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Abstract

Blue marlin(Makaira nigricang is abycatch speciesf tunalongline and gillnet fleets
operatingn the IndanOcean. Urtary stock in the InddinOcean is assumexsthe most
probable hypothesis this analysisindian Ocearblue marlin stockvas classified as not
overfished and not subject to overfishing in the last stock assessment meeting in 2013
However relative abundance indices and catch time seee=updated and revisetience
newstock assessment is warrantBdyesian statgpace models (Fox and Schaefer types)
were used to assess the status of blue marlin Indian Ocean stock based on estimations of total
catch and standardized catch rates of Japan and Tani@mative and noiinformative

priors were used. Likelihood function was based omlognal density distributions.

Posterior samples were calculated using Monte Carlo Markov ChHairee chains starting
ondifferentlocations of the space parameters were calculatéithefirst 30000samplesof
eachchain were discarded (burnimndthe next90000samples wersliced(thin of 30) in

order to gather inal sample witlB000for each of the three chainsll the models
convergedOverall theproduction models fitted well thgata as the time trends of predicted
expectations and of catch rate data were similar. However modelfmasee in the sense
relative abundance indices of Japan were underestimated from 1970 to 1995 and
overestimated in the recent decades, while inddi€dsiwan were overestimated until 1995
andunderesti mated after that mid 19906s. Bi as
series of Japan and Taiwan are conflictive in some peifetailts of Schaefer and Fox type
calculations were are conflicgv If we rely in calculationbased on Fox model the blue
marlin stock is currently not overfished but close to cross the threshold to be classified as
subject to overfishing. However, calculations based on Schaefer type model indicate that
currently is aleady subject to overfishing and it is not far from overfishing red zone.

Key words:blue marlin stock assessment, production model, Bayesian model, MCMC,
biomass.

1. Introduction

Longline and gillnet fleets caught mosttoha and tundike landed inharbors of Indian
OceanData are limited but most of available information concerns longline Aétebugh
fisherman aims dish of generarhunnusandat swordish (Xiphias gladiu} several other
species are caught. Billfishes are among the bycatch sp@atebes of the blue marlin
(Makaira nigricang wasthe largest amonigparlin catchesn the last years (Anon, 20HE3.

Blue marlinis a highly migratory species and unicgieckhave been assumed as the main
hypothesis byndian Ocean Tuna Commission (IOTi@)last stock assessment meetings (e.g.
Anon, 20134). In the11™" Working Party on Billfishes (WPB) held in 28production

models (ASPIC and statpace BSP) and Stock Reduction Analysis (SRA) were used to
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assess blue marlin stock of Indian Ocdaata limitations mde difficult to accomplish the
stock assessmeriiut results have supported the conclusion thagtthek was not overfished

Data is still limited currently. However total catch time seffgson, 2016)and standardized
catch ratesf Japan (Yokoi et a12016) and Taiwan (Wang, 2016) were updated. Production
models can be used in stock assessmem wateh and catch rates (or effort) are available.
Often data are not informative to estimate shape parameter together with intrinsic gjpwth (
carrying capacity'Q), coefficient of catchabilityr{) and parameters concerning errors. Hence
shape is usally fixed in advance when fitting the modeBchaefer and Foypes of

production modelsave been oftensedby Regional Fisheries Management Organizations
(RFMOs) during thelast decadesn this paper the blue marlin is assessed by using Bayesian
state-spaceversions ofSchaefeand Fox modeldBoth observational and process errors are
when fitting the models to the available datasets

In the Bayesian approach all available informatiathered before the analysis are used to
build prior distributiors, which arecombinedwith likelihood function calculated based in the
newdatg to calculate posterior distributiswhich conveys all the knowledge on the
parameters estimationsumerical approaches likdonte Carlo Markov Chains (MCMQre
practical toextract samples of parameters from posterior distributiarthis working paper
MCMC was used to estimate parameters of production models and posterior distributions of
benchmarMasx i(neu ng .S uis t 4 MRBYa Bdsterior\distréblitidng are ustm
assess the status of blue marlin of Indian Ocean in the light of unitary stock hypothesis.

2. Materials and Methods
2.1 Database

The catch data of the aggregated Indic Oceanpn@sded byilOTC secretariatTime series

of catchavailable forthe stock assessmenttinis meeting Anon, 206) and in the last stock
assessment meeting (Anon, 2dd3are shown in Figure 1. Estimations provided in the former
meeting ends up in 2011, while currently there are estimations from 1950 to 2015. Catches in
mid 199006s were r evi s e ddatabasgAndnh205b) areslowerthart i on s
those of the formeratch time series. Notice also that the estimations of catches after 2011

were higher than in previous years. Catches in the recersthaar been close to or higher

than 15,000 t.
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Figure 1i Estimations of total catch of Indian Ocean blue marlin.

Standardized catch ratas calculated based on the Japanese lorgtideon Taiwanese

longline datasets weprovided as input data for sioassessment modéRigure 2) Details

on the calculations of tr@andardizedatch rateof Japan and of Taiwaran be foundn

Yokoi et al. (2016pnd Wang (2016)yespectivelyHere those standardized catch ratese

assumed to bealid relativeabundance indiceslotice that standardized catch rates of Japan
decrease
opposition standardized catch rates of Taiwan decrease from 1980 until the beginning of

1 9 9 0 6 s wereDdtidatioas since then but in general there catch rates showed an

from 1970

t o

2005, but

t her e

was

increasing time trendDverall the two estimations of standardized catch rates showed similar

time trends in the beginning and in the end of the time series, buvéneyonflictivefrom

1992 to 2005.
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Figure 2i Standardized catch rates of Japan (JPN) and Taiwan (TWN) are represented by
solid lines. Dashed lines stand for smooth calculations.

2.2Model

a



IOTC-2016 WPB1427

The model usetiereis described ifMeyer and Millar (1999)Model structure used in
this paper is similar to that model used before during WPB11 held in 2013. However, in
WPB11 the model was fitted to one time series separated, but in the present paper multiple
standardized catch rates were included in the calonfaby assigning weights to them. In
this preliminary approach equal weights were assigned to Japan and Taiwan time series, as an
example. Follow the description of the equatiorige ©bserved data are represented by
vectors with values foyields and abindance indices denoted &éyand'Q respectivelywhere
0 pfB R is the index for the yeafhe generabiomass dynamiequationis:

6 0o Q6 W (1)

Whered is thebiomass at the beginning péaro, & is theyield obtained during this year,
andQ i s the Asurplus productionodo filbcti on.
i6 p 6 jQiandFox (1970§ "Q6 10 I T & jQi wereusedin this
work, whereQis the carrying capacitgndi is theintrinsic growthrateof the population.l

have assumed that the relationship betwewbserved stat® () and the observeabundance
indices in thed yearas calculated based & fleet('Q,) arerepresented by the equation

Q@ no (2)

wherern] is thecatchability coefficientf the’Q fleet Management reference points may be
calculated based on the igsationsof the parameterespecially andQ

These calculations can be considered in the contexttatfeessace model which includes
process and observational uncertainties. Indhsg the observed series of daig | are
linked to the unobserved statés)(through a stochastic model. Thersion of thestate-space
model used herns reparametrized by the calculation of the proportion of the annual biomass
in relation to thecarryingcapacity 0 6 j Q, which results iran improvement in the
performance of the Gibbs sampler used in the Bayesian approach to generate the sample of
the posterior distributiorfMeyer and Millar, 1999)The state equations may thus be written in
the stochastic form, as:

0s @ ©)

~ ~

0 hahih, 0 Q0 ®» jQQ o B
while the equation for the observations would be:
QRIMA RADQo B (4)

Whereo is an independent and identically distributéd)(normal random variable with
mean 0 and variange , while0 is a normalid with mean 0 and variande. Lognormal
models wee thus usedbr both observational and procesguationsIn the present case
@ ¢given that theatchdata series begins in 1@&nd endsn 2009.Statespace models
(observatnal plus process error) as well as a simple observational model were used in the
analyses.

If independent priors are assumed for the param&érsand the vector} which are the
core of the biorassdynamicmode| andfor thoseparametershat describe the errors (, T ),
thejoint prior distribution of these parametensd ofthestates§ 8 [ ) is:
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Adimh MM  AQRiann, At ads B N0 FAAR  (5)
The jointsample distribution for the abundance indices is given by:

n OB Fosimh, it MR B f"CGd mAt (6)
and finally, the posterior distribution for the parameters, states, and observations is:

~

, At ads B RO RAAR B /@M (7)

Numerical MonteCarlo procedures can be used to obtain a sanfithe wint posterior
distribution. In the present study, a Markov Chain Monte Carlo (MCMC) algorithm was used,
and the Gibbs sampler was implemented in the JAGS proglamr{fer, 2005) available in
the Rprogram(R Core Team 2@8) with therunjagspackage (Denwoq@009). Three chains
were initiated with different initial values for the parametétee first30,000 values of each
chain were eliminated as burnin, aradues were retrieved at eves@ steps (slice sapiing)
of the subseque®0000 steps of the chain, providing a setl®D0 valueof the posterior
distributionfor each chain.

2.3 Priors

Informative or norAnformative priors can be usa@dthe Bayesian approadepending
on the informatioravailable concerninthe species and the stock being analyzed, or even
similar species or stockMcAllister etal., 1994 PuntandHilborn, 1997 McAllister and
Kirkwood1998.J e f f r eiyfddnsative reference prior faf is independent df andQ
and is equivalent to a uniform prior on a logarithmic scale (Mi#@02).Thereforein this
work the uniform priorY T @ p on the logarithmic scale was used fipof both fleets
(JPN and TWN)Fori andQwide uniform griors thatconveylittle information on the
parameters were used. The uniform priorsn tons wasyY p @t iy 1 p dot 1t iower
and upper limits of the prior dare based on the valpedin Tt which higher but close to
maximum estimation of catch that sva7,324.121 in 201Anon, 2016) Thenon
informativeprior fori was"Y i, . Priors of, andt were inverse gamma
‘O @FIT8t pand O @B p, respectivelyThese priors for the errors were selected
because they convey little information and becdligse density distributions and the
posterior distributions were not conflictive. Overall the priors described above convey little
information about the parameters hence they are denominated as-ithéonoative priors
hereafter.

Production models haveebn used to assess #teck of hue marlin Makaira nigrican3
caught in the Atlantic Ocean recent yearUncertain was high but after some assumptions
concerningQ estimations of ranging from 0.11 and 0.65 were calculated in the last stock
assessent meeting (Anon, 2011). There are not estimationsfof blue marlin of Pacific
where the stock has been assessed using Stock Synthesis (Andels2013 c)In the last
stock assessment of blue marlin of Indian Oaagrerts of the WPBecided to se a
lognormal with mearlog(0.4) and standard deviation equal to (A®drade, 2013)That

prior used in the last stock assessment gives more weight to valubstafeen 0.1 and 0.7.
That same informative prior was used instpaperbecause itepresents the continuous case
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with respect to thiast stock assessment of Indian Ocean blue marlin, and because it is not
conflictive with the information available for Atlantic and Pacific Oceans.

2.4 Diagnostics and Convergence

Graphs (e.gtraceplots) and diagnostic tests were used to determine whether a stationary
distribution had been reached. These analyses were run in the CODA library (Plummer et al.,
2006) . Gel man and Rubi nds (1992) statistic
asumed when the 97.5% quantile of the Potential Scale Reduction Factor (R&Regual

to or lower than 1.01Autocorrelations were alsmlculatedto evaluate the mixing degree of

the samples of the posterior distribution. Estimations of the some parsmeteusually
correlated hence coefficienbf correlations were calculated and the joint posterior were
examined. Residuals were also investigated to assess the quality of the fittings to each time
series.

3. Results
3.1Relationships amonGatchandStandardize Catch Rates

Histograms of wtributions, scatterplots ofelationships and coefficients of correlations of
available estimations of catch asthndardizedatch rates are showed ifgére 3 In spite of

the oscillatory pattern of the tingeries overall catches have been increasing during the last
decades. Hence tlwerrelation between catches and yemaspositiveand high
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Figure 21 Estimations of catchlt) of blue marlin Makaira nigricang (BUM), and
standardized catch rates of daagJPN) and Taiwan (TWN) consieérin the analyses.
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Coefficient of orrelation between year and catch rates of Jaf#idN) was strong and

negative However thecorrelation between year and catch rates of TaifWavN) was weak

because the TWN time series was not monotonGateh rateof TWN have decreased until

mid 19906s but t hey hav@orrelation betvaes eatth andhcatthh e |
rates of JPN was negative and strong. In opposition the correlation betteeelardized

catch rates of TWN and the nominal catch was wéakally, the correlation between
standardized catch rates of Japan and of Taiwan was positive but not strong. This indicates
thatin some periods thewvo time series are in agreemehtt they are conflictive in other

periods

3.2 Convergencand autocorrelations

All the calculations of 97.5% quantile of PSRF (Gelman and Rubin, 1992) were below 1.01
hence all the model$-ox or Schaefer types with namformative or informative priorshave
converged if we relay in that criterion. In addition the autocorrelation analyzes indicates a
fairly acceptablemixing degree of the samples of the posterior distributterthe Schaefer

type with noninformative (Figure 3), Schaefer type with informati(Figure 4), Fox type

with norrinformative (Figure 5) and Fox type with informative (Figure 6) models.
Performance of MCMC algorithm with informative prior was superior especially when
calculating the sample af, as indicated by thgquick decrease of celation along with the
increase of the lag

7777777 HHHHUHHHluuuu éHH‘H‘HJHJHUJHHH -HHWMHHHHHW
éHHH“HHHHH““'“ g,““ ————— C s e

Lag Lag Lag

Figure 31 Autocorrelation of samples of posteriors as calculated using Fox type and non
informative prior.r i intrinsic growth rate; K carrying capacity; q1 catchability coefficient

of Japan; q2i catchability coefficient of Taiwan, variance of the process error;
variance of the observational error.
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Figure 47 Autocorrelation of sampte of posteriors as calculated using Fox type and

informative prior.r i intrinsic growth rate; K carrying capacity; q1 catchability coefficient

of Japan; q2i catchability coefficient of Taiwan,

variance of the adervational error.
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Figure5 i Autocorrelation of samples of posteriors as calculated using Schaefer type and
norrinformative prior.r i intrinsic growth rate; Ki carrying capacity; qli catchability
coefficient of Japan; R catchability coefficient of Taiwan, variance of the process error;

t variance of the observational error.
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Figure 61 Autocorrelation of samplesf posteriors as calculated using Schaefer type and
informative prior.r i intrinsic growth rate; K carrying capacity; q1 catchability coefficient

of Japan; q2i catchability coefficient of Taiwan, variance of the process errof;
variance of th@bservational error.

3.3 Model fitings and Residuals

Fox type models fitted to data using noriormative and informative priors are shown in
Figure 7.Credibility intervals in the beginning of the time series were wide, which was
expected due to thénlited data. Model fittings as calculated using and-imbormative and
informative priors were very similar. Expectations and medians of the posterior calculations

did not change much wuntil the end of 197060
oscil ations in the 199006s followed by a slight
trend in the beginning of 20106s. However,

after 2011 Models fittings as calculated usigghaefeformulae (Figure 8) were very similar
to those calculated usirgpx type (Figure 7).
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Figure 7 i Fox type models fitted to available catch rate series as calculated using non
informative (top panels) and informative priors (bottom panels). Standdrdatch rate time
series: Japan (JPN) and Taiwan (TWN).
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Figure 81 Schaefer type models fitted to available catch rate series as calculated using non
informative (top panels) and informative priors (bottom panels). Standardized catch rate time
series: Japan (JPN) and Taiwan (TWN).

Models with observational and process errors are flexible due to the large number of
parametersin spite of the dimension of models the fittingsrenot very good Notice that

the expectations calculated using the models underestimate most of the Japan standardized
catch rates in the beginning of the time series, but the observed values were overestimated in
the end of the time series (Figures 7 and @anels atdft). In opposition the expectations
overestimated most of catch rates of Tai wan
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values were underestimated from 2000 onwdFdgures 7 and 8 panels at right)Biases

were very evident in the scatterpdotalculated for FoXFigure 9)and Schaefer md e | 0 s
residuals (Figurel0). Biases of models fitted Japan and Taiwan times are in some sense
similar to each other but with opposite signs. The moments of transtidmasesfrom
overestimation to werestmat i on (negative to positive resi
for Japan and for Taiwan time series.
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Figure 91 Residuals of Fox type models fitted to available catch rate time series using non
informative (top panels) and informative prigl®ttom panel). Catch rates: Japan (JPN) and
Taiwan (TWN).
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Figure 10i Residuals of Schaefer type models fitted to available catch rate time series using
norrinformative (top panels) and informative priors (bottom panel). Catch rates: Japan (JPN)
andTaiwan (TWN).

3.4 Marginal PosteriomDistributions of Parameters

Posteriors of the parametdrs’Qn,,, andt as calculated using Fox type moded showed

in Figure 11 Posterior®df numerougproportions ) 6 j Q (one for each yeaxyerenot
showed to not cluttePosterior of calculated withH=ox type model anthe noninformative

is not symmetric and it conveys information about the parar(iétgure 11) The posterior
gives more weight to values between 0.05 andNo8ce that the precision of the posteriors
of i calculated with nofinformative and informative priors were similar. However, the prior
was influential in the sense the posterior calculated with the informative prior shifted to right
Notice also that iformative prior and the posterior largely overlap, which indicate they are
not conflictive.Posteriors ofQcalculated with nofinformative an informative priors were
different (Figure 11). Posterior calculated with finformative prior was flat and it &s
bounded at the upper limit. This result indicates that data do not convey much information
about’Q Informative prior ori was also informative abol@® because they are correlated.
Posterior ofQcalculated with the set of priors which included itifermative prior fori gave
more weight for values between 100,000 t and 250,000 t. Notice also that the post@rior of
calculated with the informative prior was barely bounded at the upper limit.
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Figure 117 Priors and posteriors of parameatef Fox type models fitted to catch rates of
Japan (JPN) and of Taiwan (TWN). Norformative prior is indicated by thin dotted line,
while the informative was represented by the dotted and dashed thifiHiok lines stand for
the posteriors calculataging the noanformative (solid line) and the informative (dashed
line) priors.

Expectations of posteriors gfcalculated for Japan and Taiwan using Fox model and
the two sets of priors (neinformative and informative) (Figure 11) were all similar. The
difference was the precision. The variance of the posterior calculated with informative prior
was higher tharthat calculated for the neinformative prior. Similarly, posteriors af
calculated for both JPN and TWN times series gave weight to values betw&esnsELEG.

The scale ofy values were similar because the scale of standardized catch rates were also
similar.

Posteriors of variances of observational )(error calculated using nanformative
and informative priors were similar (Figure 11). Similpattern showed up for the
calculations ofprocess error parameter §. However, the modes of postns of, and of



