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SUMMARY 

Swordfish, Xiphias gladius is a target species of the South African pelagic longline fleet operating 

along the west and east coast of South Africa. A standardization of the CPUE of the South African 

swordfish-directed longline fleet operating in the IOTC region for the time series 2004-2016 was car-

ried out using a Generalized Additive Mixed Model (GAMM) with a Tweedie distributed error. Ex-

planatory variables of the final model included year, month, geographic position (lat, long) and a 

targeting factor with two levels, derived by clustering of PCA scores of the root-root transformed, 

normalized catch composition. Vessel was included as a random effect. Swordfish CPUE had a defini-

tive seasonal trend, with catch rates higher in winter and lower in summer. The standardised CPUE 

analysis indicates a declining trend over the period 2004-2016. 
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INTRODUCTION 

Commercial fishing for large pelagic species in South Africa dates back to the 1960s (Welsh, 1968; 

Nepgen, 1970). Exploitation of large pelagic species in South Africa can be divided into four sectors, 

1) pelagic longline, 2) tuna pole-line, 3) commercial linefishing (rod and reel) and 4) recreational line-

fishing. Pelagic longline vessels are the only vessels that target swordfish, with negligible bycatch 

being caught in other fisheries. Pelagic longline fishing by South African vessels began in the 1960s 

with the main target being southern bluefin tuna (Thunnus maccoyii) and albacore (Thunnus alalunga) 

(Welsh, 1968; Nepgen, 1970). This South African Large Pelagic fishery ceased to exist after the mid 

1960's, as a result of a poor market for low quality southern bluefin and albacore (Welsh, 1968). How-

ever, foreign vessels, mainly from Japan and Chinese-Taipei, continued to fish in South African wa-

ters from the 1970s until 2002 under a series of bilateral agreements. Interest in pelagic longline 

fishing re-emerged in 1995 when a joint venture with a Japanese vessel confirmed that tuna and 

swordfish could be profitably exploited within South Africa's waters. Thirty experimental longline 

permits were subsequently issued in 1997 to target tuna, though substantial catches of swordfish were 

made during that period (Penney and Griffiths, 1999). 

The commercial fishery was formalised in 2005 with the issuing of 10-year long term rights to sword-

fish- and tuna-directed vessels. On average, 15 South African vessels are active in a year and target 

swordfish in 20-30m length vessels. Additionally, foreign flagged vessels catch swordfish as bycatch. 

South Africa's swordfish catches reached a peak in 2002 at 1 187 t, and have been on the decline with 

average catches of 372 t for the period 2009-2014. The fishery is coastal and swordfish-oriented effort 

concentrates in the southwest Indian Ocean region (20°- 30°S, 30°- 40°E) and along the South African 

continental shelf in the southeast Atlantic (30°- 35°S, 15°- 18°E). As such, the fishery straddles two 

ocean basins, the Indian and Atlantic Ocean. The jurisdictions of the Indian Ocean Tuna Commission 

(IOTC) and International Commission for the Conservation of Atlantic Tuna (ICCAT) are separated 

by a management boundary at 20°E. Consequently, all tunas and billfish stocks with the exception of 

the southern bluefin tuna (Thunnus maccoyii) are artificially divided into Atlantic and Indian Ocean 

stocks along this boundary, regardless of their true stock structure and distribution. Since questions 

remain about the origin of South African caught swordfish, it remains uncertain if the artificial split in 

reporting stock indices indeed reflects a biological meaningful separation of stocks. 

Here we present standardised catch-per-unit-effort (CPUE) indices that were obtained with a general-

ised additive mixed model (GAMM) of swordfish catch and effort data from the South African pelagic 

longline fleet operating in the South Indian Ocean between 2004 and 2016. Catch and effort data were 

subset to the IOTC area of the South Indian Ocean with the IOTC/ ICCAT transition area removed (20 

- 28°E ) as suggested by West (2016). The GAMM was fitted using a Tweedie distribution and includ-

ed year, month, latitude, longitude, fishing tactic (targeting) as fixed factors and had a random vessel 
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effect. Targeting was determined by clustering PCA scores of the root-root transformed, normalized 

catch composition. 

MATERIALS AND METHODS 

Catch and effort data preparation 

All swordfish directed longline trips were extracted from the database for the period 2004-2016 (Sets 

= 4343; hooks = 6 026 929). Each record included the following information: (1) date, (2) unique ves-

sel number, (3) catch position at a 1 x 1 degree latitude and longitude resolution and (4) mandatory 

catch reports in kilogram per set and (5) hooks per set. Catch and Effort data were subset to only in-

clude catches from the IOTC area (Longitude > 29 degrees) with the IOTC/ ICCAT transition area 

removed.  

Model framework 

Swordfish CPUE was standardized using Generalized Additive Mixed Models (GAMMs), which in-

cluded the covariates year, month, 1 x 1 degree latitude (lat) and longitude (long) coordinates and 

vessel as random effect. In an attempt to account for variation in fishing tactics, we considered an ad-

ditional factor for targeting derived from a cluster analysis of the catch composition (He et al., 1997; 

Carvalho et al., 2010; Winker et al., 2013). For the clustering analysis, all CPUE was modelled as 

catch in metric tons per species per vessel per day. All of the following analysis was conducted within 

the statistical environment R. The R package 'cluster' was used to perform the CLARA analysis, while 

all GAMMs were fitted using the 'mgcv' and 'nlme' libraries described in Wood (2006). 

Clustering of the catch composition data was conducted by applying a non-hierarchical clustering 

technique known as CLARA (Struyf et al., 1997) to the catch composition matrix. To obtain the input 

data matrix for CLARA, we transformed the 𝐶𝑃𝑈𝐸𝑖 ,𝑗 matrix of record 𝑖 and species 𝑗 into its Principal 

Components (PCs) using Principal Component Analysis (PCA). For this purpose, the data matrix 

comprising the 𝐶𝑃𝑈𝐸𝑖 ,𝑗 records for all reported species was extracted from the dataset. The CPUE 

records were normalized into relative proportions by weight to eliminate the influence of catch vol-

ume, fourth-root transformed and PCA-transformed. Subsequently, the identified cluster for each catch 

composition record was aligned with the original dataset and treated as categorical variable (FT) in the 

model (Winker et al., 2013). To select the number of meaningful clusters we followed the PCA-based 

approach outlined and simulation-tested in Winker et al. (2014). This approach is based on the selec-

tion of non-trivial PCs through non-graphical solutions for Catell's Scree test in association with the 

Kaiser-Guttman rule (Eigenvalue > 1), called Optimal Coordinate test, which available in the R pack-

age 'nFactors' (Raîche et al., 2013). The optimal number of clusters considered is then taken as the 

number of retained PCs plus one (Winker et al., 2014). The results suggest that only the first PC is 
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non-trivial (Fig. 3) and correspondingly two clusters were selected as optimal for the CLARA cluster-

ing. 

The CPUE records were fitted by assuming Tweedie distribution (Tascheri et al., 2010; Winker et al., 

2014). The Tweedie distribution belongs to the family of exponential dispersion models and is charac-

terized by a two-parameter power mean-variance function of the form 𝑉𝑎𝑟(𝑌) = 𝜙𝜇𝑝, where 𝜙 is the 

dispersion parameter, 𝜇 is the mean and p is the power parameter (Dunn and Smyth, 2005). Here, we 

considered the case of 1 < p < 2, which represents the special case of a Poisson (𝑝 = 1) and gamma 

(𝑝 = 2) mixed distribution with an added mass at 0. This makes it possible to accommodate high fre-

quencies of zeros in combination with right-skewed continuous numbers in a natural way when model-

ling CPUE data (Winker et al., 2014; Ono et al., 2015). As it is not possible to estimate the optimal 

power parameter p internally within GAMMs, p was optimized by iteratively maximizing the profile 

log-likelihood of the GAMM for 1 < p < 2 (Fig. 5). This resulted in a power parameter p = 1.3 with an 

associated dispersion parameter of 𝜙 = 5 for the full GAMM. The full GAMM evaluated for swordfish 

was: 

𝐶𝑃𝑈𝐸𝑖 = 𝑒𝑥𝑝(𝛽0 + 𝑌𝑒𝑎𝑟 + 𝑠1(𝑀𝑜𝑛𝑡ℎ) + 𝑠2(𝐿𝑜𝑛𝑔, 𝐿𝑎𝑡) + 𝐹𝑇 + 𝛼𝑉) 

where 𝑠1() denotes cyclic cubic smoothing function for Month, 𝑠2() a thin plate smoothing function 

for the two-dimensional covariate of Lat and Long, FT is the vector of cluster numbers treated as cate-

gorical variable for 'fishing tactics', and 𝛼𝑣 is the random effect for Vessel v (Helser et al., 2004). The 

inclusion of individual Vessels as random effects term provides an efficient way to combine CPUE 

recorded from various vessels (n = 28) into a single, continuous CPUE time-series, despite disconti-

nuity of individual vessels over the time series (Helser et al., 2004). The main reason for treating ves-

sel as a random effect was because of concerns that multiple CPUE records produced by the same 

vessel may violate the assumption of independence caused by variations in fishing power and skipper 

skills and behaviour, which can result in overestimated precision and significance levels of the pre-

dicted CPUE trends if not accounted for (Thorson and Minto, 2015). The significance of the random-

effects structure of the GAMM was supported by both Akaike's Information Criterion (AIC) and the 

more conservative Bayesian Information Criterion (BIC). Sequential F-tests were used to determine 

the covariates that contributed significantly (p < 0.001) to the deviance explained. 

Annual CPUE was standardized by fixing all covariates other than year and lat and long to a vector of 

standardized values 𝑋0. The choices made were that month was fixed to July (month = 7), representa-

tive of the high catch quarter and FT was fixed to the fishing tactic the produced highest average catch 

rates (FT = 2). The expected yearly mean 𝐶𝑃𝑈𝐸𝑦 and standard-error of the expected 𝑙𝑜𝑔(𝐶𝑃𝑈𝐸𝑦) for 

the vector of standardized covariates 𝑋0 were then calculated as average across all lat-long combina-

tions (here forth grid cells) a, such that: 
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where 𝜇𝑦 ,𝑎 is the standardized, model-predicted 𝑙𝑜𝑔(𝐶𝑃𝑈𝐸𝑦,𝑎 ) for year y and lat and long for grid 

cell a, �̂�𝑦 ,𝑎 is the estimated model standard error associated with 𝑙𝑜𝑔(𝐶𝑃𝑈𝐸𝑦,𝑎 ), A is the total num-

ber of grid cells and T denotes the matrix in which X is transposed. 

RESULTS AND DISCUSSION 

The analysis of deviance for the step-wise regression procedure showed that all of the covariates con-

sidered were highly significant (p < 0.001) and the inclusion of all considered fixed effects were sup-

ported by both the AIC and BIC (Table 1). The inclusion of month effect, contributed to the greatest 

improvement in the deviance explained in the model (47 %), followed by year (22%) then fishing tac-

tic (19 %) (Table 1). Fishing tactic 2 contributed 58% to catches within this cluster, while fishing tac-

tic 1 contributed 23% to catches. For fishing tactic 1 big eye tuna (Thunnus obesus) contributed 41% 

to catches (Fig. 8.b). The inclusion of targeting, and the justifiable use of the Tweedie distribution 

(Figs. 5 & 7) have improved the model and our confidence in the swordfish CPUE time-series. How-

ever, further analyses could be considered. The amendment of the catch return forms to include the 

target per catch day, sea surface temperature, use of livebait and hours fished should further improve 

the standardization of the CPUE data in this fishery in the future. Previous attempts to classify 'catcha-

bility' of vessels within the fleet include using vessel type as a categorical variable or using a subset of 

vessels from each class as indicator vessels. This information was challenging to obtain, and neither of 

these attempts significantly improved the model's explanatory power. As such, including vessel as a 

random effect was deemed the most appropriate solution. Given the notable variation among vessels 

(Fig.6), it is unsurprising that the inclusion of the random vessel effect produced the most parsimoni-

ous error model. 

Nominal and standardized CPUE (together with CVs, 95% C.I.) for southern Indian Ocean swordfish 

caught by domestic South African long-line vessels (> 29 longitude) are presented in Table 2. Sword-

fish CPUE had a definitive seasonal trend, with higher catch rates in late winter and lower catch rates 

in summer. The nominal and standardised CPUE time-series were similar, but diverged notably in the 

last year. 
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Standardised CPUE rates of approximately 500 kg/1000 hooks were observed in the first year (2004). 

Thereafter, a consistent decline in CPUE was observed, dropping below 400 kg/1000 hooks in 2007. 

Standardised CPUE then increased in 2008 to approximately 550 kg/1000 hooks, though a general 

decline followed. The most recent estimate (2016) was approximately 350 kg/1000 hooks. Overall, the 

analyses presented here indicate a declining trend in CPUE for the South African swordfish fishery in 

the IOTC region.  

 

 



IOTC-2017-WPB15-37_Rev2 

7 

 

TABLES 

Table 1. Results from the GAMM applied to swordfish (Xiphias gladius) indicating the deviance ex-

plained by parameters selected for the final model. 

 DF AIC BIC Deviance 

Deviance 

 Explained 

% Deviance  

Explained P-Value 

Null Model 2 57003 57015 116895 0.000 0.00  

Year 14 56686 56775 110086 -6808 21.55 < 0.001 

Month 20 55906 56032 95267 -14819 46.91 < 0.001 

Latitude/Longitude 28 55701 55880 91365 -3902 12.35 < 0.001 

Fishing Tactic 29 55345 55530 85302 -6063 19.19 < 0.001 

 

Table 2. Nominal and standardised CPUE values, including the coefficient of variation (CV) and confidence in-

tervals (LCI, UCI) for swordfish (Xiphias gladius) for the period 2004 - 2016.  

 

 

Year Nominal CPUE CV LCI UCI 

2004 329 502 0.09 423 596 

2005 378 493 0.09 415 585 

2006 350 481 0.08 408 568 

2007 298 396 0.09 335 468 

2008 346 562 0.08 478 660 

2009 228 376 0.08 319 444 

2010 319 461 0.08 393 540 

2011 331 509 0.08 436 596 

2012 282 426 0.08 363 501 

2013 261 410 0.08 349 482 

2014 149 277 0.09 231 332 

2015 284 404 0.09 341 479 

2016 319 365 0.11 292 456 
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FIGURES 

  

 

Figure 1. Annual effort for the combined South African longline fleets. Longline sets that did not 

encounter a swordfish are the smallest circles, and the circle diameter increases proportional to the 

weight of swordfish caught per set. The black line indicates the ICCAT/IOTC boundary, grey area 

represents the transition area.   



IOTC-2017-WPB15-37_Rev2 

9 

 

 Figure 2. Annual effort for the South African swordfish directed longline fleet. Longline sets that did 

not encounter a swordfish are the smallest circles, and the circle diameter increases proportional to the 

weight of swordfish caught per set. The black line indicates the ICCAT/IOTC boundary, grey area 

represents the transition area.    
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Figure 3. A non-graphical solution to the Scree test to determine the optimal number of clusters in the 

multivariate analysis to assess the influence of fishing tactic on CPUE estimation.  
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Figure 4. A graphical representation of the two clusters that characterise the different fishing tactics 

projected over the first two Principal Components (PCs). Cluster one is dominated by bigeye tuna 

(41%). FT 2: Cluster two is dominated by swordfish (58%). 
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Figure 5. Log-likelihood profile for over the grid of power parameters values (1 < p < 2) of the 

Tweedie distribution. The vertical dashed line denote the optimized p used in the final standardization 

GAMM.  
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Figure 6. Random effects coeffients (dots) illustrating the deviation from the mean of zero across the 

14 vessels retained for the analysis. Dashed lines denote the 95% confidence interval of the mean.  



IOTC-2017-WPB15-37_Rev2 

14 

 

 

Figure 7. CPUE (kg/1000 hooks) frequency, and density, distributions for the South African sword-

fish directed longline fishery. The red shaded density denotes the expected density of the response for 

the Tweedie GAMM, and supports the use of the Tweedie distribution form in the GAMMs.  
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Figure 8. The influence of the fixed effects Month and Fishing Cluster on the CPUE of swordfish 

when modelled using the GAMM applied to the South African swordfish directed longline data.  
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Figure 9. Standardized CPUE for the swordfish directed longline fishery of South Africa for the time 

period 2004 to 2016 (upper panel). The 95% confidence intervals for the nominal CPUE are denoted 

by grey shaded areas and comparison of nominal and the various standardized CPUE models (lower 

panel).  
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