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Abstract 
 
In stock assessment, it is not straightforward to choose a plausible range of models objectively from 
several models if different data set are used because it is not possible to use model selection criteria 
like AIC in these situation. However, as shown in Kell et al. (2016), where a hindcasting approach was 
proposed, predictive evaluation via cross-validation would be a possible procedure under those 
circumstances. Here, as an attempt using data for bigeye tuna, we applied a model selection method 
with predictive evaluation of biomass index to Bayesian state-space production models although the 
data used is common to the model in this case. Using a selected model, we also assessed the 
population status of the stock. Non-informative priors were used and posterior samples were 
generated using a Markov chains Monte Carlo (MCMC) method. The results suggested that F-ratio 
(2015) is higher than the MSY level (1.17) and B-ratio is lower than 1 (0.76). Given that this analysis 
has a preliminary nature as stock assessment, the paper may not be so useful for management advice, 
but this approach could give an opportunity to help in choosing models in future assessment. 
 
 

1. Introduction 
 

In this paper, we introduce our attempt to selecting the best model (of a range of better models) 
from the point of view of predictive ability. Here we will apply the approach to Bayesian state-space 
production models. The reason we chose production model for the first attempt is its robustness and 
simplicity. Production model only needs catch data and abundance indices like CPUE series, so it is 
relatively easy to handle. 
 

2. Data 
 
To implement Production Model, we used the annual total catch data (Fig 1) and yearly STD CPUE 
series that were estimated through analyses with generalized linear models (see Fig 2). Since CPUE in 
the tropical region had a better relation to catch (Nishida et al, 2011), we chose the joint CPUE (area 
R1+R2) (Hoyle et al, 2016) for our main exercise but also used Japanese STD CPUE (Tropical) 
(Matsumoto et al, 2016) for comparison. Though catch and joint CPUE are available before 1960, we 
use data in the period of 1960 to 2015 to adjust to Japanese CPUE series. 
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Figure 1. Time series of annual total catch (tons). 
 
 
 

 
 
Figure 2. Comparison of Japanese STD CPUE (Tropical) and Joint CPUE (Tropical) series. 
 
 

3. Methods 
 
3.1 Software  
 
All the analyses in this research were performed with R. For fitting to CPUE data series to Bayesian 
state-space production models, we used WinBUGS for Gibbs Sampling. 
 
3.2 Models and Statistical procedures 
 

In production model, population has to be considered as whole biomass of single species. Thus we 
assumed that bigeye tuna in Indian Ocean is a single stock and can’t get any estimation related to 
spawning stock biomass. The general production model equation is: 
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 𝐵𝑡+1 = 𝐵𝑡 + 𝑔(𝐵𝑡) − 𝐶𝑡 (1) 

 

where 𝐵𝑡 is the biomass in year t and 𝐶𝑡 is the total catch  in year t. It is known that there are 3 
types of production model listed below (Schaefer type, Fox type, and Pella Tomlinson type). 
 

 𝑔(𝐵) = 𝑟𝐵 (1 −
𝐵

𝐾
) (2) 

   

 𝑔(𝐵) = 𝑟𝐵 (log⁡
𝐾

𝐵
) (3) 

 

 𝑔(𝐵) = 𝑟𝐵 (1 − (
𝐵

𝐾
)
𝑧

) (4) 

 
Here, 𝑟 is the intrinsic growth rate, 𝐾 is the carrying capacity, and 𝑧 denotes the shape parameter 
of Pella-Tomlinson model which control its shape and MSY level. These three types of functions were 
used in our analysis, though 𝑧 is fixed to 0.5 to adjust MSY level to the midway between those of 
Schaefer type and Fox type. Note that MSY level of these 3 are 50%, 44,4%, 36.8% of carrying capacity, 
respectively (see Fig 3). 
 
 

 
 
Figure 3. Relationship between biomass and yields of 3 types of production models used in this paper. 
 
 
Table 1. MSY and MSY level for production models 
 

Model MSY MSY level 
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The observed data are represented by vectors with value for yields and CPUE denoted by 𝐶𝑡 and 𝐼𝑡, 
respectively, where t=1960, … ,2015 is the index for the year. Since annual catch in 1950 to 1959 is 
very little, we assumed that biomass in 1960 reached to carrying capacity. The relationship between 
CPUE and biomass is: 
 

 𝐼𝑡 = 𝑞𝐵𝑡 (5) 

 
where 𝑞 is the catchability coefficient. And as model’s error structure, we employ a state-space 
model that can be assumed existence of both observation error and process error as follows;  
 

 

      ⁡⁡⁡⁡⁡𝐵𝑡+1 = (𝐵𝑡 + 𝑔(𝐵𝑡) − 𝐶𝑡)𝑒
𝜀𝑡 

𝐼𝑡 = 𝑞𝐵𝑡𝑒
𝜂𝑡 

𝜀𝑡~𝑁(0, 𝜎𝜀
2) 

𝜂𝑡~𝑁(0, 𝜎𝜂
2) 

(6) 

 

where 𝜀𝑡 and 𝜂𝑡 are respectively the process and observation errors in year t. Since there is a 
hierarchical structure in this model, it needs to be used Bayesian estimation to get information about 
each parameter. A statistical estimate can be obtained by using these Bayes posterior probability 
distributions from MCMC sampling. We used three types of Bayesian state-space production models 
and fitted to CPUE series by MCMC. Furthermore, as joint CPUE were combined form of Japanese STD 
CPUE (1960-2015) and Taiwanese STD CPUE (1979-2015), we constructed another model that have 
different catchability coefficient between before 1978 and after 1979 as below.  
 

 
𝐼1960,…,1978 = 𝑞1𝐵1960,…,1978 
𝐼1979,…,2015 = 𝑞2𝐵1979,…,2015 

(7) 

 
So when Joint CPUE data are used, numbers of modes to compare are six. We tried to find the best 
model from each case with using 2 CPUE series. 

 
3.3 MCMC sampling 
 
In this paper, a MCMC method (Gibbs sampling) was used to estimate parameters of models and 
posterior distributions of benchmarks (𝑀𝑆𝑌 , ⁡𝐹𝑚𝑠𝑦 , 𝐵𝑚𝑠𝑦 , 𝐹 -ratio, 𝐵 -ratio). To simplify the 

calculation by MCMC, we input rescaled catch data which was divided by 100000. Accordingly, 
carrying capacity, catchability coefficient and MSY were also reparametrized as below. 
  

 

𝐾́ =
𝐾

100000
 

𝑞́ = 100000 ∗ 𝑞 

𝑀𝑆𝑌́ =
𝑀𝑆𝑌

100000
 

(8) 

 
And the state-space model used here is reparametrized by the calculation of the proportion of the 
annual biomass in relation to the carrying capacity (Depletion level), which results in improvement in 
the performance of MCMC sampling. 
 

 
𝐷𝑡+1 = 𝐷𝑡 + 𝑔(𝐷𝑡) −

𝐶𝑡

𝐾́
 

𝐼𝑡 = 𝑞́𝐾́𝐷𝑡 
(9) 
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As non-informative prior distribution, a uniform distribution was used for all the parameters in the 
models (𝑟, 𝐾́, 𝑞́, 𝜎𝜀 , 𝜎𝜂). The range of prior distribution was set by the trial and error process. Checking 

the result of posterior distribution of each parameter, we adjusted the range of prior distribution to 
slightly wider than posterior distribution. As estimated values of each parameter, we employed 
posterior medians. 
 
3.4 Model selection by predictive evaluation 
 
We separated the CPUE data into two parts by years. Using the former part, we estimated the values 
of parameters of each model to fit. And using the latter part of catch data, we predicted CPUE 
corresponded to the latter part by model. If predicted CPUE fit CPUE data well, we can assume that 
the model has good predictive ability. Due to the way to separate the data, we made 10 cases in this 
research. Residuals between logarithm of predicted CPUE and CPUE data were calculated in every 
case (see Table 2), and square sums were used as an indexes of predictive abilities of models. Then 
we compared the indexes of each model in the 10 cases and attempted to select the best one. 
 
Table 2. 10 Cases of separating data. 

 Using years for parameter estimation Prediction years 

Prediction for 5 years 

1960-2010 (51years) 2011-2015 

1960-2005 (46years) 2006-2010 

1960-2000 (41years) 2001-2005 

1960-1995 (36years) 1996-2000 

Prediction for 10 years 

1960-2005 (46years) 2006-2015 

1960-2000 (41years) 2001-2010 

1960-1995 (36years) 1996-2005 

Prediction for 15 years 
1960-2000 (41years) 2001-2015 

1960-1995 (36years) 1996-2010 

Prediction for 20 years 1960-1995 (36years) 1996-2015 

 
 

3.5 Assessments and risk assessments 
 

We assessed the status of the bigeye tuna stock in the Indian Ocean by selected model. In particular, 
we estimated several assessment benchmarks (𝑀𝑆𝑌,⁡𝐹𝑚𝑠𝑦, 𝐵𝑚𝑠𝑦, 𝐹ratio, 𝐵ratio, depletion level) 

and created Kobe plot. With that, the probability that the latest plot (2016) is distributed each of 4 
zone of Kobe plot and the one that biomass in 2016 is less than MSY level were calculated. Moreover, 
future risks were evaluated after 3 years (2019) and 10 years (2026) from 2016 by 5 different 
scenarios listed below. As we couldn’t control, catch amount in 2016 were assumed the mean of 
2013-2015 catch (98,149t). Scenario 3 is a case that we assumed fish stock would be harvested by the 
mean catch in every year constantly. And in other scenarios, catch level was assumed to be ±20% 
and ±40% from scnario3. 
 
 
 

Table 3. Scenarios for risk assessment. 
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Fishing Pressure Catch amount in each year 

Scenario 1 -40% 58889t 

Scenario 2 -20% 78519t 

Scenario 3 0% 98149t 

Scenario 4 20% 117778t 

Scenario 5 40% 137408t 

 
 

4. Results and Discussion 
 
4.1 Predictive Evaluation 
 
From the verification predictive abilities, there is no distinctive difference between models when we 
predict CPUE of less than 10 years (see Table 4). But it seems that longer period of prediction which is 
hardly made in practice tends to make notable differences of values. By comparison residual sums, 
Pella-Tomlinson model for Japanese CPUE and Schaefer model with assumption of changing 
catchability coefficient for Joint CPUE(Tropical) can follow the behavior of CPUE the most in exceeding 
15 years of prediction. We selected Schaefer model with assumption of change in catchability 
coefficient using Joint CPUE(Tropical) for base case. 
 

Table 4. Residual sum of squares between predicted and observed CPUE in log-spaceo. (The minimum 
numbers of the 3 models in each case were highlighted in red). 
 
(1). Japanese STD CPUE(Tropical) 
 

  
From 1996 From 2001 From 2006 From 2011 

Schaefer 
Prediction for 

5 years 

0.2879409 0.1489222 0.1123339 0.1082243 

Pella 0.2475226 0.2085962 0.091482 0.1107518 

Fox 0.2994303 0.2341863 0.0977125 0.1026189 

Schaefer 
Prediction for 

10 years 

1.062124 0.2682026 0.2048133  

Pella 0.9631629 0.3078535 0.2184824  

Fox 1.176578 0.3710539 0.1592666  

Schaefer 
Prediction for 

15 years 

1.489356 0.6369986   

Pella 1.336354 0.3734999   

Fox 1.69553 0.3933857   

Schaefer 
Prediction for  

20 years 

1.503132    

Pella 1.351571    

Fox 1.735366    
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(2). Joint CPUE (Tropical) 
 

  
From 1996 From 2001 From 2006 From 2011 

Schaefer 

Prediction for 
5 years 

0.2021467 0.1359474 0.04551028 0.3117213 

Pella 0.1795932 0.1508725 0.02726486 0.3023951 

Fox 0.2013443 0.2339122 0.02727753 0.3975763 

Schaefer (𝒒𝒊) 0.05205223 0.07819224 0.08343136 0.276779 

Pella (𝒒𝒊) 0.1031325 0.09861153 0.04917825 0.3656438 

Fox (𝒒𝒊) 0.06717824 0.1548699 0.02613115 0.3618454 

Schaefer 

Prediction for 
10 years 

1.053117 0.1575708 0.3062122  

Pella 0.9615204 0.1860986 0.328444  

Fox 1.051109 0.3527293 0.3551507  

Schaefer (𝒒𝒊) 0.2140069 0.1268748 0.3581645  

Pella (𝒒𝒊) 0.2290101 0.1173415 0.3196302  

Fox (𝒒𝒊) 0.3282598 0.1956832 0.3792547  

Schaefer 

Prediction for 
15 years 

1.789409 0.4845242   

Pella 1.640563 0.6014716   

Fox 1.793014 0.9404399   

Schaefer (𝒒𝒊) 0.2786102 0.3936652   

Pella (𝒒𝒊) 0.5017086 0.4564581   

Fox (𝒒𝒊) 0.4950874 0.6873875   

Schaefer 

Prediction for  
20 years 

3.084629    

Pella 2.877596    

Fox 3.131945    

Schaefer (𝒒𝒊) 0.6925678    

Pella (𝒒𝒊) 0.8125204    

Fox (𝒒𝒊) 1.191292    

 

 
4.2 Assessments 
 
Compare to the previous assessment results by SS3, ASPIC and ASPM, outcomes in this paper 
suggested stock of bigeye tuna in Indian Ocean might be more pessimistic because the stock status 
was estimated to be in the red zone of Kobe plot (see figure 4). This result is thought to be derived 
from latest Joint CPUE’s decreasing trend.  
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Figure 4. Kobe plot (white plot represents 2015) and histogram of the plot. 
 
 

 
Figure 5. Trajectory of depletion level. 
 

 

 
Figure 6. Trajectory of biomass(t) and 80% credible interval. 
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Table 5. Indian Ocean bigeye tuna stock status summary based on the Bayesian state-space Schaefer 
model with assumption of change in q. 
 

Management Quantity Estimate 

Most recent catch estimate (t) 
(2015) 

92,736 

Mean catch over last 5 years (t) 
(2011-2015) 

101,515 
 

MSY (1000 t) 
(80%CI) 

104.95 
(57.1-147.9) 

F(Current)/F(MSY) (2015) 
(80% CI) 

1.17 
(0.63-1.69) 

B(Current)/B(MSY) (2015) 
(80% CI) 

0.76 
(0.74-2.3) 

 

 

4.3 Risk assessment 
 
We made future projections of B-ratio (Figure 7) and F-ratio (Figure 8) and probability table (Table 6). 
We got a pessimistic result for risk assessment of status of stock from previous works. The result 
suggested annual catch amount should be reduced at least 20%.  
 
 

 
 
Figure 7. Future projection of B-ratio in each scenario. 
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Figure 8. Future projection of F-ratio in each scenario. 
 
 
Table 6. The probability that the plots (2016,2019,2026) are distributed in each 4 zone of Kobe plot 
and the probability that 𝐵 and 𝐹 in 2015 may be less than MSY level. 

Year 
 

Red Orange Yellow Green 𝑩 < 𝑩𝒎𝒔𝒚 𝑭 < 𝑭𝒎𝒔𝒚 

2016 
 

67.33% 1.42% 22.74% 8.59% 64.71% 37.65% 

2019 

Scenario1 27.41% 0.64% 41.65% 30.35% 60.57% 74.21% 

Scenario2 45.36% 1.2% 27.7% 25.83% 62.42% 53.51% 

Scenario3 61.55% 2.24% 15.3% 21.01% 64.01% 38.23% 

Scenario4 72.91% 4.22% 7.44% 15.48% 65.55% 28.67% 

Scenario5 79.51% 6.65% 3.78% 10.13% 66.97% 21.69% 

2026 

Scenario1 24.36% 0.76% 19.97% 54.95% 48.51% 82.36% 

Scenario2 40.54% 1.41% 14.54% 43.52% 56.71% 58.75% 

Scenario3 57.19% 2.31% 8.69% 31.89% 64.08% 38% 

Scenario4 71.81% 3.19% 4.56% 20.49% 69.97% 25.55% 

Scenario5 81.89% 3.97% 2.39% 11.79% 74.64% 17.94% 

 

 

5. Further discussion and future works  
 
We applied predictive evaluation method to bigeye tuna catch statistics for the first attempt. Since it 
seems that predictive abilities have differences between models clearly in prediction of more than 15 
years, the results indicated application potentiality of the Model selection using evaluation predictive 
abilities of Models. But predictive evaluation method depends on CPUE data greatly, therefore it 
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might be said that CPUE have to strongly reflect true biomass. For the further analysis, predictive 
evaluation method must be inspected its estimation accuracy by simulation data and should be more 
sophisticated in the future. In addition, we should look for another criterion for predictive evaluation 
and try to apply to other complex models.  
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Appendix1: 
 
Prior and posterior distribution of each parameter by Bayesian state-space Schaefer model 
with chang in q 

 
 Prior 

r U(0,1) 

𝑲 U(300000,15000000) 

𝒒𝟏 U(0,0.0000025) 

𝒒𝟐 U(0,0.0000023) 

𝝈𝜼 U(0,0.24) 

𝝈𝜺 U(0,0.25) 
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Appendix2: 
 

Estimated value of each parameter and estimated values by Bayesian state-space Schaefer 
model with chang in q 
 
 

   
 

Mean Median SD 2.5% 97.5% 

Parameters 

r 0.211 0.183 0.144 0.017 0.574 

K(1000t) 2999 2257 2316.7 863.2 10420 

𝑞1(10−7) 7.06 6.51 3.78 1.45 15.6 

𝑞2(10−7) 6.36 5.74 3.58 1.28 15 

𝜎𝜂 0.124 0.122 0.027 0.08 0.182 

𝜎𝜀 0.124 0.126 0.035 0.051 0.191 

 


