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Abstract 

A Bayesian state-space production model was developed to assess the stock status 
of Indian Ocean albacore (Thunnus alalunga) using fishery data from 1950 to 2014. 
The first scenario (S1) used total catch and two standardized CPUE from the 
Southwest region 3 (1979-2014) and the Southeast region 4 (1979-2005). The 
second scenario (S2) used total catch and one CPUE from the Southwest region 3 to 
model the population dynamics of Indian Ocean albacore. The results from the S1 
showed that the mean of Maximum Sustainable Yield (MSY; 1000 t), B2014/BMSY, and 
F2014/FMSY were 48.41, 1.49, and 0.51. The results from the S2 indicated that the 
mean of MSY (1000 t), B2014/BMSY, and F2014/FMSY were 48.66, 1.47, and 0.50. The 
estimated parameters from S1 and S2 showed well convergence. A continued 
exploration of sensitivity analyses, risk assessment, and retrospective analyses may 
improve the uncertainty of current models 
 
1. Introduction 

The stock population dynamics of Indian Ocean albacore (Thunnus alalunga) has 

previously been assessed using ASPIC (Matsumoto et al., 2014) and Bayesian biomass 

dynamics model (Guan et al., 2014). The Bayesian approach is able to model uncertainty 

about key population parameters. However, this approach does not account for the 

randomness in the dynamics of the population. To improve the assessment by modeling 

the randomness in both the dynamics of the population (e.g. process error) and in the 

observations made on the population (e.g. observation error), a state-space paradigm was 

applied to a Bayesian production model (Millar and Meyer, 2000). In this study, a 

Bayesian state-space formulation of the Schaefer surplus production model was used to 

analyze population dynamics of Indian Ocean albacore. The Bayesian state-space 

production model (BSP) was built from the winBUGS and R platforms to compare 

results with other stock assessment models. 

 

2. Data 

Four areas with independent catch and standardized CPUE time series were available for 

the assessment of Albacore (e.g. area 1-Northwest, area 2-Northeast, area 3-Southwest, 

and area 4-Southeast) from the WPTmT06. The catch data were obtained from IOTC-

2016-WPTmT-DATA-SA.xlsx (available at http://www.iotc.org/meetings/6th-working-

party-temperate-tunas-wptmt06). The corresponding standardized CPUE, which were 

developed by considering vessel ID factor from 1979 to 2014, were also obtained through 

the website of the WPTmT06.  

 



IOTC-2016-WPTmT06-24 Rev1 

2 
 

Figure 1. Historical catch (t) from four areas used by BSP model. 

 
 

Figure 2. Standardized CPUE from four areas used by BSP model. 

 
 

3. Bayesian state-space production model 

The Bayesian state-space production model was formulated by considering both 

observation and process errors. The observation error likelihood function measures the 

discrepancy between observed and predicted CPUE (Millar and Meyer, 2000). The 

process error accounts for the fluctuations in exploitable albacore biomass due to density-

dependent processes and fishery harvests (WCPFC, 2014). The biomass in year t (Bt) 

depends on the previous biomass (Bt-1), catch (Ct-1), intrinsic growth rate (r), carrying 

capacity (K), and a production shape parameter (s): 

 

𝐵𝑡 = 𝐵𝑡−1 + 𝑟 × 𝐵𝑡−1 (1 − (
𝐵𝑡−1

𝐾
)
𝑠

) − 𝐶𝑡−1                                                                      

(1) 

 

In order to improve the efficiency of estimating parameters, the equation (1) was re-

parameterized using the proportion of carrying capacity (P=B/K). The process error terms 
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were assumed to be independent and log-normally distributed random variable 𝑒𝑥𝑝(𝜇1) 
with mean 0 and variance 𝜎2: 

 

𝑃1 = 𝑒𝑥𝑝(𝜇1)                                                                                                                    (2) 

 

𝑃𝑡 = (𝑃𝑡−1 + 𝑟 × 𝑃𝑡−1(1 − 𝑃𝑡−1
𝑠 ) −

𝐶𝑡−1

𝐾
)𝑒𝑥𝑝(𝑢𝑡)    for t > 1                                             

(3) 

 

The observation error terms assumed that each CPUE index (I) was proportional to 

biomass with catchability coefficient q. The observation error was independent and log-

normally distributed variable exp(𝑣𝑡) with mean 0 and variance 𝜏2: 

 

𝐼𝑡 = 𝑞𝐼𝐵𝑡 = 𝑞𝐼𝐾𝑃𝑡𝑣𝑡                                                                                                         (4) 

 

The BMSY, FMSY, and MSY were estimated by using the following equations (WCPFC, 

2014): 

 

𝐵𝑀𝑆𝑌 = 𝐾 × (𝑠 + 1)−
1

𝑠                                                                                                         
(5) 

 

𝐹𝑀𝑆𝑌 = −𝑙𝑜𝑔(1 − 𝑟 × (1 −
1

𝑠+1
))                                                                                       

(6) 

 

𝑀𝑆𝑌 = 𝑟 × (1 −
1

𝑠+1
) × 𝐾 × (𝑠 + 1)−

1

𝑠                                                                                  

(7) 

 

The prior distributions of each parameter were given in Table 1. Most of the prior 

distribution was set with a uniform distribution. The model was run with two scenarios 

that are denoted as S1 and S2 in Table 1.  

 

Table 1. Prior distribution of parameters used in Bayesian state-space production model. 

Scenario 
CPUE 

Series 
r K P1 1/q σ τ s 

S1 
R3, 

R4 
U[0.01, 1.5] U[2, 32] U[1, 10] U[1,1000] Gamma(4, 0.01) Gamma(2, 0.01) U[0.01, 2] 

S2 R3 U[0.01, 1.5] U[2, 32] U[1, 10] U[1,1000] Gamma(4, 0.01) Gamma(2, 0.01) U[0.01, 2] 

Notes: S1 and S2 represented different combinations of CPUE series. R3 and R4 

represented CPUE from southwest and southeast regions. U and Gamma represented 

uniform and gamma distribution respectively. K was scaled by the maximum annual 

catch. 

 

4. Results 
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The mean and standard deviation of the posterior distributions were summarized in the 

Table 2. The Brooks-Gelman-Rubin statistic was used to diagnose the convergence. The 

model was converged if the convergence index is close to 1 and less than 1.1. The 

convergence values indicated that all parameters beside K from the S1 have well 

convergence with the rhat less than 1.1. The K is marginal converged with a value of 

1.14. Posterior density distributions of model parameters for each scenario were given 

from Figure 3 and 10. The scatter plot of r, K, q for different scenarios indicated strong 

correlation between K and q (Figure 4 and 11). The process error was low and fluctuated 

around 0 (Figure 5 and 12). The modeled indices showed a similar pattern with process 

error from the start year of the index (Figure 7 and 12). The Bratio (B/BMSY) for all 

scenarios showed a similar trend (Figure 8 and 13). The value of Bratio decreased 

dramatically from the first year to the second year, and stayed stable for later years. The 

Fratio (F/FMSY) was low for the entire time series with a relatively high upper boundary 

of 95% CI (Figure 8 and 13). The Kobe plots showed that the stock was not overfished 

and overfishing was not occurring for both scenarios (Figure 9 and 14).  

 

Table 2. Estimated mean, standard deviation (sd), 95% CI, median, and convergence of 

parameters. 

  Scenarios Mean sd 2.50% 50% 97.50% Convergence 

r 
S1 0.7091 0.3838 0.13 0.6532 1.448 1.00 

S2 0.7395 0.3779 0.1584 0.6919 1.452 1.00 

K 

(1000 t) 

S1 550.7 165.7 296.9 536.9 1020 1.14 

S2 501.2 143.9 244.6 497.9 826.3 1.00 

P1 
S1 2.765 1.214 1.082 2.581 5.387 1.00 

S2 2.734 1.226 1.073 2.526 5.435 1.00 

q 

S1_q1 0.001364 3.70E-04 0.001008 0.001242 0.002362 1.00 

S1_q2 0.002251 6.19E-04 0.001616 0.002054 0.00393 1.00 

S2 0.001514 5.42E-04 0.001012 0.001348 0.003077 1.04 

σ 
S1 0.02208 0.01037 0.007881 0.02014 0.04747 1.00 

S2 0.02637 0.01156 0.009534 0.02449 0.05448 1.00 

τ 

S1_ τ1 0.0128 0.006724 0.002946 0.01174 0.02902 1.00 

S1_ τ2 0.03497 0.01448 0.01518 0.03224 0.07127 1.00 

S2 0.01064 0.006783 0.001639 0.009244 0.02722 1.00 

s 
S1 0.6376 0.4261 0.1248 0.5093 1.764 1.00 

S2 0.6548 0.4153 0.1404 0.5341 1.745 1.00 

MSY  

(1000 t) 

S1 48.41 16.49 20.36 46.3 85.98 1.01 

S2 48.66 16.43 21.6 46.61 86.34 1.00 

 

Figure 3. Posterior distribution of parameters for S1. 
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Figure 4. Relationships between r, K, q from S1. 
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Figure 5. Process errors from S1 change as function of years. The solid black line 

represents mean, and the dash lines are 95% CI. 

 
 

Figure 6. Modeled indices from S1 change as function of years. The solid black line 

represents mean, and the dash lines are 95% CI. 
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Figure 7. Modeled indices residuals from S1 change as function of years. The solid black 

line represents mean, and the dash lines are 95% CI. 
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Figure 8. Changes over time in Bratio and Fratio from S1. The solid black line represents 

mean, and the dash lines are 95% CI. 

 
 

Figure 9. The Kobe plot for S1. The red point represents the fishery status in 2014. 

 
 

Figure 10. Posterior distribution of parameters for S2. 

 
 

Figure 11. Relationships between r, K, q from S2. 
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Figure 12. Process error, modeled index, and index residuals from S2 change as function 

of year. The solid black line represents mean, and the dash lines are 95% CI. 

 
 

Figure 13. Changes over time in Bratio and Fratio from S2. The solid black line 

represents mean, and the dash lines are 95% CI. 
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Figure 14. The Kobe plot for S2. The red point represents the fishery status in 2014. 
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