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Abstract 

This working document analyses the catch, effort, nominal and standardized CPUE 

trends for blue shark captured by the Indonesian tuna longline fishery for the period 

2005-2016. Nominal annual CPUEs were calculated as number (N)/1000 hooks and were 

estimated with Generalized Linear Models (GLM) and Generalized Linear Mixed Models 

(GLMM). Using year, quarter, area, the environment variables (sea surface temperature, 

chlorophyll-a concentration, eddy kinetic energy, sea level anomaly, and absolute 

dynamic topography) and Operational characteristics of the gear. Model Goodness-of-

fit and model comparison was carried out with the Akaike Information Criteria (AIC) and 

the pseudo coefficient of determination (R2) and model validation with a residual 

analysis. The final estimated indexes of abundance were calculated by least square means 

(LSMeans) or Marginal Means. The results showed the factors that contributed most for 

the deviance were the Area, followed by Year, SST, NHBF and Quarter, followed by the 

other effects and the interactions. In general, there were no noticeable trends, with the 

series varying along the period. This paper presents the update of the index of abundance 

for the blue shark estimated from captures from the Indonesian pelagic longline fleet in 

the Eastern Indian Ocean and can be used in future stock assessments models. 
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Introduction 

The blue shark is the most prevalent shark captured in pelagic longline fisheries 

from Indonesian tuna longline fleet in Indian Ocean and catches can account for more 

than 50 % of the total of shark catch (Novianto et al., 2014). This species is highly targeted 

in the fin trade market, in Hong Kong market auctioned fin weight was dominated, which 

was 17% of the overall market (Clarke et al., 2006). 

The CPUE analysis of blue shark has been reported elsewhere by several authors in 

the different areas where these fisheries take place: in the north Atlantic (Aires-da-Silva 

et al., 2008; Coelho et al., 2016), in the southwest Atlantic (Carvalho et al., 2011), in the 

south-western equatorial Atlantic (Hazin et al., 1994; Carvalho et al., 2010), in the central 

North Atlantic (Vandeperrea et al., 2014), in the Mediterranean (Megalofonou et al., 

2009), in the south-east Pacific Ocean (Bustamante & Bennett, 2013) the North Pacific 

Ocean (Tsai et al., 2015), Indian Ocean (Tsai & Liu 2014; Coelho et al., 2014; Coelho et 

al., 2015; Semba et al., 2015; Semba & Kai 2016; Novianto et al., 2016). 

The fluctuations in the environment can trigger movement and changes in behavior 

and habitat use for many elasmobranch species was actively select for or exploit specific 

environmental conditions, often forgoing their home range areas to access a spatially 

variable resource (Schlaff et al., 2014). The habitat is highly influenced by dynamic 

oceanographic factors, the different characteristic of oceanographic variabilities can 

influence on fish distribution. Fish will choose a more suitable habitat for feeding, shelter, 

reproduction, and migration (Palacios et al., 2006). 

The CPUE varied greatly in relation to the season and environmental factors besides 

operational factors. Previous study about environmental variables for CPUE of the blue 

shark was reported by several authors (Bigelow et al., 1999; Megalofonou et al., 2009; 

Mitchell et al., 2014; Vandeperrea et al., 2014).   

The objective of the present study was to update standardized blue shark CPUE 

indices for Indonesian longline fleet estimated using observer data collected by scientific 

observer program Research Institute for Tuna Fisheries (RITF) conducted 2005 – 2016 

and environmental variables data that we expected to influence abundance and 

catchability of blue shark.   
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Materials and methods 

Fisheries data 

Data collection was conducted by a scientific onboard observer program RITF from 

August 2005 to December 2016 in the tuna longline vessels mostly based in Benoa 

Harbour, Bali. Data collections included the number of blue sharks caught, the total 

number of hooks used, number of hooks between floats, length of float lines, length of 

branch lines, and the length between branch lines. Spatio-temporal information (date of 

operation, latitude and longitude), and the number of shark lines used were also collected 

and used for this analysis. 

 

Satellite data analysis (environmental data) 

Time series satellite data analysis was carried for the year 2005–2016. Moderate 

Resolution Imaging Spectroradiometer (MODIS) sensor onboard Aqua spacecraft were 

used to derived monthly sea surface temperature (SST) and chlorophyll-a concentration 

(SSC). SST and SSC Level-3 Standard Mapped Images (L3SMI) with 4-km spatial 

resolution were processed at Environmental Research Division (ERD-NOAA) and 

distributed through ERDDAP server (http://coastwatch.pfeg.noaa.gov).  

Altimeter derived variables computed from multimission altimeter satellite: Jason-

3, Sentinel-3A, HY-2A, Saral/AltiKa, Cryosat-2, Jason-2, Jason-1, T/P, ENVISAT, GFO, 

ERS1/2. A daily gridded files with a spatial resolution of 0.25°×0.25° was processed with 

Optimal Interpolation (OI)  with respect to a twenty-year mean and distributed by EU 

Marine Copernicus at http://marine.copernicus.eu. In this study we used sea level 

anomaly (SLA), absolute dynamic topography (ADT), and Eddy kinetic energy (EKE) as 

environmental variables. Daily data were averaged at monthly scale in order to calculate 

SLA, ADT, and EKE assuming linear regression.  

SLA is defined as subtraction sea surface height (SSH) above the reference ellipsoid 

with temporal mean of the sea surface height over a certain period (MSS) as follows: 

 𝑆𝐿𝐴 = 𝑆𝑆𝐻 − 𝑀𝑆𝑆 

ADT is defined as dynamical part of the absolute signal calculated from the SLA 

using the temporal mean of the SSH above the geoid over a certain period (MDT): 

 𝐴𝐷𝑇 = 𝑆𝐿𝐴 + 𝑀𝐷𝑇 

http://coastwatch.pfeg.noaa.gov/
http://marine.copernicus.eu/
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EKE is computed following formula: 

 𝐸𝐾𝐸 = (
1

2
) (𝑢2 + 𝑣2) 

where u and v are zonal and meridian geostrophic currents components, 

respectively.  

 The SLA, ADT, and EKE data were re-sampled to fit the SST and SSC resolution. 

Each monthly environmental variables were extracted from each pixel corresponding to 

the longliner fishing activities. A GAM model using the ‘mgcv package’ (Wood, 2006) 

was performed to analyse the effects of environmental variables on the nominal BSH 

CPUE.  

 

CPUE standardization 

The CPUE analysis was carried out using this official data from the RIFT observer 

program. Operational data at the fishing set level was used, with the catch data referring 

to the total numbers (N) of blue shark captured per fishing set. For the CPUE 

standardization, the response variable was catch per unit of effort (CPUE), measured as 

numbers (N) of BSH per 1000 hooks deployed. The standardized CPUE series was 

estimated with Generalized Linear Models (GLM) and Generalized Linear Mixed Models 

(GLMM). 

There were a relatively large number of sets (67.6%) with zero BSH catches that 

results in a response variable of CPUE=0. As these zeros can cause mathematical 

problems for fitting the models, the approach chosen was a Tweedie model with link=log 

that can model both the continuous component of the response variable for the positive 

observations and the mass of zeros for the zero catches. For this model the nominal CPUE 

was used directly in the response variable given this specific characteristic of the 

distribution. 

The covariates considered and tested in the models were: 

• Year: analyzed between 2005 and 2016; 

• Quarter of the year: 4 categories: 1 = January to March, 2 = April to June, 3 = 

July to September, 4 = October to December; 

• Area: defined by regression trees, according to the method developed by 

Ichinokawa and Brodziak (2010); 
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• Operational characteristics of the gear (used as proxies for targeting effects): 

Number of hooks between floats (NHBF), Length of the float line; Length of 

the branch line, Length between branchline, and Number of shark lines used. 

• Environmental variables: sea surface temperature, chlorophyll-a, eddy kinetic 

energy, sea level anomaly, and absolute dynamic topography. 

The significance of the explanatory variables in the CPUE standardization models 

was assessed with likelihood ratio tests comparing each univariate model to the null 

model and by analyzing the deviance explained by each covariate. Goodness-of-fit and 

model comparison was carried out with the Akaike Information Criteria (AIC) and the 

pseudo coefficient of determination (R2). Interactions were considered and tested, and the 

significant interactions were used in the analysis. Model validation was carried out with 

a residual analysis. The final estimated indexes of abundance were calculated by least 

square means (LSMeans) or Marginal Means, that for comparison purposes were scaled 

by the mean standardized CPUE in the time series. 

Statistical analysis for this paper was carried out with the R Project for Statistical 

Computing version 3.4.0 (R Core Team, 2016) using several additional libraries 

(Venables and Ripley, 2002; Wickham, 2007, 2009; Fox and Weisberg, 2011; Gross and 

Ligges, 2012; Becker et al., 2013; Bivand and Lewin-Koh, 2013; Dunn, 2013; Stabler et 

al., 2013; Lenth, 2014). 

 

Results 

Effects of environmental variables  

 The Effect of the environmental variables on the nominal CPUE is shown in 

Figure 1. The SST values recorded at the fishing ground ranged from 15.100  - 31.870 C, 

and BSH were caught in the temperature range between 26.300  - 29.50 C. In terms of 

SSC, the fishing records ranged from 0.04 - 1.88 mg/m3 where BSH were mainly caught 

between 0.09 - 0.16 mg/m3. SLA values ranged between -0.21 m - 0.29 m, and BSH were 

caught in the range 0.02 - 0.11 m. For the EKE, the values ranged between 0 - 0.41 m2 s-

2 and BSH were mainly concentrated in the range 0 - 0.02 m2 s-2. Finally for ADT the 

fishing ground values ranged from 0.49 m -1.33 m where BSH were mainly caught in the 

range 0.94 -1.33 m. 
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Spatial distribution of the data 

The spatial distribution of the data analyzed comes from the Indonesia fishery, and 

is mostly from the eastern Indian Ocean area, in both tropical and more temperate waters 

(Figure 2). Using the GLM tree method for area definitions (4 areas) resulted in a 

separation between the more tropical and the more temperate waters, and also a 

segregation between the more eastern and western locations (Figure 3). Those area 

definitions were used in the BSH CPUE standardization model as the spatial/area effects. 

 

CPUE data characteristics 

The nominal time series of the BSH CPUE is presented in Figure 4. In general the 

series was highly variable, with peaks in 2007 and 2012, and lower values in the 

remaining years. The series has also shown relatively higher values in the most recent 

period of 2015 and 2016. The percentage of fishing sets with zero catches of BSH in the 

fishery was high, specifically 67.6% of the fishing sets, varying annually between a 

minimum of 36.3% in 2007 and a maximum of 98.2% in 2011 (Figure 5). Overall, the 

nominal blue shark CPUE distribution was highly skewed to the right and become more 

normal shaped, but still skewed, in a log-transformed scale (Figure 6). 

 

CPUE standardization 

Several explanatory variables tested for the BSH CPUE standardization were 

significant and contributed significantly for explaining part of the deviance. Some 

interactions were also significant, and were therefore included in the final model. 

Sensitivities to the model structure were run for comparing the use of operational data 

with adding environmental data. It is noted that there were some differences when the 

environmental data was added, particularly in the beguiling and end of the time series 

(Figure 7). On the final model, the factors that contributed most for the deviance were 

the Area, followed by Year, SST, NHBF and Quarter, followed by the other effects and 

the interactions (Table 1). In terms of model validation, the residual analysis, including 

the residuals distribution along the fitted values, the QQ plots and the residuals 
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histograms, showed that the model was adequate with no major outliers or trends in the 

residuals (Figure 8). 

The final standardized BSH CPUE index (N/1000 hooks) for the Indonesian data 

in the Indian Ocean between 2005 and 2016 is shown in Figure 9 and Table 2. The trends 

were relatively similar to the nominal series, but with smoother peaks. In general, there 

were no noticeable major trends with the series varying along the period, even though it 

is noticeable that there are generally higher values in the more recent years (Figure 9, 

Table 2). 

 

Discussion 

The final model showed that SST is important environmental variables besides 

operational factors. SST for effect on BSH CPUE ranged between 26.300-29.50 C, 

correspond to distributed effort data more operated occurred in the tropical area. Carvalho 

et al. (2011) recorded significant effects of SST upon CPUE for BSH commercial CPUE 

in the south-west Atlantic Ocean. The different result from Mitchell et al. (2014) 

concluded surface chlorophyll a concentration (CHL) significantly affected CPUE 

compared to SST in the western English Channel. In the eastern Mediterranean blue 

sharks were more often caught in cooler waters but locally dense concentrations were 

more likely to occur in warm areas (Damalas & Megalofonou, 2010). Vandeperre et al. 

(2014) stated that variation in catch rates in relation to SST reflected the varying presence 

of different sex and life stages of blue shark, furthermore they stated It needs to be noted 

that although SST was important in explaining trends in catch rates, it does not directly 

reflect the temperature range of the blue shark habitat that extends to several hundreds of 

metres depth. 

Based on the analysis, the nominal CPUE of blue shark in the Indian Ocean showed 

a strong inter-annual fluctuation, particularly in the year 2007 and 2012. This high CPUE 

might be because that the high blue shark catch rate occurred in area 1 and 3. However, 

this high variability was slightly smoothed in the standardized CPUE series. There were 

some differences when the environmental data was added, particularly in the beguiling 

and end of the time series. In 2005-2007 and 2015-2016 most CPUE data from the eastern 

Indian Ocean. The reasons for these differences might be related to climate in Indian 

Ocean region especially in the Eastern Indian Ocean, were strongly affected by the Asia-
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Australia (AA) monsoon system: the southeast and northwest monsoon. The southeast 

monsoon (April–October) is associated with easterlies from Australia that carry warm 

and dry air over the region. On the other hand, the northwest monsoon (wet season) is 

associated with westerlies from the Asian continent that carry warm and moist air to the 

region (Susanto et al., 2006). The peak of standardized CPUE values in 2015-2016 

appeared in simple effect adding environment variables. It may be related to a strong El 

Niño phenomenon in this area. In the Indian Ocean high peak of IOD in the second 

semester of 2015 coinciding with El Nino, the IOD escalate cold anomaly to higher 

primary productivity and record low peak in 1st semester of 2016 increased warm 

anomaly to higher tuna forage (micronekton) productivity (Lehodey, 2016). 
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Figure 1. Histograms of the range of values for the environmental variables (top 

plots) and GAM plots with the non-linear effects of the environmental variables on the 

BSH nominal CPUEs (bottom plots). 
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Figure 2. Distribution of the Indonesia observer data used in this BSH CPUE 

standardization. The effort is represented in 2*2 degree grids with darker and lighter 

colors representing respectively to areas with more and less effort in number of hooks. 

 

Figure 3. Results from the GLM tree method for area definitions (4 areas) using 

the Indonesia data for the BSH CPUE standardization. 
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Figure 4. Nominal CPUE series (N/1000 hooks) for BSH in the Indonesia data, between 

2005 and 2016. The error bars refer to the standard errors. 

 

 

Figure 5. Proportion of zero BSH catches by set and per year, in the Indonesia data, 

between 2005 and 2016. The error bars refer to the standard errors. 
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Figure 6: Distribution of the nominal BSH CPUE from the Indonesia data in non-

transformed (top) and log-transformed (bottom) scales. 
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Figure 7. Sensitivity analysis to the various models built for the analysis, 

specifically a simple effects model with operational variable only, a simple effects model 

adding environmental variables, and the final model with added interactions. 

 

 

Figure 8. Residual analysis for the final BSH CPUE standardization model for the 

Indonesia data, between 2005 and 2016. In the plot it is presented the histogram of the 

distribution of the residuals (right), the QQPlot (middle) and the residuals along the fitted 

values on the log scale (left). 
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Figure 9. Standardized CPUE series for BSH from Indonesia data using a tweedie model, 

between 2005 and 2016. The solid lines refer to the standardized index with the 95% 

confidence intervals, and the dots represent the nominal CPUE series. Both series are 

scaled by their means. 
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Tables 

 

Table 1. Deviance table of the parameters used for the BSH CPUE standardizations 

if the Indonesia data, using a Tweedie GLM with link=log. For each parameter it is 

indicated the degrees of freedom (Df), the deviance (Dev), the residual degrees of 

freedom (Resid Df), the residual deviance (Resid. Dev), the F-test statistic and the 

significance (p-value). 

Parameter Df Dev Resid. Df 
Resid. 

Dev.  
F-stat. p-value 

(Intersept only)     2543 5020.4     

Year 11 717.2 2532 4303.2 28.06 < 0.001 

Quarter 3 67.0 2529 4236.2 9.60 < 0.001 

NHBF 1 129.6 2528 4106.6 55.77 < 0.001 

length_between_branchline 1 39.4 2527 4067.2 16.95 < 0.001 

NSharkline 1 54.7 2526 4012.5 23.56 < 0.001 

Area 3 796.0 2523 3216.5 114.18 < 0.001 

SST 1 136.3 2522 3080.2 58.64 < 0.001 

SLA 1 13.0 2521 3067.2 5.59 0.018 

Quarter : NHBF 3 64.7 2518 3002.6 9.28 < 0.001 

NHBF : length_between_branchline 1 41.06 2517 2961.5 17.67 < 0.001 

NHBF : Area 3 24.09 2514 2937.4 3.46 0.016 

 

Table 2. Nominal and standardized CPUEs (N/1000 hooks) for BSH using the 

Indonesia data in the Indian Ocean. The point estimates, 95% confidence intervals and 

the coefficient of variation (CV, %) of the standardized index are presented, as well as 

the nominal CPUE values. 

Year 
Nominal 

CPUE 

Standardized CPUE index (N/1000 Hooks) 

Stdz CPUE CV (%) 
Lower CI 

(95%) 

Upper CI 

(95%) 

2005 0.35 0.25 7.03 0.14 0.44 

2006 0.82 0.33 10.92 0.20 0.53 

2007 1.07 0.61 6.38 0.43 0.87 

2008 0.40 0.37 9.18 0.25 0.55 

2009 0.15 0.19 9.10 0.12 0.31 

2010 0.35 0.64 6.75 0.41 1.01 

2011 0.02 0.03 17.29 0.01 0.12 

2012 1.06 0.66 6.96 0.43 1.02 

2013 0.17 0.28 8.49 0.17 0.47 

2014 0.29 0.19 7.12 0.12 0.30 

2015 0.87 0.75 5.40 0.52 1.10 

2016 0.61 0.93 5.15 0.63 1.37 

 


