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Abstract: A Fox-form Bayesian biomass dynamics model was developed to assess the stock status 

of Indian Ocean albacore (Thunnus alalunga) in the Indian Ocean (1950-2014). Because the r and 

K tends to be negatively correlated due to the poor quality of the observed data, we used the 

life-history parameters to estimate the prior for r and the estimation of the median and the CV of r 

was 0.30 and 0.42. According to the different standardized CPUEs and the assumption of B0, there 

were 12 scenarios were evaluated. Based on an uninformative uniform distribution, the estimation of 

B0 seemed questionable. The value fixed for B0 as 0.90 was not enough large, but its impacts on the 

estimation were small. For all the scenarios, the goodness of fit for scenario S8 is best. According to 

the S8, the results showed that the median of Maximum sustainable yield (MSY) was 44,000 t, and 

the medians of B2014/BMSY and F2014/FMSY were 1.74 and 0.53, respectively. Thus, the stock was 

neither subject to overfishing nor overfished at the end of 2014. 
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1 Introduction   

Albacore tuna (Thunnus alalunga) is distributed throughout the Indian Ocean between 25 ºN and 

45ºS and is one of the main target species of the Indian Ocean commercial tuna fishery (Chen et al., 

2005). The species was initially exploited by the Japanese longline fishery in the early 1950s, 

followed by Korean and Taiwan China longline fisheries in the mid and late 1950s respectively 

(Hoyle et al., 2014). In recent years, the majority of the catches of the species have come from 

Taiwan China, Indonesia, Japan and Mainland China (IOTC, 2014). Longlines (including 

deep-freezing and fresh-tuna longliners) currently account for over 90% of the total catches of 

albacore, with purse seines, coastal longlines, handline, trolling and other gears accounting for the 

remainder (IOTC, 2014).  

Substantial uncertainty exists in the fisheries data that have been available since 1950 as a result 

of the following issues: (1) no, or incomplete, catch data from some fleets reported to the IOTC 

(Indian Ocean Tuna Commission) and some reported data not classified by gear and/or species; (2) 

the amount of catch at size/age data being very low before 1980; (3) the size samples from the 

driftnet fishery of Taiwan China, over the entire fishing period from 1982 to 1992, being completely 

absent and the fishery accounting for over 43% of total catches during the period 1986-1990; (4) size 

data being highly uncertain due to the declining number of specimens and/or a change of collection 

protocol in recent years (IOTC, 2014). There are no fishery-independent indices of abundance for 

Indian Ocean albacore and the standardized CPUEs (Catch per Unit Effort) from Japanese, Korean, 

and Taiwan Chinese longline fisheries are used as the abundance indices. The quality of CPUE data 

may be questionable due to targeting shifts, changes in distribution of fishing effort and/or 

technological improvements in the operation of the fleet (IOTC, 2014；Hoyle et al.,2014).  

To avoid using catch at size/age data and biological parameters, which were considered to be 

highly uncertain, Guan et al. (2014) and Matsumoto et al. (2014) chose a simple and highly 

aggregated model, i.e., a biomass dynamic model, as their stock assessment model. By contrast, 

Hoyle et al. (2014) and Zhu et al. (2014) chose an age-structured model to get a better representation 

of complicated population and fishery dynamics. Therefore, at present, the stock assessment models 

requiring data of great diversity such as ASPIC(A Stock Production Model Incorporating 

Covariates，Matsumoto et al., 2014)，BBDM (Bayesian biomass dynamic model, Guan et al.,2014)，

ASPM (Age-Structured Production Model, Nishida et al., 2014a)，ASAP(Age Structured 

Assessment Program, Zhu et al., 2014) and  SS3(Stock Synthesis, Hoyle et al., 2014) are all applied 

in the assessment of the Indian Ocean albacore stock. Although the IOTC suggested the albacore 

stock status should be determined by qualitatively integrating the results of the ASPIC and SS3 

stock assessments (Hoyle et al., 2014; Matsumoto et al., 2014), it does not imply an endorsement of 

the ASPIC or SS3 over other models and there is considerable uncertainty remaining in the 

assessments (IOTC, 2014).  

It is well recognized that assessments of the status of poor-data and data-poor fish stocks are 

challenging and that Bayesian analysis is one of the methods which can be used to improve the 

reliability of stock assessments in poor-data and data-poor situations through borrowing strength 

from prior information deduced from species with good-quality data or other known information 

(Jiao et al., 2011). In this study, we developed a continuous Fox-form biomass dynamics model using 

Bayesian methods based on winBUGS platform to make use of the prior information of the intrinsic 

rate of increase derived from life-history parameters by using demographic methods and to provide 

an opportunity to compare results with other stock assessment models. 
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2 Material and Methods 

2.1 Catch and CPUE data 

  Catch and standardized CPUE data were downloaded from the IOTC secretariat website 

(http://www.iotc.org/meetings/6th-working-party-temperate-tunas-wptmt06). Annual catch data 

were available from 1950 to 2014. The IOTC website also provided different standardized CPUE 

time series. We only used four yearly indices derived from R1 by using regA5 model (Fig 1 and Fig 

2), one yearly CPUE from Japan in Region 3 and 4 and two yearly CPUEs from Taiwan China 

longline on whole area or core area.  

 

 

Fig 1. the area (red) used for the standardized CPUE time series (Data from IOTC) 
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Fig 2. the standardized CPUE time series. C1, C2, C3 and C4 derived from files:  

Joint_regA5_R1_lognC_boat_allyrsyr.csv, Joint_regA5_R1_lognC_novess_5279yr.csv, 

Joint_regA5_R1_lognC_novess_allyrsyr.csv and Joint_regA5_R1_lognC_vessid_7914yr.csv 

respectively. 

2.2 Data processing 

   To improve computational stability, we normalized the catch and CPUE by using Eqs. (1) and 
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(2): 
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where Ct, Yt, CPUEt, and It are catches, normalized catches, CPUE and normalized abundance index 

in year t, respectively. CMax is the maximum annual catch and CPUEMax is the maximum CPUE in 

the time series. 

 

2.3 Continuous Fox-form biomass dynamic model 

According to Guan et al. (2014), the equations for the continuous Fox-form biomass dynamics 

model are as follows: 
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where r is intrinsic rate of increase, K is carrying capacity, Bt and Ft are stock biomass and fishing 

mortality in year t, respectively and Δt is the time interval that is always set as 1 year. If r, K, Yt and 

the biomass in the first year of the fishery are known, then Ft and Bt can be solved numerically. To 

estimate the parameters, a multiplicative error structure was assumed for the normalized abundance 

index (i.e., It) and the likelihood function is Eq. (6): 
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where q is catchability, σ is standard deviation of It, Bs is the biomass in the first year of the fishery, 

and B0 is the ratio of Bs to K.  

 

2.4 Prior for parameters 

2.4.1 Prior distribution of q, τ and K 
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According to the catch data series and Eq. (2), the upper limit of q should be less than 1.0. 

Consequently, the prior given for q was an uninformative uniform distribution on the interval from 

0.0 to 1.0 and denoted as U[0.0, 1.0]. The prior for the precision τ was given an uninformative 

gamma distribution with shape parameter and rate parameter both assigned as 0.001 and denoted as 

Gamma(0.001, 0.001). The prior for K was given an uninformative uniform distribution and the 

prior of K was denoted as U[2, 35]. 

 

2.4.2 Prior for B0  

The prior given for B0 was an uninformative uniform distribution. According to an assumption 

of the biomass dynamics model and the recent stock assessment (Hillary, 2008; Nishida et al, 2012; 

Hoyle et al., 2014; Matsumoto et al., 2014), the maximum value of B0 is less than 1.0 and the 

minimum value is greater than 0.25. The prior were denoted as U[0.25, 1].  

 

2.4.3 Prior for r 

   The prior distribution for r was an informative prior, i.e. a lognormal distribution. The 

informative prior was denoted as LM and its mean and standard deviation on log scale were 

estimated as follows: 

(1) Computing r by using the Euler-Lotka equation  

The relationship between the intrinsic rate of increase and other life-history parameters 

(McAllister et al., 2001; Maravelias et al., 2010) can be described as: 

1
0




 aaa

A

a

ra Swme ,                                                           (11) 

where a is age，A is the maximum age，ma is maturity at age a ，wa is weight at age a  and  

calculated by Eqs (12) and (13)，Sa is the fraction of individuals surviving from ages 0 to a and 

calculated by Eq. (14), and γ is the recruits-per-spawner biomass at zero spawners or maximum 

recruits-per-spawner and is calculated by Eqs (15) and (16).  
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where c is a scaling constant, b is the allometric growth parameter, h is the steepness of the 

stock-recruit relationship, L∞ is the asymptotic average maximum body size, k is a growth rate 

coefficient, t0 is the hypothetical age at zero length, and Ma is natural mortality at age a. The values 

of the parameters except h in Table 1 were assigned according to recommendation from Nishida et al. 
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(2014b). The steepness was assumed to obey a beta distribution with a mean and standard deviation 

of 0.75 and 0.15 respectively. If the parameters are known, the r can be solved by iteration according 

to Eq. (11). 

 

Table 1. Values of parameters for Euler-Lotka equation 

Parameter Value Parameter Value Parameter Value 

m0 0.0 M0 0.4000 A 15 

m1 0.0 M1 0.3641 c 1.3718×10
-5

 

m2 0.0 M2 0.3283 b 3.0973 

m3 0.0 M3 0.2924 L∞ 124.1 

m4 0.09 M4 0.2566 k 0.164 

m5 0.47 M5 0.2207 t0 -2.2390 

m6 0.75 M6 0.2207 h Beta distribution  

mean：0.75 

standard deviation：0.15 

m7 0.88 M7 0.2207 

m8 0.94 M8 0.2207 

m9 0.97 M9 0.2207 

m10 0.99 M10 0.2207 

m11-m15 1.0 M11-M15 0.2207 

 

(2) Sampling a value for h according to its distribution. 

(3) Solving Eq. (11) by iteration to get r. 

(4) Repeating (2) and (3) 5000 times to get the experience distribution of r. 

(5) Fitting the experience distribution of r to estimate the parameters of the lognormal distribution, 

i.e., the mean and standard deviation on the log scale. 

 

2.5 Estimation of the parameters 

   According to the standardized CPUE time series and the priors of the parameters, the model was 

run with 12 scenarios that are denoted as S1, S2… and S12 in Table 2. 

 

Table 2. Catch data and prior assumptions of parameters used in Bayesian biomass dynamic models 

Scenario CPUE Data r K q B0 τ 

S1 C3 LM U[2,35] U[0,1] U[0.25,1] Gamma(0.001,0.001) 

S2 C3 LM U[2,35] U[0,1] 0.9 Gamma(0.001,0.001) 

S3 C1 LM U[2,35] U[0,1] U[0.25,1] Gamma(0.001,0.001) 

S4 C1 LM U[2,35] U[0,1] 0.9 Gamma(0.001,0.001) 

S5 C2 and C4 LM U[2,35] U[0,1] U[0.25,1] Gamma(0.001,0.001) 

S6 C2 and C4 LM U[2,35] U[0,1] 0.9 Gamma(0.001,0.001) 

S7 C3(1979-2014) LM U[2,35] U[0,1] 0.9 Gamma(0.001,0.001) 

S8 C1(1979-2014) LM U[2,35] U[0,1] 0.9 Gamma(0.001,0.001) 

S9 C4 LM U[2,35] U[0,1] 0.9 Gamma(0.001,0.001) 

S10 TW_Whole_Area LM U[2,35] U[0,1] 0.95 Gamma(0.001,0.001) 

S11 TW_Core_Area LM U[2,35] U[0,1] 0.95 Gamma(0.001,0.001) 

S12 Jap_Area 3+4 LM U[2,35] U[0,1] 0.95 Gamma(0.001,0.001) 

Note: U denotes uniform distribution; LM denotes lognormal distribution in which the parameters were estimated by using the demographic 
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method; Gamma denotes gamma distribution; C1, C2, C3, C4 denote different CPUEs in Fig 2. 

 

The Bayesian biomass dynamics model was coded using Blackbox Component Builder 

(http://www.oberon.ch/blackbox.html), WinBUGS (Lunn et al., 2000) and R (R Core Team, 2014) 

which can be found in Guan et al. (2014). The Brooks-Gelman-Rubin statistic (BGRs) was used to 

diagnose the convergence where the threshold was set as 1.1 (Kéry, 2010), which means if BGRs is 

less than 1.1, the model has converged. We only presented and analyzed the results of the converged 

scenarios.  

 

3 Results 

3.1 The estimation of r 

  The estimation of the median and the CV of r was 0.30 and 0.42 (Fig 3). Steepness also has a 

great influence on the estimation of r and the r tends to increase with steepness. According to the 

literature (Hillary, 2008; Hoyle et al., 2014; Zhu et al., 2014), the steepness of the Indian Ocean 

albacore was assumed to follow a beta distribution with a mean and CV of 0.8 and 0.05 by Hillary 

(2008), or set as 0.8 or 0.7 by Hoyle et al. (2014) and Zhu et al. (2014). We assumed a beta 

distribution with a mean and standard deviation of 0.75 and 0.15. If we chose the beta distribution 

assumed by Hillary (2008), the median of r was 0.33 but the CV decreased to 0.11. There are 

different estimations among authors in their estimate of the distribution of r, for example, the mean 

and CV was 0.43 and 0.14 for Indian Albacore (Hillary, 2008) or 0.285 and 0.058 for Atlantic 

Albacore (Carruthers and McAllister, 2011). Because the albacore stock resilience is median, which 

means the intrinsic rate of increase is between 0.16 and 0.50 (Musick et al., 2000), the current 

estimate of the intrinsic rate of increase seems reasonable.  
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Fig 3. the distribution of r estimated by using life-history parameters 

 

3.2 The estimation of parameters 

  According to Gelman and Rubin's convergence diagnostic, all scenarios were converged. The 

estimations of the primary parameters were shown in table 3. 

Table 3. Parameter estimates of each scenario 

Scenario r K(1000t) B0 MSY(1000t)
 

R
2
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2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5% 50%  

S1 0.14  0.33 0.68 150.8 305.7 657.3 0.30  0.76 0.99 36.1 0.07 

S2 0.13 0.29 0.64 161.1 346.2 718.0 0.90 0.90 0.90 35.6 0.07 

S3 0.18  0.37 0.71 182.6 381.6 1056.0 0.29 0.76 0.99 48.8 0.06 

S4 0.16 0.33 0.67 196.5 426.1 1097.6 0.90 0.90 0.90 48.4 0.06 

S5 0.22 0.42  0.85 264.8 683.8 1486.8 0.27  0.66 0.98 101.3 0.04 

S6 0.21 0.40 0.83 276.2 741.6 1519.2 0.90 0.90 0.90 102.9 0.04 

S7 0.21 0.42 0.86 442.0 1129.1 1574.5 0.90 0.90 0.90 158.1 0.02 

S8 0.20 0.38 0.77 345.3 928.2 1559.0 0.90 0.90 0.90 119.7 0.03 

S9 0.20 0.38 0.78 373.4 982.5 1560.8 0.90 0.90 0.90 127.9 0.03 

S10 0.17 0.34 0.65 278.5 565.9 1346.6 0.95 0.95 0.95 69.0 0.21 

S11 0.17 0.34 0.63 193.4 361.1 774.2 0.95 0.95 0.95 44.0 0.30 

S12 0.14 0.32 0.69 193.1 523.5 1460.3 0.95 0.95 0.95 54.3 0.10 

 

There were significant increasing trends in the posterior distribution of B0 for scenarios S1, S3 and 

S5 where the prior for B0 was assumed as a uniform distribution (e.g. for S1 and S3 in Fig 4), which 

made the estimation of B0 questionable. According to the trajectory of biomass estimated by the S2, 

S4 and S6, The value fixed for B0 as 0.90 was not enough large (e.g. for S2 and S4 in Fig 5 and Fig 

6), but its impacts on the estimation were small (Table 3).  

 

B0

D
e

n
s
it
y

0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5 S1

B0

D
e

n
s
it
y

0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5 S3

 

Fig 4. Posterior distributions of B0 for scenario S1 and S3. Dashed line is the prior distributions for the parameters. 
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Fig 5. the trajectory of biomass estimated by the S2 where the B0 was assumed as 0.90. The red 

arrows marked the unreasonable biomass estimated by model. 
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Fig 6. the trajectory of biomass estimated by the S4 where the B0 was assumed as 0.90. The red 

arrows marked the unreasonable biomass estimated by model. 

 

3.3 The goodness of fit of the scenarios 

   The goodness of fit for scenarios S1-S9 seems not good (Fig 7, Fig 8, and Table 3). The 

goodness of fit was improved when the Taiwan China longline CPUE used (Fig 8, and Table 3). The 

fit is also bad for Japan CPUE (Fig 8, and Table 3). For all scenarios, the S8 is fitted best (Table 3). 

Therefore, we chose S8 as our base case.  
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Fig 7 Observed and estimated CPUE for scenarios S1-S6 
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Fig 8 Observed and estimated CPUE for scenarios S7-S12 

 

3.4 Stock status and comparison with other results  

   According to the S8, the median of Maximum sustainable yield (MSY) was 44,000 t, and the 

medians of B2014/BMSY and F2014/FMSY were 1.74 and 0.53, respectively (Table 4). The ranges of 80% 

CI of posterior distributions of Fcur/FMSY less than 1.0 and Bcur/BMSY are larger than 1.0 (Table 4). 

The stock is neither overfished nor subject to overfishing (Table 4, Fig.9).  

  Compared with the result of ASPIC run 3 (Matsumoto, 2016), which was based model, the MSY, 

Fcur/FMSY, Bcur/BMSY are similar, but the estimations of K and r were different. 

  Compared with the result of the stock assessment based on data in 2014, the current scenario is 

more optimistic (Table 5).  
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Fig 9 Kope plot for scenario S8 

 

Table 4. Compared with ASPIC (Matsumoto, 2016) 

Scenario MSY(10
3
) K(10

3
) r F2014FMSY B2014/BMSY 

(80% CI) (80% CI) (80% CI) (80% CI) (80% CI) 

S8 44.0 361.1 0.34 0.53 1.74 

(39.2-53.5) (237.9-575.6) (0.22-0.51) (0.38-0.66) (1.55-1.96) 

ASPIC 

(Run3) 

43.8 287 0.42 0.55 1.65 

(37.5-50.6)     (0.38-0.67) (1.50-1.92) 

 

Table 5. Compared with the stock assessment based on data in 2014 

Scenario MSY(10
3
) K(10

3
) r F2012/FMSY B2012/BMSY 

(80% CI) (80% CI) (80% CI) (80% CI) (80% CI) 

S8 44.0 361.1 0.34 0.44 1.70 

(39.2-53.5) (237.9-575.6) (0.22-0.51) (0.32-0.55) (1.52-1.93) 

2014 34.5 299.4 0.32 0.85 1.15 

(31.1-41.3) (193.0-482.2) (0.20-0.51) (0.52-1.25) (0.87-1.58) 

 

3.5 Risk assessment 

   The risk assessments (Table 6, 7) suggest that the current catch level in 2014 (39707 t) was less 

than MSY (44000t) and this level can’t result in risk for the stock to be overfished or subject to 

overfishing.  
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Table 6. Risk matrix for B <BMSY for scenario 8 (probability of B less than BMSY)  

Catch 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

60% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

70% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

80% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

85% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

90% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

100% 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.4 0.5 0.7 

110% 0.0 0.0 0.0 0.3 0.9 1.8 2.9 4.5 6.3 8.4 10.6 

120% 0.0 0.0 0.7 2.4 5.5 10.3 15.4 20.5 25.4 30.0 34.2 

130% 0.0 0.4 3.1 9.3 17.7 26.7 35.1 42.4 48.7 53.8 57.8 

140% 0.0 1.5 8.8 20.8 33.7 44.8 54.0 60.8 66.2 70.8 74.2 

 

Table 7. Risk matrix for F>FMSY for scenario 8 (probability of F larger than FMSY)  

Catch 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

60% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

70% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

80% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

85% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

90% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

100% 0.0 0.0 0.1 0.1 0.2 0.3 0.4 0.7 1.0 1.2 1.5 

110% 0.1 0.4 1.1 2.2 3.5 5.1 7.3 9.6 11.7 1.4 16.0 

120% 0.9 3.0 6.6 11.8 17.4 22.8 27.8 32.3 36.4 40.4 43.5 

130% 3.5 10.6 20.3 29.9 38.8 46.4 52.4 57.1 60.9 63.8 66.6 

140% 9.8 23.9 38.5 50.4 59.1 65.1 70.1 73.7 76.6 79.1 80.9 

 

4 Discussion 

4.1 Imapcts of the standardized CPUEs 

  Obviously, the standardized CPUEs are the only information source for production models to 

estimate the parameters and different standardized CPUEs have great impacts on the results of the 

stock assessment (Table 3).  

It seems doubtful the standardized CPUEs from A5 from 1958 to 1971 decreased by more than 

five times which the models fail to fit (Fig. 7), because during the early period the catch is low. This 

problem also exists in Japan CPUE. 

  It seems the standardized CPUE from Taiwan China longline in core area is more reasonable, but 

there is still big difference between predicted CPUE and observed CPUE. 

 

4.2 Choice of stock assessment model 

It seems reasonable to pick a model which can represent more complicated population and 

fishery dynamics and make use of all the information available from fisheries or biological research. 

However, on the other hand, a model with an increasing biological and fishery realism has a 

higher data quantity and quality requirement. The main advantage of age/size structure models (e.g., 

SS3) is that they can make full use of the age- or size-specific catch data and biological information 
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available from fishery and biological research to increase biological and fishery realism. However, 

there are substantial uncertainties in the basic Indian Ocean albacore biology regarding stock 

recruitment relationship (e.g., assumption of steepness), sex composition, individual body growth, 

maturity and natural mortality (Nishida et al., 2014b; IOTC, 2014) and in the size-composition or 

age-composition data due to lack of size samples, unrepresentative samples, and a change of 

collection protocol (IOTC, 2014). As a consequence, some models (e.g., ASPM) did not converge 

(Zhu et al., 2014; IOTC, 2014) and the results based on the others have also been questioned (Zhu et 

al., 2014; Hoyle et al., 2014; IOTC, 2014). 

 In order to avoid using the data and making the assumptions (e.g. steepness, natural mortality, 

etc) with considerable uncertainty, we choose the biomass dynamics model as a stock assessment 

model for the Indian Ocean albacore. However the production model lack biological and fishery 

realism and may not correctly simulate the population dynamics with a strong age structure and 

impacts of changes in selectivity of fisheries, and which may be another cause for the bad goodness 

of fit for all scenarios. We need to do more simulations in future to assess whether the production 

model can be applied to this stock as done by Prager et al. (1996).  

 

4.3 Impact of environmental factors  

   For all scenarios, great differences were found between the observed and the predicted 

normalized abundance indices (Fig 7). This may suggest that the population dynamics also relate to 

changes in the marine environment as well as impacts from fishing. Although introducing 

environmental factors into the stock assessment models is an important research topic at present, the 

choice of environmental variables and re-parameterization of the models to incorporate the 

environmental variables still needs further study. 
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