder were extrapolated. 
Age Maturity Natural mortality 

(Low) 

Natural mortality 

 (High) 

Mean Length Standard 

deviation of 

length 

0 0.0 0.7040  1.1872 35.0000 7.531 
1 0.0 0.3200 0.5396 53.0000   9.32330  

2 0.5 0.3200 0.5396 87.0000  10.65960  

3 1.0 0.4560 0.7692 119.0000  11.59410  

4 1.0 0.4444 0.7492  134.0000  12.22180  

5 1.0 0.3452 0.5820 139.9762  12.63290  

6 1.0 0.3216  0.5420  144.1395  12.89780  

7 1.0 0.3204  0.5400  147.0689  13.09443  

8 1.0 0.3204  0.5400  149.9841  13.29395  
9 1.0 0.3204  0.5400 152.8993  13.49347  

10 1.0 0.3204 0.5400 155.8145  13.69299  

11 1.0 0.3204 0.5400 158.7297  13.89251  

12 1.0 0.3204  0.5400  161.6449  14.09203  

13 1.0 0.3204  0.5400 164.5601  14.29155  

14 1.0 0.3204 0.5400 167.4753  14.49107  

15 1.0 0.3204 0.5400 170.3905 14.69059 

    

(2) Sampling a value for h according to its distribution. 

(3) Solving Eq. (9) by iteration to get r. 

http://www.iotc.org/meetings/14th-session-working-party-tropical-tunas
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(4) Repeating (2) and (3) 5000 times to get the experience distribution of r. 

(5) Fitting the experience distribution of r to estimate the parameters of the lognormal distribution, 

i.e., the median and coefficient of variance. 

 

2.4 Parameter estimation 
   According to the CPUE data and the priors of the parameters, the model was run under 15 

scenarios that are denoted as S1, S2… and S15, listed in Table 2. 

The Bayesian biomass dynamics model was coded using Blackbox Component Builder 

(http://www.oberon.ch/blackbox.html), WinBUGS (Lunn et al., 2000) and R (R Core Team, 2014), 

which can be found in Guan et al. (2014). The Brooks-Gelman-Rubin statistic (BGRs) was used to 

diagnose the convergence where the threshold is set at 1.1 (Kéry, 2010), i.e., the model was 

considered converged if BGRs is less than 1.1. We only present and analyze the results from the 

converged scenarios.  

 

Table 2 Prior for each parameter 

Scenario CPUE r K q B0 τ=1/σ2 

S1 Jap U(0.05,1.5) U(2.5, 32) U(0.0, 1.0) U(0.1,1.0) G(0.001,0.001) 

S2 Jap U(0.05,1.5) U(2.5, 32) U(0.0, 1.0) 0.90 G(0.001,0.001) 

S3 Jap LM(0.46, 0.22) U(2.5, 32) U(0.0, 1.0) U(0.1,1.0) G(0.001,0.001) 

S4 Jap LM(0.46, 0.22) U(2.5, 32) U(0.0, 1.0) 0.90 G(0.001,0.001) 

S5 Jap LM U(2.5, 32) U(0.0, 1.0) U(0.1,1.0) G(0.001,0.001) 

S6 Jap LM U(2.5, 32) U(0.0, 1.0) 0.90 G(0.001,0.001) 

S7 Twn U(0.05,1.5) U(2.5, 32) U(0.0,1.0) U(0.1,1.0) G(0.001,0.001) 

S8 Twn LM(0.46, 0.22) U(2.5, 32) U(0.0, 1.0) U(0.1,1.0) G(0.001,0.001) 

S9 Twn LM U(2.5, 32) U(0.0, 1.0) U(0.1,1.0) G(0.001,0.001) 

S10 J+T U(0.05,1.5) U(2.5, 32) U(0.0, 1.0) U(0.1,1.0) G(0.001,0.001) 

S11 J+T U(0.05,1.5) U(2.5, 32) U(0.0, 1.0) 0.90 G(0.001,0.001) 

S12 J+T LM(0.46, 0.22) U(2.5, 32) U(0.0, 1.0) U(0.1,1.0) G(0.001,0.001) 

S13 J+T LM(0.46, 0.22) U(2.5, 32) U(0.0, 1.0) 0.90 G(0.001,0.001) 

S14 J+T LM U(2.5, 32) U(0.0, 1.0) U(0.1,1.0) G(0.001,0.001) 

S15 J+T LM U(2.5, 32) U(0.0, 1.0) 0.90 G(0.001,0.001) 

Note: LM denotes the log-normal distribution; G denotes the gamma distribution. J+T indicates 

CPUEs from Taiwan, China and Japan longline fisheries. 

 
3 Results 

3.1 Prior distribution of intrinsic growth rate estimated by demographic methods 
   The Figure 1 shows the prior distribution of intrinsic growth rate estimated by using demographic 

methods. A lognormal distribution was fitted to the prior distribution with the median and coefficient 

of variance equal to 0.75 and 0.15, respectively.  
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Figure 1 The prior distribution of intrinsic growth rate estimated by using demographic methods. The 

red line is lognormal distribution with median and coefficient of variance (CV) assumed to be 0.75 

and 0.15, respectively. 

 

3.2 The estimation of parameters 

    According to Gelman and Rubin's convergence diagnostic, all scenarios except for S2 were 

converged. The assumption of the prior distribution of r impacted the estimation of parameters. For 

example, in scenario S3 and S5 where informative prior was used, although the posterior distribution 

of r was different from its prior and its median was smaller (Figure 2, 3); its medians increased with 

the informative prior distribution in comparison with S1 (Figure 4, Table 3). If same CPUEs were 

used in the model, the median of MSY (Maximum sustainable yield) and Bcur/BMSY decreased and the 

medians of K and Fcur/FMSY increased as the median of r decreased (Table 3). Compared with the 

results based on the uninformative prior scenario (e.g., S1), the ranges of 80% CI (Confidence 

Interval) of the posterior distributions of MSY, K, r and Fcur/FMSY were narrower when the 

informative prior was given to r (e.g., S3) (Table 3).  
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Figure 2 Posterior distributions of intrinsic growth rate for scenario S3. Dashed line is the prior 

distributions for the parameters. 
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Figure 3 Posterior distributions of intrinsic growth rate for scenario S5. Dashed line is the prior 

distributions for the parameters.  
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Figure 4 Posterior distributions of intrinsic growth rate for scenario S1. Dashed line is the prior 

distributions for the parameters. 
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Table 3 Results for different scenarios listed in Table 2 
Scenario MSY(104) 

(80% CI) 

K(104) 

(80% CI) 

r 

(80% CI) 

R2 MSE Fcur/FMSY 

(80% CI) 

Bcur/BMSY 

(80% CI) 

S1 32.15 

(27.94-34.72) 

322.56 

(229.05-473.48) 

0.27 

(0.16-0.41) 

0.748 0.011 2.59 

(2.03-3.42) 

0.60 

(0.50-0.70) 

S2 Not convergent 

S3 34.26 

(32.85-35.41) 

245.22 

(205.31, 297.08) 

0.38 

(0.30, 0.47) 

0.753 0.011 2.34 

(1.90, 2.94) 

0.62 

(0.53, 0.72) 

S4 34.30 

(32.84, 35.54) 

243.79 

(201.13, 295.50) 

0.38 

(0.30 , 0.48) 

0.753 0.011 2.35 

(1.87, 2.94) 

0.62 

(0.53, 0.73) 

S5 36.71 

(35.88 , 37.54) 

164.66 

(144.36, 189.40) 

0.61 

(0.52, 0.71) 

0.751 0.011 2.06 

(1.65, 2.62) 

0.67 

(0.58, 0.78) 

S6 36.70 

(35.86, 37.52) 

165.24  

(144.89,190.46) 

0.60 

(0.51, 0.70) 

0.751 0.011 2.06  

(1.65, 2.62) 

0.67  

(0.58, 0.78) 

S7 46.47 

(30.81,90.14) 

722.61 

(296.81, 1273.47) 

0.20 

(0.07, 0.66) 

0.283 0.019 0.53 

(0.21, 1.00) 

1.77 

(1.40, 2.26) 

S8 56.22 

(43.74, 104.78) 

383.66 

(267.73, 685.76) 

0.42 

(0.32, 0.55) 

0.238 0.020 0.40 

(0.18, 0.62) 

1.94 

(1.62, 2.34) 

S9 73.23 

(49.44, 210.32) 

279.05 

(184.75, 785.04) 

0.73 

(0.60, 0.88) 

0.174 0.022 0.28 

(0.08, 0.50) 

2.14 

(1.78, 2.53) 

S10 31.86 

(27.08, 34.67) 

362.63 

(249.45, 549.28) 

0.24 

(0.14, 0.38) 

0.748 

(0.318) 

0.012 

(0.045) 

2.07 

(1.56, 2.76) 

0.72 

(0.60, 0.88) 

S11 31.40 

(25.18, 34.47) 

384.40 

(257.96, 630.10) 

0.22 

(0.11, 0.36) 

0.748 

(0.318) 

0.012 

(0.046) 

2.10 

(1.59,2.89) 

0.72 

(0.60, 0.88) 

S12 34.45 

(33.04, 35.62) 

255.05 

(212.24, 308.19) 

0.37 

(0.29, 0.45) 

0.755 

(0.329) 

0.011 

(0.050) 

1.86 

(1.44, 2.36) 

0.74 

(0.62, 0.90) 

S13 34.42 

(33.01, 35.62) 

256.11 

(211.87, 312.09) 

0.37 

(0.29, 0.46) 

0.755 

(0.327) 

0.011 

(0.050) 

1.87 

(1.45, 2.37) 

0.74 

(0.62, 0.90) 

S14 36.62 

(35.85, 37.43) 

173.28 

(152.08, 197.76) 

0.58 

(0.49, 0.67) 

0.752 

(0.349) 

0.011 

(0.054) 

1.68 

(1.27, 2.17) 

0.78 

(0.65, 0.97) 

S15 36.64 

(35.84, 37.47) 

172.49 

(151.24,197.49) 

0.58 

(0.50, 0.67) 

0.752 

(0.349) 

0.011 

(0.054) 

1.68 

(1.28, 2.17) 

0.78 

(0.65,0.97) 

     Note: MSE is Mean Square Error; CI is Confidence Interval; Unit for both MSY and K is tonne.  

 

   Although there were some increasing trends in the posterior distribution of B0 for scenarios S1 and 

S10 (Figure 5), the posterior distributions of B0 for the other scenarios were close to uniform 

distributions, which means that little information in the data contributed to the estimation of B0, 

implying that the values of B0 within its interval could equally satisfy the model fitting and the 

influence of the prior of B0 on the estimate of r, q, and K was relatively small (Table 3). Therefore, 

when the B0 was set at 0.9 for these scenarios, the model parameter estimates except for the biomass 

in early years were almost similar with those when the uniform prior distribution was given to B0 

(Table 3).  
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Figure 5 Posterior distributions of B0 for scenario S1 (left) and S10 (right). Dashed line is the prior 

distributions for the parameters. 

 

  The model fitted the standardized CPUEs from Japanese longline better than that from Taiwan, 

China longline (Table 3). When standardized CPUEs from Japan were used as abundance index in the 

models (S1-S6 and S10-S15), the stock was overfished and subject to overfishing. In contrast, when 

only standardized CPUEs from Taiwan, China were used (i.e. S7, S8 and S9), the stock was neither 

subject to overfishing nor overfished, and the ranges of 80% CI of the posterior distributions of MSY, 

K, r and Bcur/BMSY were larger (Table 3).  

  Results of S7, S8 and S9 seem too optimistic to be reliable. Model fit of scenario S12 (or S13) was 

slightly better than that of scenarios S1, S3 (or S4), S5 (or S6), and S14 (or S15). Because there were 

some increasing trends in the posterior distribution of B0 for scenario S10, it is difficult to choose a 

suitable value for B0. So, we only present the results of scenario S13 to indicate the status of the stock. 

According to S13, the median of MSY was 344,200 t, and the medians of B2014/BMSY and F2014/FMSY 

were 0.74 and 1.87, respectively. Thus, the stock was considered to be overfished and subject to 

overfishing (Figure 6). The risk assessments (Table 4, 5) suggest that the current catch level in 2014 

(430,331 t) was higher than MSY and this level can result in higher risk for the stock to be overfished 

and subject to overfishing. Reducing catch to 67% of the current catch level will lead to a 60% of 

probability that the biomass is slightly above BMSY by 2024 (Table 4). 
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Figure 6 Kobe plot for scenario S13 

 

 

Table 4 Risk matrix for B>BMSY for scenario S13  

Catch 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

60% 0.041 0.109 0.231 0.387 0.541 0.667 0.758 0.825 0.869 0.896 0.919 

67% 0.029 0.060 0.111 0.18 0.259 0.342 0.422 0.490 0.551 0.601 0.645 

70% 0.025 0.046 0.077 0.121 0.171 0.224 0.277 0.331 0.383 0.426 0.461 

80% 0.014 0.017 0.021 0.024 0.028 0.032 0.036 0.039 0.043 0.046 0.05 

85% 0.011 0.011 0.010 0.010 0.009 0.009 0.009 0.009 0.009 0.009 0.009 

90% 0.009 0.006 0.005 0.004 0.004 0.003 0.002 0.002 0.002 0.002 0.001 

100% 0.005 0.003 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

110% 0.003 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

120% 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

130% 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

140% 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Table 5 Risk matrix for F< FMSY for scenario S13 

Catch 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

60% 0.271 0.442 0.598 0.721 0.802 0.859 0.893 0.918 0.934 0.943 0.951 

67% 0.120 0.192 0.275 0.362 0.444 0.515 0.573 0.622 0.66 0.693 0.718 

70% 0.081 0.124 0.177 0.233 0.290 0.345 0.393 0.439 0.474 0.506 0.534 

80% 0.021 0.024 0.028 0.032 0.036 0.039 0.042 0.046 0.050 0.053 0.055 

85% 0.010 0.010 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 

90% 0.005 0.004 0.004 0.003 0.002 0.002 0.002 0.001 0.001 0.001 0.001 

100% 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

110% 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

120% 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

130% 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

140% 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

 

4 Discussion 

There is often a strong negative correlation between r and K in biomass dynamics model due to the 

poor quality of the observed data and the population dynamics relationship simulated by the model. 

The negative correlation makes it difficult to correctly estimate r and K simultaneously, because if the 

estimate of r decreased, the K would compensate by increasing and vice versa, which produces 

multiple solutions. Under these circumstances, we need to borrow strength from the prior deduced 

from other information or research by using methods such as demographic analysis or meta-analysis 

to improve the reliability of the estimates of parameters (Babcock, 2014). In this study, we used 

demographic methods and meta-analysis to construct two prior distributions for intrinsic growth rate 

and incorporated the priors into parameter estimation. There are some improvements in goodness of fit 

and the CIs of the parameters get narrower for the scenarios where Japanese longline CPUE index 

were used. However, for scenarios S8 and S9 where the standardized CPUEs from Taiwan China 

longline fisheries were used, there is some deterioration in fitting (Table 3).  

Substantial uncertainties remain in the estimation of the intrinsic growth rate, probably because 

there are considerable uncertainties in natural mortality and maturity at age when using a demographic 

method to estimate the prior. Our estimate of the prior of intrinsic growth rate is similar with Hillary’s 

results (2008), but different from the estimate by Carruthers and McAllister (2011), where the mean 

and CV of intrinsic growth rate for Atlantic yellowfin tuna were 0.486 and 0.094. Because we have 

little information about the intrinsic growth rate of Indian Ocean yellowfin tuna and the prior have 

great influence on the estimate of parameters, it still needs more efforts to validate and improve the 

reliability of the estimate.  

There are some conflicts in the standardized CPUE trends based on the longline fisheries of 

Taiwan, China and Japan (IOTC, 2012). The weights assigned to the two indices have great impacts 

on assessment of the status of the stock and currently it seems difficult to develop a reliable CPUE or 

assign a reliable weight to each CPUE (e.g. by using arithmetic mean or weighted mean to construct a 

CPUE time series).  

Therefore, it is difficult to choose a scenario which mostly reflect the fishery and population 

dynamics and evaluate the stock status of yellowfin tuna, although scenario S13 was used as the base 

to draw the Kobe plot (Figure 6) and calculate the risk matrix (Table 4 and 5). Because there are high 

uncertainties in the present assessment, we suggest that the results not be used for developing 

management advices, but for comparison with other model results. 
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