JABBA: Just Another Bayesian Biomass Assessment for Indian Ocean Blue shark

Henning Winker* and Felipe Carvalho

agriculture, forestry & fisheries

Department: Agriculture, Forestry and Fisheries **REPUBLIC OF SOUTH AFRICA**

*henning.winker@gmail.com felipe.carvalho@noaa.gov

JABBA R/JAGS interface

AIM: Improve estimation properties of Bayesian state-space surplus production models by building on previous formulations by Pella and Tomlinson (1969), Wang *et al.* (2014) and Fletcher (1978; c.f. Thorson *et al.* 2012) within a user-friendly R interface.

JABBA is a further development of the models applied in the 2015 ICCAT South Atlantic blue shark assessment and 2017, North Pacific blue shark assessment, the 2017 ICCAT Mediterranean Albacore assessment and the 2017 ICCAT North and South Atlantic shortfin mako shark assessments JABBA (Just Another Bayesian Biomass Assessment): A generalized Bayesian State-Space Surplus Production Model

The inbuilt options include:

- Integrated state-space tool for averaging multiple CPUE series (+SE) for optional use in assessments
- Automatic fitting of multiple CPUE time series and associated standard errors
- Fox, Schaefer or Pella Tomlinson production function (optional as input Bmsy/K)
- Flexible r prior specification: (1) range or (2) mean + CV of lognormal distribution
- Flexible initial depletion prior specification: (1) mean + CV lognormal or (2) mean + CV of beta distributions
- Kobe-type biplot plotting functions
- Improved Residual and MCMC diagnostics
- Optional estimation additional observation variance for individual or grouped CPUE time series
- Easy implementation of time-block changes in selectivity
- Forecasting of stock status under alternative TACs

JABBA (Just Another Bayesian Biomass Assessment): A generalized Bayesian State-Space Surplus Production Model

C Henning-Winker/JABBA: Jul X					
← → C ■ GitHub, Inc. [US] https://github.com/Henning-Winker/JABBA					
	This repository Search	Pull requests Issues Marketplace Explore	▲ +• ∰•		
	Just Another Bayesian Biomass Assessment (2) 137 commits Branch: master New pull request	3 branches © 0 releases Create new file	L 2 contributors		
	mkapur ran 3 schaefers for ms		Latest commit ea273d4 9 days ago		
	SWO_SA	ran 3 schaefers for ms	9 days ago		
	in examples	resource prime_MS	27 days ago		
	in vignettes	fix primeMS url	9 days ago		
	.gitignore	hope	a month ago		
	JABBA.jags	update w prime_final code	2 months ago		
	JABBA_multiplot.R	Fixes	2 months ago		
	JABBAgoesFLR.R	smaller fixe: change order	a month ago		
	JABBAv4.R	re add SDNR dump file	27 days ago		
	README.md	Update README.md	2 months ago		
	SCRS_2017_135_Winker_et_al.pdf	Add files via upload	2 months ago		
	cpueAVG.jags	update w prime_final code	2 months ago		
	make_summary.R	summarize dump file script	2 months ago		
	README.md				
	IARRA				

ADVANTAGE: Links surplus production models more directly to convention age-structured model formulations (e.g. SS3; Methot and Wetzel 2013).

Surplus production function of the generalized three parameter SPM by Pella and Tomlinson (1969)

$$SP_{t} = \frac{r}{m-1} B_{t-1} \left(1 - \left(\frac{B_{t-1}}{K} \right)^{m-1} \right)$$
 (1)

where r is the intrinsic rate of population increase at time t, K is the unfished biomass and m is a shape parameter that determines at which B/K ratio maximum surplus production is attained.

- If m = 2, the model reduces to a Schaefer form, with the surplus production g(B_t) attaining
 MSY at exactly K/2
- If 0 < m < 2, $g(B_t)$ attains MSY at depletion levels smaller than K/2 and vice versa
- The Pella-Tomlinson model reduces to a Fox model if *m* approaches one (*m=1*) resulting in maximum surplus production at ~ 0.37*K*

 B_{msy} is given by:

$$B_{MSY} = Km^{\frac{-1}{m-1}}$$
 (2)

and the corresponding harvest rate at MSY (H_{MSY}) is:

$$H_{MSY} = \frac{r}{m-1} \left(1 - \frac{1}{m} \right) \qquad (3)$$

where the harvest rate *H* is defined here as the ratio of:

$$H = \frac{C}{B}$$
 (4)

where C denotes the catch. Correspondingly H_{MSY} can be expressed by:

$$H_{MSY} = \frac{MSY}{B_{MSY}}$$
 (5)

Combing and re-arranging equation (3) and (5), it follows that r in equation (1) can be expressed as:

$$H_{MSY} = \frac{r}{m-1} \left(1 - \frac{1}{m} \right) \longleftrightarrow H_{MSY} = \frac{MSY}{B_{MSY}}$$

$$(6) \quad r = \frac{MSY}{B_{MSY}} \frac{m-1}{1 - m^{-1}} \quad \text{or} \quad r = H_{MSY} \frac{m-1}{1 - m^{-1}} \quad (7)$$

This allows re-formulating the production function of the Pella-Tomlinson equation as a function of H_{MSY} , such that:

$$SP_{t} = \frac{H_{MSY}}{(1-m^{-1})} B_{t-1} \left(1 - \left(\frac{B_{t-1}}{K} \right)^{m-1} \right)$$
 (8)

where *m* can be directly translated into B_{MSY}/K and thus determines the biomasss depletion level where MSY is achieved (Thorson *et al.* 2012a), using the following relationship:

$$\frac{B_{MSY}}{K} = m^{\left(-\frac{1}{m-1}\right)} \quad \textbf{(9)}$$

Because prior formulations for most SPM-based assessments are specified for r, we provide the following equation to easily convert r estimates (or prior means) into H_{MSY} for any given shape parameter input m:

$$H_{MSY} = r \frac{(m-1)}{(1-m^{-1})} \quad (10)$$

Equations (5) - (10) illustrate the direct link between the Pella-Tomlinson SPM and the agestructured, which emphasizes the potential for deriving informative priors for *r* and *m* from spawning biomass- and yield-per-recruit analysis with integrated spawning recruitment relationships by generating deviates of $H_{MSY} = MSY/B_{MSY}$ and B_{MSY}/K , respectively (Maunder 2003; Thorson *et al.* 2012a; Wang *et al.* 2014).

<u>DETOUR:</u> Linking age-structure and surplus production models: Potential MSE (MP) and Cross-validation application

Equations (5) - (7) illustrate the direct link between the Pella-Tomlinson SPM and an agestructured model, which can be used to translate SS3 estimates of the ratios of *MSY/BMSY* and B_{MSY}/SB_0 and MSY/B_{MSY} into values of H_{MSY} and the shape parameter *m* of the production function.

JABBA Process-Equation

Bayesian State-Space formulation

We formulated the JABBA process equation by building on the Bayesian state-space estimation framework proposed by Meyer and Millar (1999). The biomass B_y in year y is expressed as proportion of K (i.e. $P_y = B_y / K$) to improve the efficiency of the estimation algorithm.

The model is formulated to accommodate multiple CPUE for fisheries *f*. The initial biomass in the first year of the time series was scaled by introducing model parameter φ to estimate the ratio of the spawning biomass in the first year to *K* (Carvalho *et al.* 2014). The stochastic form of the process equation is given by:

$$P_{y} = \begin{cases} \varphi e^{\eta_{y}} & y = 1 \\ \left(P_{y-1} + \frac{r}{(m-1)} P_{y-1} \left(1 - P_{y-1}^{m} \right) - \frac{\sum_{f} C_{f,y-1}}{K} \right) e^{\eta_{y}} & y = 2,3,...,n \end{cases}$$
(11)

Where η_y is the process error, with $\eta_y \sim N(0, \sigma_\eta^2)$, $C_{f, y-1}$ is the catch in year y by fishery f

JABBA Observation Equation

The corresponding biomass for year y is:

$$B_y = P_y K \qquad (12)$$

The observation equation is given by:

$$I_{f,y} = q_f B_{f,y} e^{\varepsilon_y}$$
 $y = 1, 2, ..., n.$ (13)

where, q_f is the estimable catchability coefficient associated with the abundance index for fishery f and ε_v is the observation error, with

$$\sigma_{\varepsilon,y,f}^2 = \hat{\sigma}_{SE,y,f}^2 + \sigma_{Add,f}^2$$

$$\varepsilon_{y,f} \sim N(0, \sigma_{\varepsilon,y,f}^2)$$
 (14)

Indian Ocean Blue shark (GAM)

Bayesian State-Space CPUE averaging tool

JABBA runs

Prior formulation: Summary

Parameter	Distribution	min/μ	max/CV
К	lognormal	600000	2
r	lognormal	0.267	0.07
$\varphi = B_{1950}/K$	lognormal	1	0.25
σ_η^2	inverse-gamma	4	0.01
$\sigma^2_{{\scriptscriptstyle ADD},i}$	inverse-gamma	0.001	0.001
т	fixed	2	(Schaefer)
q	uniform	0.00000001	1

Minimum observation error CV was fixed at 0.25, so that: $\sigma_{\varepsilon,y,f}^2 = 0.25_{Add,f}^2 + \sigma_{Add,f}^2$

Base-case model

Japan late + EU-Portugal + EU-Spain + EU-France

Alternative model

During the 2017 IOTC blue shark assessment, the formulation of alternative scenarios specifically focused on identifying and improving poor fits to CPUE series that may arise from fitting of multiple standardized CPUE time series with conflicting trends.

Year

Schaefer Production Function

Base-case

CPUE fits

Base-case

Year

Prior vs. Posterior

Base-case

Model Estimates (Base-case)

	Median	2.50%	97.50%
Κ	698486	476589.9	1233646
r	0.271	0.235	0.313
ψ (psi)	0.824	0.57	1.042
σ	0.045	0.032	0.084
H _{msy}	0.135	0.117	0.156
SB _{msy}	349243	238295	616823
MSY	47355.78	32333.56	83741.82
P ₁₉₅₀	0.823	0.57	1.041
P ₂₀₁₅	0.666	0.46	0.861
B_{2015}/B_{msy}	1.333	0.92	1.722
H_{2015}/H_{msv}	0.869	0.396	1.738

Time series of Reference Points Base-case

Kobe plot

Base-case

Sensitivity runs (drop one from Base-case)

Projections (Base-case)

THANK YOU!