PRESENTATION OF MANAGEMENT STRATEGY EVALUATION RESULTS

This example trade-off plot indicates the tradeoffs in performance of 6 management procedures (MPs) between catch and SB/SB_{MSY}. Each data point represents the median over the last 20 years of the projection period and the errors bars represent 5th and 95th percentiles. Limit and target reference points are indicated by red and green dashed lines respectively.

Figure 5. Plot comparing Management Procedures (MPs) against proportion of runs in each of the Kobe quadrants

This example plot compares six management procedures (MPs) against proportion of runs in each of the Kobe quadrants (green, orange, yellow and red) in each projection year over from 2016 to 2040.

These example time series plots indicate the performance of 1 MP against the stock size (left) and fishing intensity (right) performance measures projected over the years 2016-2040. The median is represented by the bold black lines, a dark ribbon shades the 25th - 75th percentile region and a light ribbon shades the 10th - 90th percentile region. Three additional thin black lines show individual realizations.

Table 1. Summary table of performance of Management Procedures (MPs). Performance of 6 MPs against 5 performance measures averaged over the last 20 years of the projection period. Shading indicates the relative performance for each MP (dark = better, light = worse).

Management Procedure	Performance Measure								
	SB/SB _{MSY}	Probability(Green)	Probability(SB>limit)	Mean Catch	Catch variability				
MP1	0.78	0.05	0.84	516	0.16				
MP2	1.33	0.94	0.96	383	0.28				
MP3	1.48	0.96	1	358	0.3				
MP4	1.21	0.84	0.93	419	0.22				
MP5	0.72	0	0.71	611	0.1				
MP6	1.11	0.61	0.91	452	0.21				

Table 2a. Hypothetical example of MSE outputs comparing the performance of 6 management procedures (MPs) against all IOTC performance measures for in the first projection year.

Status : maximize stock status			1 year					
		MP1	MP2	MP3	MP4	MP5	MP6	
1. Mean spawner biomass relative to pristine	SB/SB ₀	0.5	0.8	0.9	0.7	0.4	0.6	
2. Minimum spawner biomass relative to pristine	SB/SB ₀	0.3	0.6	0.6	0.5	0.2	0.4	
3. Mean spawner biomass relative to SB _{MSY}	SB/SB _{MSY}	0.8	1.3	1.4	1.2	0.7	1.1	
4. Mean fishing mortality relative to target	F/F _{tar}	1.4	0.6	0.4	0.8	1.5	0.9	
5. Mean fishing mortality relative to <i>F_{MSY}</i>	F/F _{MSY}	1.4	0.6	0.4	0.8	1.5	0.9	
6. Probability of being in Kobe green quadrant	SB,F	0.5	0.9	1	0.8	0.3	0.7	
7. Probability of being in Kobe red quadrant	SB,F	0.3	0.1	0	0.1	0.5	0.2	
Safety : maximize the probability of remaining above low stock status (i.e. minimize risk)								
8. Probability of spawner biomass being above 20% of SB_0	SB	0.8	0.9	0.9	0.8	0.7	0.8	
9. Probability of spawner biomass being above B _{Lim}	SB	0.8	1.0	1.0	0.9	0.7	0.9	
Yield : maximize catches across regions and gears								
10. Mean catch (1'000 t)	С	520	390	350	430	600	460	
11. Mean catch by region and/or gear (1'000 t)	С	250	200	180	210	310	220	
12. Mean catch relative to MSY	C/MSY	1.1	0.7	0.6	0.8	1.2	0.9	
Abundance: maximize catch rates to enhance fishery profitability								
13. Mean catch rates (by region and gear) (for fisheries with meaningful catch-effort relationship)	1	3.2	3.8	3.9	2.7	2.5	2.6	
Stability: maximize stability in catches to reduce commercial uncertainty								
14. Mean absolute proportional change in catch	С	0.2	0.3	0.3	0.2	0.1	0.2	
15. % Catch co-efficient of variation	С	20	25	24	18	12	21	
16. Probability of shutdown	С	0.01	0.01	0.01	0.01	0.01	0.01	

Table 2b. Hypothetical example of MSE outputs comparing the performance of 6 management procedures (MPs)against all IOTC performance measures for a 5-year projection period.

ıs : maximize stock status			5 years					
		MP1	MP2	MP3	MP4	MP5	MP6	
1. Mean spawner biomass relative to pristine	SB/SB ₀	0.5	0.8	1.0	0.7	0.4	0.6	
2. Minimum spawner biomass relative to pristine	SB/SB ₀	0.3	0.5	0.6	0.5	0.2	0.4	
3. Mean spawner biomass relative to SB _{MSY}	SB/SB _{MSY}	0.9	1.2	1.3	1.1	0.7	1.2	
4. Mean fishing mortality relative to target	F/F _{tar}	1.4	0.6	0.4	0.8	1.5	0.9	
5. Mean fishing mortality relative to <i>F</i> _{MSY}	F/F _{MSY}	1.5	0.5	0.4	0.8	1.6	0.9	
6. Probability of being in Kobe green quadrant	SB,F	0.5	0.9	0.9	0.8	0.3	0.7	
7. Probability of being in Kobe red quadrant	SB,F	0.3	0.1	0.0	0.1	0.5	0.2	
Safety : maximize the probability of remaining above low stock status (i.e. minimize risk)								
8. Probability of spawner biomass being above 20% of SB_0	SB	0.8	0.8	0.9	0.8	0.7	0.8	
9. Probability of spawner biomass being above B_{Lim}	SB	0.8	1.0	1.0	0.9	0.7	0.8	
Yield : maximize catches across regions and gears								
10. Mean catch (1'000 t)	С	551	417	378	434	600	460	
11. Mean catch by region and/or gear (1'000 t)	С	248	194	176	229	335	218	
12. Mean catch relative to MSY	C/MSY	1.2	0.6	0.6	0.8	1.3	1.0	
Abundance: maximize catch rates to enhance fishery profitability								
13. Mean catch rates (by region and gear) (for fisheries with meaningful catch-effort relationship)	1	3.0	3.8	4.0	2.6	2.3	2.8	
Stability: maximize stability in catches to reduce commercial uncertainty								
14. Mean absolute proportional change in catch	С	0.2	0.3	0.3	0.2	0.1	0.2	
15. % Catch co-efficient of variation	С	19.4	27.3	26.2	17.6	11.5	21.0	
16. Probability of shutdown	С	0.01	0.01	0.01	0.01	0.01	0.01	

Table 2c. Hypothetical example of MSE outputs comparing the performance of 6 management procedures (MPs) against all IOTC performance measures for a 10-year projection period.

Status : maximize stock status				10 y	ears		
		MP1	MP2	MP3	MP4	MP5	MP6
1. Mean spawner biomass relative to pristine	SB/SB ₀	0.5	0.8	0.9	0.7	0.4	0.6
2. Minimum spawner biomass relative to pristine	SB/SB ₀	0.3	0.6	0.6	0.5	0.2	0.4
3. Mean spawner biomass relative to SB _{MSY}	SB/SB _{MSY}	0.8	1.3	1.4	1.2	0.7	1.1
4. Mean fishing mortality relative to target	F/F _{tar}	1.4	0.6	0.4	0.8	1.5	0.9
5. Mean fishing mortality relative to <i>F_{MSY}</i>	F/F _{MSY}	1.4	0.6	0.4	0.8	1.5	0.9
6. Probability of being in Kobe green quadrant	SB,F	0.5	0.9	1	0.8	0.3	0.7
7. Probability of being in Kobe red quadrant	SB,F	0.3	0.1	0	0.1	0.5	0.2
Safety : maximize the probability of remaining above low stock status (i.e. minimize risk)							
8. Probability of spawner biomass being above 20% of SB_0	SB	0.8	0.9	0.9	0.8	0.7	0.8
9. Probability of spawner biomass being above <i>B</i> _{Lim}	SB	0.8	1.0	1.0	0.9	0.7	0.9
Yield : maximize catches across regions and gears							
10. Mean catch (1'000 t)	С	520	390	350	430	600	460
11. Mean catch by region and/or gear (1'000 t)	С	250	200	180	210	310	220
12. Mean catch relative to MSY	C/MSY	1.1	0.7	0.6	0.8	1.2	0.9
Abundance: maximize catch rates to enhance fishery profitability							
13. Mean catch rates (by region and gear) (for fisheries with meaningful catch-effort relationship)	1	3.2	3.8	3.9	2.7	2.5	2.6
Stability: maximize stability in catches to reduce commercial uncertainty							
14. Mean absolute proportional change in catch	С	0.2	0.3	0.3	0.2	0.1	0.2
15. % Catch co-efficient of variation	С	20	25	24	18	12	21
16. Probability of shutdown	С	0.01	0.01	0.01	0.01	0.01	0.01

Table 2d. Hypothetical example of MSE outputs comparing the performance of 6 management procedures (MPs) against all IOTC performance measures for a 20-year projection period.

Status : maximize stock status				20 y	ears		
		MP1	MP2	MP3	MP4	MP5	MP6
1. Mean spawner biomass relative to pristine	SB/SB ₀	0.5	0.8	1.0	0.7	0.4	0.6
2. Minimum spawner biomass relative to pristine	SB/SB ₀	0.3	0.5	0.6	0.5	0.2	0.4
3. Mean spawner biomass relative to SB _{MSY}	SB/SB _{MSY}	0.9	1.2	1.3	1.1	0.7	1.2
4. Mean fishing mortality relative to target	F/F _{tar}	1.4	0.6	0.4	0.8	1.5	0.9
5. Mean fishing mortality relative to <i>F_{MSY}</i>	F/F _{MSY}	1.5	0.5	0.4	0.8	1.6	0.9
6. Probability of being in Kobe green quadrant	SB,F	0.5	0.9	0.9	0.8	0.3	0.7
7. Probability of being in Kobe red quadrant	SB,F	0.3	0.1	0.0	0.1	0.5	0.2
Safety : maximize the probability of remaining above low stock status (i.e. minimize risk)							
8. Probability of spawner biomass being above 20% of SB_0	SB	0.8	0.8	0.9	0.8	0.7	0.8
9. Probability of spawner biomass being above B_{Lim}	SB	0.8	1.0	1.0	0.9	0.7	0.8
Yield : maximize catches across regions and gears							
10. Mean catch (1'000 t)	С	551	417	378	434	600	460
11. Mean catch by region and/or gear (1'000 t)	С	248	194	176	229	335	218
12. Mean catch relative to MSY	C/MSY	1.2	0.6	0.6	0.8	1.3	1.0
Abundance: maximize catch rates to enhance fishery profitability							
13. Mean catch rates (by region and gear) (for fisheries with meaningful catch-effort relationship)	1	3.0	3.8	4.0	2.6	2.3	2.8
Stability: maximize stability in catches to reduce commercial uncertainty							
14. Mean absolute proportional change in catch	С	0.2	0.3	0.3	0.2	0.1	0.2
15. % Catch co-efficient of variation	С	19.4	27.3	26.2	17.6	11.5	21.0
16. Probability of shutdown	С	0.01	0.01	0.01	0.01	0.01	0.01