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Abstract 

Abundance indices are an important requirement for reliable stock assessment. Maldives 
pole and line fishery provides a CPUE-based abundance index for the Indian Ocean skipjack 
stock assessment. The CPUE index needs standardization because the fishery has improved 
its efficiency over time. Generalized linear models are fitted consistent with previous 
standardization models using new data which has been carefully reviewed and corrected. 
The model was restructured based on a review of the available categorical and covariate 
variables.  The final recommended index was produced from the new linear model fitted 
using a Markov chain Monte Carlo to the available data, with numbers of skipjack caught as 
the response variable. 

Introduction 

Indian Ocean skipjack catches have increased substantially since the late 1980s with the 
arrival of industrial purse seiners in the mid-1980s, and development of the fishery in 
association with drifting floating objects or Fish Aggregating Devices (FADs) since the 1990s 
(IOTC 2016: Skipjack Tuna Supporting Information). The WPTT has previously concluded 
that the stock was probably not overexploited, but analyses of indicators of stock status 
suggested close monitoring of the stock would be required in the following years (IOTC-
2009-WPTT-R[E]).  

Maldives pole and line (PL) CPUE series have been standardized and updated on several 
occasions in the past. Kolody, Adam and Anderson (2010) attempted the first 
standardization on atoll aggregated catch and effort data using three sets of data; i) 
operational catch and effort data from the pole-and-line fleet 2004-2007, ii) aggregated catch 
and effort data 1970-2007, and iii) the registry of new vessels 1958-2010. It was concluded 
that a meaningful standardization can only done on the vessel specific catch and effort 
dataset available from 2004 onwards. 

Kolody and Adam (2011) conducted the first proper standardization of the vessel specific 
catch and effort data 2004-2010 using vessel registry information and a subset of daily 
observations from logbooks introduced in 2010. The authors attempted to study the effect 
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the large number of records with zero skipjack, prevalent in the dataset. The index of 
abundance was subsequently used for the first model-based assessment of the Indian Ocean 
skipjack tuna stock (WPTT 2011 Report). Before 2011, a formal model-based stock 
assessment was not conducted due to the lack of a reliable index of abundance. 

Sharma, Geehan and Adam (2013), standardized the vessel specific dataset (2004-2011), 
updated in 2014, and incorporating Maldives’ anchored FAD (aFADs) data into the analysis 
using the number of active aFADs associated with the nearest atoll that the landing data was 
collected from (Sharma et al., 2013). The authors also attempted to estimate the 
standardized CPUE back to 1985 by using vessel lengths available from the vessel registry 
dataset, but the results were not considered sufficient reliable to be used in the stock 
assessment. 

Despite the extensive fishing by industrial fleets in the western India Ocean, the assessment 
of the Indian Ocean skipjack stocks has so far depended upon the index of abundance from 
the Maldives pole-and-line CPUE series. It has been stated that purse seine effort data is 
difficult to standardize due to rapid changes in use of electronics in searching and the 
difficulty of obtaining standardized operation data (IOTC-WPTT 2012). This paper presents 
the efforts to update the 2014 Maldives PL CPUE standardization for use in stock assessment 
of 2017. 

Methods 

Data 

The following datasets are used in the analysis: 

 Vessel specific monthly catch and effort data 2004-2009; cleaned dataset (Ahusan, 
Sharma and Adam 2015) addressing issues reported in previous standardizations 
(e.g. zero skipjack catch records, duplicate records, records with sum of effort 
exceeding days of month).  

 Vessel specific monthly Catch and Effort data for 2010-2015 filtered for pole and line 
(PL) and handline (HL) gear types and mechanized masdhoni vessel types. These data 
were originally recorded in numbers (thanks to the enumeration system of data 
collection established in the Maldives), but also given as weight (using conversion 
factors (Cook 1995). 

 Logbook data from 2014 and 2015 aggregated over vessel, month and gear strata. 

 Vessel registry datasets with date of registration, vessel descriptors such as vessel 
length, gross tonnage, engine horsepower etc. 

 Anchored FAD dataset (1981-2017) with 473 records of location, deployment and 
lost date. 

The Maldives Ministry of Fisheries introduced fishery logbooks to replace the island office 
reported catch and effort data collection system. Reliance on the island offices to report 
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fishery data has been gradually replaced as the new system became established and 
reporting improved. The key difference between the two is the greater level of information 
reported in the new system (e.g. effort reporting, baiting, bycatch, ETP interaction, etc.).  
Despite its introduction in 2010 (and revision in 2012), the data has been scarce and 
unreliable for the initial years. As a result, only logbook data from 2014 and 2015 are used. 
Furthermore, it is observed that more of the catch data are being reported in weights unlike 
for the previous system, and only landings weights were being reported in 2016. It should 
be noted that 2016 data have been not used in this analysis. The data was made available 
very early September and needed cleaning and cross checking with logbooks. 

Data Processing and Statistical Analysis 

Data tables are loaded from the text files. These consist of the FAD database, with number of 
FADs by region and month, the associated atoll including their regional allocation and the 
monthly catch effort data. These are read into R dataframe objects and joined/mutated to 
create a single data frame with the relevant fields for analysis. Analyses were documented 
using RMarkdown scripts (http://rmarkdown.rstudio.com/) so that they are fully 
reproducible from the raw data. 

FAD data consists of the deployment date, the location, and date of loss if the FAD has been 
lost. The date of loss was not always available for the earlier part of the time series (1981-
1999 inclusive; one record with no loss date exists in 2005). To enable the FAD information 
to still be used, some loss date had to be assumed. For this purpose, the mean survival time 
for all FADs for which the loss date exists over the period 1981-1999 (mean longevity 630 
days) was used to provide a loss date for those FADs missing this date. The survival time 
appears to have changed over the years, so the mean of all FAD survival times 1981-2015 
(683 days) was not thought to be a suitable estimate. One FAD in 1986 had no deployment 
date. The date was estimated based on the FAD number as the mean deployment date for the 
FADs before and after it in the FAD register. 

All additions and corrections were small changes and would not, it was believed, have a 
significant impact on the final results. FADs have increased over time, but from around 2000, 
the Maldives has maintained around 50 active FADs (Figure 1). 



IOTC-2017-WPTT19-44 

4 
 

 

Figure 1: Number of active FADs over time and region. 

 

Fitting Methods 

Two methods were used to fit the models. The model structure, including the error model, 
was explored using maximum likelihood generalized linear models (glm package in R). This 
provides a robust method for model fitting with good diagnostics. However, the model 
structure is constrained, which will make it difficult to continue to use this approach when 
dealing with difficulties arising with the 1970-2004 data set, and it has limited options for 
accounting for uncertainty. The final model was therefore fitted using Markov chain Monte 
Carlo (MCMC) in the modelling software Stan (mc-stan.org; rstan package in R), which 
provides more flexible modelling and explicitly deals with uncertainty in a consistent way. 

Stan software (Stan 2016) provides a robust approach to MCMC which allows it to fit models 
that defeat most other methods. The root cause for problems in MCMC is the slow 
convergence of conditional sampling when parameters are highly correlated in the posterior, 
a common problem for time-series models and hierarchical models with interacted 
predictors. Stan is designed to improve MCMC performance by using Hamiltonian Monte 
Carlo (HMC) sampling (as opposed to Gibbs sampling in BUGS, for example), which requires 
more complex calculations. HMC uses the gradient of the log posterior as well as the function 
value. Stan incorporates reverse-mode algorithmic differentiation, in much the same way 
ADMB (Methot, 2015, Fournier et al., 2012) does, as well as various techniques to speed up 
MCMC simulations. Similarly to BUGS (Lunn et al., 2009) and ADMB, Stan uses a modelling 
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language to define models in a familiar notation that is transformed to C++ code before being 
compiled into an efficient executable program. Importantly, Stan provides good diagnostic 
tools that all but guarantee a sample of draws from the posterior is fully representative, and 
applies more rigorous MCMC procedures than other MCMC software may do. 

Results and Discussion 

Response Variable 

Two response variables were available: the catch in numbers and the catch in weight. Catch 
in numbers was used in the legacy index. It was apparent that the majority of catch weights 
are not observed in the monthly data, but have been calculated assuming 2.1kg per fish for 
the small skipjack and 5.7kg per fish for the large skipjack. The resulting catches in weight 
are therefore not independent observations and less suitable for modelling. Allocation 
between "small" and "large" skipjack may not be reliable, so combining their numbers should 
result in a more consistent index. 

Records were filtered to remove records with zero skipjack catch or zero effort. The majority 
of observations were primarily for vessels 12m-27m in length and took place in the central 
region. 

Legacy Index 

The “legacy” generalized linear model (GLM) was fitted with the same structure as the 
standardization model fitted to the log-CPUE used in the 2014 stock assessment (Sharma, 
Geehan and Adam, 2014), but using data to the end of 2015.  

This new fit showed similar residual patterns and issues as the previous fit. Only one record 
relates to the largest vessel class in the North region, so estimates of interaction terms was 
unreliable. Compared to the nominal index (unstandardized CPUE) the standardized legacy 
index shows significant differences which may be the result of overfitting.  Residuals are 
clearly not normally distributed, with lower catch rates being over-represented. There is also 
some evidence of heteroscedasticity with perhaps the log transform leading to an 
underestimated variance at higher CPUE. 

Inspection of the parameter correlation matrix (not presented here as it is large) does not 
suggest time parameters are unacceptably correlated with others in the model. 

The predicted values for the index are calculated based on each year (2004-2015), the month 
at the start of each quarter, the "Centre" region and a fixed number of FADs based on the 
monthly average across regions for this time period (9.1 FADs). 
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Figure 4 Maximum likelihood index with 95% confidence intervals based on the parameter 
covariance matrix (inverted Hessian) for the legacy model from Sharma, Geehan and Adam 
(2014) with more recent corrected data. 

 

The updated index has similarities to the original legacy index. Both are primarily dependent 
on the main year effect and these have a similar scale to each other, although there are 
detailed differences in estimates. Changes in the fit are due to changes in the underlying data. 
Many problems have been removed (incorrect effort recording, duplicate records etc.).  

Although the abundance index should have improved, issues remained with both estimates: 

1. Models show a significant negative relationship with the quantity of FADs in the 
North and South regions. This is questionable. FADs show some correlation with the 
year effect parameters which is undesirable. 

2. The intercept value for the previous index appears very low (average <1 fish per day 
for the base category), whereas the updated model has reasonable intercept value 
(>130 fish a day). 

3. Both models suggest a much higher catch rate for the smallest sized vessels (<7m) 
than the next higher category, which otherwise show an increasing trend with vessel 
size. It is possible this is to do with mis-classification of vessels or other problems 
with data recording. 
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New Data 

The next task was to add the new logbook data before further exploring alternative models. 
The new logbook system started in 2010, but the current and revised version was rolled out 
in 2014. It required that fishers complete a more detailed trip form based on individual days 
fishing. Note that requiring numbers of fish be reported resulted in most of the new logbook 
data being removed from the analysis. In future, catch data may be recorded as weight 
resulting in a significant change in the CPUE time series. This would require further review 
of the existing data to provide a smooth transition between numbers and weight.  

The data table was manipulated so that it can be added to the monthly data with the same 
format. In addition, new explanatory variables were added. Because the response variable is 
on a log scale, some potential covariates were also converted to the same scale. Covariates 
on log and linear scales consisted of catch in numbers and weight of other species, vessel 
length and number of FADs. Other categories were the data source (old monthly reports and 
the new logbook data) and the quarter. 

Model Structure 

The model structure justification here is mostly provided for the catch numbers response 
variable only. The catch weight response variable model is only provided in those cases 
where a significant difference is possible. In general, the numbers and weight variables 
produce very similar models because, for the majority of the data, the catch weight is 
calculated from the catch numbers. 

As part of the exploration of the model, alternative likelihood functions to the legacy model's 
log-normal were tried, consisting of the Gaussian, Poisson and Gamma. The log was the only 
reasonable GLM link function for these data. 

Using the log-normal likelihood resulted in many observations with strong negative 
residuals, indicating that the records have catch rates much lower than expected. This can 
result from an inappropriate choice of likelihood which allows for greater dispersion than 
the data indicate. To explore this, a Box-Cox transform was applied to the response variable 
to see whether this suggested an alternative likelihood for a minimum model with only time 
series effects of year and quarter. 

The optimum transform for both numbers and weight response variables (numbers: 0.35, 
weight: 0.31) were found greater than zero (zero being the equivalent to a log-transform 
used), but less than 0.5 (approximate Poisson equivalent). This suggested the Gamma as the 
best alternative likelihood. This was confirmed with other exploratory fits using the 
Gaussian and Poisson, which were unable to explain the over-dispersion and indicated worse 
diagnostics. 

The Gamma likelihood and Box-Cox transforms produced similar results. Inspection of the 
Gamma model indicated that lower residuals were much better behaved, but the positive 
residuals were over-represented compared to what might be expected, a reversal to the log-
normal. For both models, the diagnostics demonstrated poorer performance in different 
areas, so there was no clear preference between the Gamma and log-normal. There are 
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theoretical reasons to prefer the Gamma however (McCullagh and Nelder 1989), so this was 
further explored with other model structures. 

Using a Gamma model prevents calculating an F-statistic to measure the statistical 
significance of different model terms. This results in some subjectivity in selecting terms to 
retain in the standardization model. Use of statistics, such as F, to decide whether to include 
terms in GLMs with large data sets will tend to result in overfitting and including parameters 
with no clear justification. In general, the approach used here was to retain only terms which 
resulted in clear, high changes in deviance rather than rely on a measure of statistical 
significance. Overfitting could result in a poorer abundance index than the nominal CPUE. 

The minimum model for the skipjack catch response variable consists of a log effort offset 
and the time series terms. Quarters (qu) are preferred to months (mn) because the stock 
assessment time step is quarters and this still accounts for any monsoon effects. Month does 
explain more of the variation, but this factor may also be confounded with other explanatory 
variables and was much less parsimonious (Table 1). It was likely that month terms in the 
legacy model caused some problems for the index due to aliasing with other parameters. As 
a result, the base model is the year (yr) and quarter (qu) main effects with interaction terms 
(yr+qu+yr:qr = yr*qu). 

 

Table 1 Analysis of deviance for the numbers Gamma model with time categorical variables 
year, month and quarter (yr, mn, qu). “:” indicates an interaction term.  

Terms Residual Terms 

  
Degrees of 
Freedom Deviance 

Degrees of 
Freedom Deviance 

Yr 40998 72650   
yr + qu 40995 72321 3 328.82 

yr + qu + yr:qu 40962 71652 33 668.92 

yr + qu + yr:qu + mn 40954 71528 8 124.20 

yr + mn + yr:mn 40866 70616 88 912.01 

 

There is a small difference between the logbook and trip landing data, but it is probably not 
significant at least for the model of catch numbers (Table 2). The catch weight data are 
predominantly in the new log books and for this reason there is a larger difference. There is 
some overlap in the data collection scheme, so it is possible to apply a correction if required. 
However, overall it appears that the data sources are broadly compatible and an adjustment 
may not be required. 
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Table 2 Analysis of deviance for the Gamma model data source categorical variable (so) "trip 
landing record" or "logbook". 

Terms Residual Terms 

  
Degrees of 
Freedom Deviance 

Degrees of 
Freedom Deviance 

Numbers       
  yr*qu 40962 71652   
  yr*qu + so 40961 71650 1 2.46 

Weight       
  yr*qu 43064 80493   
  yr*qu + so 43063 80354 1 138.43 

 

Various other covariates are available: small yellowfin catch, large yellowfin catch, number 
of FADs in the region, other tuna catch, other non-tuna catch. It was checked whether they 
were better added on the linear or log scales. In some cases the Gamma model likelihood 
failed to converge, which is an indication of a poor fit. So for consistency in these exploratory 
fits, the log-normal likelihood was used. 

Table 3 Analysis of deviance for the numbers lognormal model for various covariates on the 
log and linear scales. 

Terms Residual Terms 

  
Degrees of 
Freedom Deviance 

Degrees of 
Freedom Deviance 

yr*qu 40962 111680   
Small yellowfin (linear: yfs_n; log: lyfs) 

yr*qu + lyfs 40961 111607 1 73.00 

yr*qu + yfs_n 40961 107622 0 3984.30 

Large yellowfin (linear: yfl_n; log: lyfl) 

yr*qu + lyfl 40961 110019 1 1661.30 

yr*qu + yfl_n 40961 111668 0 -1649.40 

Number of FADs (linear: nFAD; log: lFAD) 

yr*qu + lFAD 40961 110446 1 1233.29 

yr*qu + nFAD 40961 110032 0 414.23 

Other tuna catch numbers (linear: otu_n; log: lotu) 

yr*qu + lotu 40961 109897 1 1782.50 

yr*qu + otu_n 40961 111265 0 -1368.10 

Other non-tuna catch numbers (linear: oth_n; log: loth) 

yr*qu + loth 40961 104269 1 7410.90 

yr*qu + oth_n 40961 111301 0 -7031.80 
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These results suggested that "other tuna", "other fish" and "large yellowfin" are better 
covariates on a log-scale, whereas small yellowfin and number of FADs are better 
explanatory variables on a linear scale within the linear predictor (Table 3). Given the log 
link function for the model, log covariates would seem to be justified, but there is no strong 
theoretical reason to choose one over the other. 

 

Table 4 Analysis of deviance for the lognormal model with step-wise addition of different 
covariates as main effects (see Table 3 for terms). 

Terms Residual Terms 

  

Degrees 
of 
Freedom Deviance 

Degrees 
of 
Freedom Deviance 

Numbers       
  yr*qu 40962 111680   
  yr*qu +loth 40961 104269 1 7410.90 

  yr*qu +loth +yfs_n 40960 98092 1 6177.10 

  yr*qu +loth +yfs_n +lyfl 40959 96611 1 1480.80 

  yr*qu +loth +yfs_n +lyfl +nFAD 40958 95608 1 1003.10 

  yr*qu +loth +yfs_n +lyfl +nFAD +lotu 40957 94757 1 851.30 

Weight       
  yr*qu 43064 122252   
  yr*qu +loth 43063 113800 1 8452.2 

  yr*qu +loth +yfs_n 43062 107778 1 6021.8 

  yr*qu +loth +yfs_n +lyfl 43061 106818 1 960.5 

  yr*qu +loth +yfs_n +lyfl +lotu 43060 105873 1 944.8 

  yr*qu +loth +yfs_n +lyfl +lotu +nFAD 43059 105114 1 758.6 

 

A stepwise introduction of main effects (Table 4) suggests that all covariates have a 
significant effect and are all candidates for inclusion. However, while some covariates might 
help indicate how much effort was directed at skipjack, it is not clear that the functional 
relation between the response and explanatory variables can be justified in this form. In 
addition, these variables may well be confounded with others (e.g. vessel length) and it may 
be inappropriate to use variables which themselves may be related to fishing effort and 
fluctuate in response to past fishing activity and other effects. This is mainly an issue for the 
skipjack catch weight model where small yellowfin catch is a significant effect. 

The most important term is the "log other fish catch" (loth) which probably helps the CPUE 
of skipjack adjust for mixed gear use and targeting of other fish within trips. Numbers of 
FADs does explain some variation, but surprisingly it is relatively small. FADs may serve a 
greater purpose in reducing costs, fuel use for example, rather than raising catch rates, at 
least for skipjack, but this needs to be investigated further. Including yellowfin and other 
tuna catch as a covariate is unsafe. 
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The spatial effect is defined by the atoll and sets of atolls defined by region. Atolls explain a 
great deal more variation than region (Table 5). It is likely that regional groups for the atolls 
can be defined better than the three regions defined here and this should be examined in 
future. 

 

Table 5 Analysis of deviance for the Gamma numbers model spatial effect of atoll or region 
(at, reg). 

Terms Residual Terms 

  
Degrees of 
Freedom Deviance 

Degrees of 
Freedom Deviance 

yr*qu 40962 71652   
yr*qu + reg 40960 70636 2 1015.70 

yr*qu + at 40942 54886 18 15751.00 

 

The vessel size is important as has been already determined. The vessel size class was 
defined as a category variable in Sharma et al. 2014. Alternatively its use was explored here 
as a covariate on the log and linear scale. The linear-scaled variable explained a large amount 
of the data variance for both the numbers and weight models (Table 6). The category variable 
did a little better, but at the expense of an additional 5 parameters, making it less 
parsimonious. The categorical variable did suggest that there were departures from a simple 
linear relationship, but there was insufficient information to provide a better functional 
relationship. 

Table 6 Analysis of deviance of the lognormal model for vessel length as linear, log and by size 
class category (vl, lv, vc). Size classes are: <7m, 7-12m, 12-17m, 17-22m, 22-27m, 27-32, 
>32m. 

Terms Residual Terms 

  
Degrees of 
Freedom Deviance 

Degrees of 
Freedom Deviance 

Numbers       
  yr*qu 40962 111680   
  yr*qu + vl 40961 86847 1 24832.60 

  yr*qu + lv 40961 86827 0 20.30 

  yr*qu + vc 40956 85144 5 1683.20 

Weight       
  yr*qu 43064 122252   
  yr*qu + vl 43063 94077 1 28175.60 

  yr*qu + lv 43063 94301 0 -224.50 

  yr*qu + vc 43058 92342 5 1959.30 
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Combining the main effect models suggested that the number of FADs is the weakest term 
(Table 7). Given FADs have increased over time and could be correlated with abundance, it 
was considered wise to remove this from the final model. This decision was supported, 
particularly for the catch numbers model where number of FADs was a very poor 
explanatory variable. 

Table 7 Analysis of deviance for Gamma model with all main effects. 

Terms Residual Terms 

  

Degrees 
of 
Freedom Deviance 

Degrees 
of 
Freedom Deviance 

Numbers       
  yr*qu 40962 71652   
  yr*qu + vl 40961 62873 1 8779.10 

  yr*qu + vl + at 40941 50330 20 12542.80 

  yr*qu + vl + at + loth 40940 50184 1 146.10 

  yr*qu + vl + at + loth + nFAD 40939 50183 1 0.90 

Weight       
  yr*qu 43064 80493   
  yr*qu + vl 43063 69179 1 11313.60 

  yr*qu + vl + at 43043 55915 20 13264.00 

  yr*qu + vl + at + loth 43042 55795 1 120.70 

  yr*qu + vl + at + loth + nFAD 43041 55759 1 35.90 
 

The first level interaction term between vessel length and other species catch may be worth 
including, although as both values are covariates it is difficult to interpret (Table 8). Other 
interaction terms only explain a small amount of the data variation considering the number 
of parameters fitted. These are relatively unimportant parameters. The conclusion is that 
any joint effect of location and vessel size and other catch being landed is relatively small. 

Table 8 Analysis of deviance for the Gamma numbers model with first level interaction effects. 

Terms Residual Terms 

  

Degrees of 
Freedom 

Deviance 

Degrees 
of 
Freedom Deviance 

yr*qu +vl +at +loth 40940 50184   
yr*qu +at +vl +loth +loth:vl 40939 49812 1 372.46 
yr*qu +at +vl +loth +loth:vl 
+at:vl 40919 49103 20 709.23 
yr*qu +at +vl +loth +loth:vl 
+at:vl +at:loth 40899 47577 20 1525.21 
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An alternative response variable would be the total catch of small yellowfin and skipjack 
combined instead of including yellowfin as an explanatory variable. It was thought 
combining these catches for the catch weight model might reduce the lowest residual 
outliers, but there is little apparent improvement over the skipjack model (Table 9). 

Table 9 Analysis of deviance for lognormal numbers model with the response variable 
consisting of the total catch of skipjack and small yellowfin combined. 

Terms Residual Terms 

  
Degrees of 
Freedom Deviance 

Degrees of 
Freedom Deviance 

yr*qu 43064 102546   
yr*qu + at 43044 72560 20 29985.80 

yr*qu + at + lv 43043 64687 1 7873.10 

yr*qu + at + lv + loth 43042 64268 1 419.00 

yr*qu + at + lv + loth + nFAD 43041 64266 1 1.60 

 

Checking for an effort parameter (e.g. effort is sometimes thought to be non-linearly related 
to catch) suggests little is to be gained by allowing for a non-linear adjustment of effort 
(Table 10). The effort parameter (0.834) indicates there is some diminishing of returns on 
catch rates for longer trips. This may be an artefact since longer trips with more fishing days 
may be the direct result of lower catch rates. 

Table 10 Analysis of deviance for the Gamma numbers model with and without (default) a 
non-linear parameter for fishing effort. 

Terms Residual Terms 

  

Degrees of 
Freedom 

Deviance 

Degrees 
of 
Freedom Deviance 

offset(lef) +yr*qu +vl +at +loth 40940 50184   
lef +yr*qu +at +lv +loth 40939 50520 1 -335.71 

 

With no strong justification for more terms in the model, the final model for both catch 
numbers and catch weight has main effect terms for the quarter time series with atoll, vessel 
length and log "other catch". 

Comparing the new proposed maximum likelihood index to the legacy index, the main 
difference is the removal of the increase in 2011 to create a smoother index. Other changes 
are relatively minor and both indices show a similar downward trend. 
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Figure 7 Maximum likelihood indices based on skipjack catch numbers and weight, and the 
legacy index estimated for the updated data set. 

MCMC Fit 

Stan software was used to fit the same model using a Bayesian MCMC approach. The fitted 
models used the same data and model structure as the maximum likelihood model (Gamma 
likelihood and same main effects). Priors were used, but were uninformative (uniform on 
the log scale) for all parameters, except the Gamma beta (scale) parameter which was given 
a weakly informative half Cauchy prior favouring lower variance for the observation error. 
Priors constrained parameters to a reasonable range and avoided unwarranted prior weight 
on nonsensical values, which also aids convergence. The original maximum likelihood linear 
models were used provide initial estimates for the MCMC simulations. However, the Stan 
Hamiltonian MCMC method should be robust to the simulations start point. 

Four Markov chain simulations were run to obtain 5000 draws from the posterior. Non-
informative priors were used. All priors were uniform densities except the Gamma scale 
parameter, which was weakly informative (half Cauchy density: see Stan 2016). 
Convergence was tested by comparing the chains. Stan provides extensive diagnostics to test 

convergence, the simplest being the �̂� statistic, which indicates convergence for each 
parameter with values close to 1.0. The model estimates a standard index value for an 18m 
vessel operating from Malé atoll for each year and quarter (Table 11, 12). Results indicated 
that the MCMC had converged for these and the other parameters. 
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Table 11 Standardised index estimates from MCMC runs for the numbers model. Indices are on 
a log-scale. The MCMC simulation was run with 4 chains with 3500 iterations each, of which 
1000 were used as “warm-up” and thinning of 2, resulting in 1250 draws per chain. 

Year Quarter Mean SD Confidence 
Interval 

2.5 – 97.5% 

Effective 
Sample 
Size 

�̂� 

2004 1 4.958 0.028 4.904 5.012 3672 1.001 

2004 2 4.717 0.031 4.659 4.779 3380 1.001 

2004 3 5.017 0.028 4.963 5.072 3686 1.000 

2004 4 5.105 0.029 5.049 5.161 3574 1.000 

2005 1 4.979 0.027 4.927 5.032 3566 1.000 

2005 2 5.023 0.028 4.968 5.078 3641 1.001 

2005 3 5.181 0.025 5.132 5.230 3789 1.000 

2005 4 5.213 0.026 5.162 5.264 3781 1.000 

2006 1 5.243 0.026 5.191 5.295 3637 1.000 

2006 2 5.136 0.027 5.083 5.188 3760 1.000 

2006 3 4.945 0.028 4.890 4.999 3736 1.001 

2006 4 5.022 0.027 4.968 5.076 3722 1.000 

2007 1 4.858 0.028 4.804 4.914 3601 1.000 

2007 2 4.787 0.030 4.729 4.844 3575 1.000 

2007 3 4.819 0.029 4.763 4.875 3427 1.000 

2007 4 4.956 0.027 4.902 5.009 3579 1.000 

2008 1 4.715 0.030 4.654 4.774 2979 1.000 

2008 2 4.769 0.029 4.712 4.825 3629 1.000 

2008 3 4.927 0.027 4.875 4.980 3625 1.000 

2008 4 5.001 0.029 4.944 5.057 3583 1.000 

2009 1 4.732 0.029 4.673 4.789 3615 1.000 

2009 2 4.697 0.030 4.637 4.754 3450 1.000 

2009 3 4.765 0.030 4.708 4.826 3084 1.001 

2009 4 4.872 0.029 4.814 4.928 3625 1.001 

2010 1 5.017 0.025 4.967 5.065 3903 1.000 

2010 2 4.720 0.030 4.662 4.778 3416 1.001 

2010 3 4.893 0.029 4.837 4.948 3751 1.000 

2010 4 4.915 0.029 4.855 4.970 3632 1.001 

2011 1 4.753 0.031 4.693 4.814 3621 1.000 

2011 2 4.526 0.036 4.455 4.597 3609 1.000 

2011 3 4.517 0.038 4.440 4.590 3760 1.000 

2011 4 4.651 0.037 4.579 4.722 3279 1.000 

2012 1 4.585 0.036 4.514 4.656 3742 1.001 

2012 2 4.592 0.038 4.517 4.666 4018 1.000 

2012 3 4.393 0.042 4.311 4.474 3873 1.000 

2012 4 4.710 0.036 4.639 4.779 3521 1.001 

2013 1 4.800 0.037 4.728 4.871 3798 1.000 
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Year Quarter Mean SD Confidence 
Interval 

2.5 – 97.5% 

Effective 
Sample 
Size 

�̂� 

2013 2 4.847 0.044 4.760 4.930 4477 1.000 

2013 3 4.757 0.044 4.668 4.839 4196 1.000 

2013 4 4.731 0.061 4.609 4.846 4438 1.000 

2014 1 4.535 0.065 4.406 4.662 4799 1.000 

2014 2 4.685 0.083 4.522 4.840 4968 1.000 

2014 3 4.775 0.083 4.611 4.932 4837 1.000 

2014 4 4.628 0.090 4.444 4.799 4887 1.000 

2015 1 4.262 0.169 3.900 4.577 4640 1.000 

2015 2 4.343 0.127 4.074 4.575 4549 1.000 

2015 3 4.235 0.143 3.936 4.501 5000 1.000 

2015 4 4.486 0.146 4.192 4.756 4851 1.000 

 

Table 12 Standardized index estimates from MCMC runs for the weight model. See Table 11 
for explanation. 

Year Quarter Mean SD Confidence Interval 
2.5 – 97.5% 

Effective 
Sample 
Size 

�̂� 

2004 1 -0.957 0.029 -1.013 -0.902 3699 1.000 

2004 2 -1.209 0.032 -1.273 -1.148 3796 1.000 

2004 3 -0.933 0.030 -0.991 -0.874 3715 1.000 

2004 4 -0.788 0.029 -0.845 -0.732 3588 1.000 

2005 1 -0.890 0.027 -0.944 -0.834 3426 1.001 

2005 2 -0.855 0.028 -0.911 -0.800 3540 1.000 

2005 3 -0.796 0.027 -0.848 -0.743 3694 1.000 

2005 4 -0.670 0.026 -0.721 -0.620 3862 1.000 

2006 1 -0.606 0.026 -0.658 -0.555 3793 1.000 

2006 2 -0.672 0.027 -0.724 -0.620 3476 1.001 

2006 3 -0.944 0.029 -0.999 -0.888 3777 1.001 

2006 4 -0.844 0.027 -0.898 -0.793 3911 1.000 

2007 1 -0.984 0.029 -1.042 -0.928 3612 1.000 

2007 2 -1.111 0.030 -1.171 -1.054 3825 1.001 

2007 3 -1.145 0.029 -1.200 -1.086 3295 1.000 

2007 4 -0.930 0.028 -0.986 -0.876 3781 1.000 

2008 1 -1.227 0.030 -1.287 -1.169 3728 0.999 

2008 2 -1.206 0.030 -1.264 -1.151 3854 1.001 

2008 3 -1.084 0.029 -1.141 -1.029 3695 1.000 

2008 4 -0.972 0.029 -1.029 -0.917 3457 1.000 

2009 1 -1.246 0.030 -1.304 -1.187 3536 1.000 

2009 2 -1.287 0.031 -1.350 -1.227 3658 1.000 
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Year Quarter Mean SD Confidence Interval 
2.5 – 97.5% 

Effective 
Sample 
Size 

�̂� 

2009 3 -1.244 0.030 -1.302 -1.185 3645 1.000 

2009 4 -1.112 0.029 -1.168 -1.053 3697 1.000 

2010 1 -0.940 0.026 -0.993 -0.890 3991 1.000 

2010 2 -1.228 0.030 -1.288 -1.170 3624 1.001 

2010 3 -1.103 0.029 -1.161 -1.045 3569 1.001 

2010 4 -1.054 0.030 -1.111 -0.996 3749 1.000 

2011 1 -1.169 0.031 -1.230 -1.108 3662 1.001 

2011 2 -1.411 0.037 -1.484 -1.338 3985 1.000 

2011 3 -1.484 0.039 -1.560 -1.409 4028 1.000 

2011 4 -1.338 0.038 -1.413 -1.263 3971 1.000 

2012 1 -1.364 0.037 -1.437 -1.291 3828 1.000 

2012 2 -1.383 0.039 -1.458 -1.306 3740 1.001 

2012 3 -1.572 0.040 -1.651 -1.495 3954 1.000 

2012 4 -1.263 0.035 -1.332 -1.193 3903 1.000 

2013 1 -1.141 0.037 -1.216 -1.069 3737 1.000 

2013 2 -1.140 0.044 -1.229 -1.056 4244 1.001 

2013 3 -1.236 0.045 -1.324 -1.149 4436 1.000 

2013 4 -1.216 0.061 -1.334 -1.095 4918 1.000 

2014 1 -1.022 0.048 -1.118 -0.928 4313 1.000 

2014 2 -0.840 0.049 -0.937 -0.744 4126 1.000 

2014 3 -0.744 0.044 -0.831 -0.658 3963 1.000 

2014 4 -0.715 0.048 -0.809 -0.622 4363 1.000 

2015 1 -0.702 0.051 -0.803 -0.603 4250 1.000 

2015 2 -1.012 0.057 -1.125 -0.901 4289 1.000 

2015 3 -0.986 0.061 -1.107 -0.872 4497 0.999 

2015 4 -0.801 0.064 -0.930 -0.679 4332 1.000 

 

Index Comparison 

The MCMC and maximum likelihood fit produces similar results, although the MCMC is flatter 
for both the weight and numbers indices (Figures 8 & 9). Standardised indices show a 
significant reduction of the noise in the nominal indices, as might be expected, but follow the 
same trends. 
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Figure 8 Alternative abundance indices based on numbers for the legacy model, and the new 
model fitted using maximum likelihood (ML) and Bayesian Markov Chain Monte Carlo 
(MCMC).

 

Figure 9 Alternative abundance indices with 95% confidence interval based on weight for the 
new model fitted using maximum likelihood (ML) and Bayesian Markov Chain Monte Carlo 
(MCMC). 
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Concluding Remarks 

The philosophy behind the approach to this standardization has been to be as parsimonious 
as possible. Parameters were only included in the model where it appeared justified. The 
primary objective of standardization is to remove effects on the trend of the index that are 
not related to abundance. A secondary aim is to reduce the variance of the indices so that 
they measure the mean index more precisely. The models here attempt to do this without 
risking degradation of the indices which can result from overfitting. 

Stan provides the marginal estimates for indices (mean catch rates), integrating over other 
parameters. The mean of the MCMC indices therefore accounts for the spread in the posterior 
probability density, unlike the maximum likelihood estimates which are located at the 
likelihood mode. Given the posterior uses non-informative priors, the posterior and 
likelihood should be very similar. Difference between the MCMC and ML estimates can be 
attributed to the consideration of the entire probability density rather than its mode. This 
should result in a smoother more reliable index. 

The model based on weight data departs most from the numbers model in the most recent 
years. The Maldives is in the process of changing the reported data from numbers to weight, 
so it might be expected errors during this period to increase. Although the numbers data 
apply to most of the time series, removal of records that did not report numbers left the 
recent years less well estimated. As more data become available, transfer from numbers to 
weight should become more assured, although the standardisation may need to account for 
this change. 

While the model estimates the errors for the indices, this only represents the estimated 
observation error for the mean catch rate. The error associated with the difference between 
the relative stock size and the index is not estimated and would need to be included in the 
stock assessment model. 

Further analysis of more detailed information available from log-books may indicate how 
the standardisation model might be improved. One way in which the model could improve 
is to make greater use of random effects modelling, which can help solve a range of issues. 
Random effects could be useful for partition CPUE variance among various sources. For the 
current CPUE this could serve two purposes. 

1. Catchability for individual vessels could be estimated as a random effect based on a 
mean fishing power determined by vessel characteristics (length primarily). Given 
the number of vessels and various data problems, this may be difficult to achieve 
using maximum likelihood. 

2. Interaction terms between the time series variables and other factors, notably factors 
based on area. In this latter case, it might be hypothesized that catch rates vary 
dependent on fish location rather than overall abundance, so high catch rates in any 
area may imply lower catch rates in other areas. Random effects can be used to model 
this sort of factor. This might be most useful when joining indices that have some 
spatial overlap. The lack of spatial information make this approach probably 
unnecessary at this stage. 
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