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SUMMARY 

Population declines of many seabirds, including albatross and petrels, are caused by a range of impacts, 
notably environmental change and fisheries bycatch. Despite the scale and importance of longline fishing in 
the southern hemisphere, the impact of this type of fishery on seabird populations is poorly understood. To 
date, there has been no broad scale fleet-specific assessment of seabird bycatch throughout the southern 
hemisphere, mainly due to the spatial and temporal limitations in observer data coverage. Here we use three 
approaches to estimate total bird bycatch across the southern Atlantic and southwestern Indian Oceans: (1) 
a simple, stratified, ratio based estimator, (2) generalised additive models (GAMs) and (3) the 
computationally intensive Integrated Nested Laplace Algorithms (INLA). To estimate the total birds captured 
(N), stratified estimates of Bird catch Per Unit of Effort (BPUE) were multiplied with the total reported pelagic 
longline effort . A comparison of preliminary estimates of N based on a common data set is presented to 
illustrate the various methods. 
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Introduction 
Many seabird populations are vulnerable to bycatch mortality from commercial longline fishing due 
to their long life span, low fecundity and low natural mortality. Due to the threat posed by large scale 
fishing operations, seabird bycatch mitigation measures have been a requirement for longline vessels 
operating in the southern hemisphere south of 25°S. Regional Fisheries Management Organizations 
(RFMOs) have made various resolutions and recommendations to mitigate the potential impacts of 
the tuna and tuna-like fisheries on seabird populations. Specific conservation and management 
measures (CMMs) were adopted in July 2013, south of 25°S in the ICCAT convention area and from 
July 2014, south of 25°S in the IOTC convention area. These CMMs require the adoption of two of the 
following three mitigation measures, use of bird scaring lines (Tori Lines), night setting, and branch-
line weighting (ICCAT Rec11-09, IOTC Res12/06), noting that the recommendations for branch-line 
weighting have changed over time.  

Altough these measures have now been in place for a number of years no recent, large scale 
assessment of seabird bycatch has been attempted. Such an assessment is highly complex due to the 
paucity of reliable observer data, difficulties arising from variability in fishing methods, fleet 
characteristics, inconsistent reporting and because of challenges with respect to adequately 
accounting for the spatiotemporal variability in seabird presence and fishing effort. These factors need 
to be accounted for to estimate a standardised BPUE.  

This report examines potential approaches for analysis of a large observer dataset that contains 
information on seabird bycatch, which was created through collaboration between Brazil, South Africa 
and the Republic of Korea. The combined dataset, spanning the southern Atlantic and Indian Oceans, 
was used in combination with environmental and biological data to develop multiple estimates of 
seabird bycatch. Specifically three different principal approaches were employed and outcomes 
compared (1) a simple, statrified ratio-based estimator, (2) an approach based on generalized additive 
modelling (GAM), where environmental, temporal, spatial and fisheries-dependent factorswere 
included as covariates and (3) Integrated Nested Laplace Algorithms (INLA) which are hierarchical 
Bayesian spatiotemporal models.   

 

Materials and Methods 
Data 

Data were available at longline set level and spanned the years 1997-2015. The following were data 
fields common to all datasets:  

Set Date:    Set date, including day, month and year were available for each of the set 
locations 
Set ID:    An individual identifier for each set was available 
Observer Trip ID:  A unique trip identification code 
Flag ID:  A categorical variable based on the nationality of the vessel (Table 1), noting 

that some Japanese charter vessels operating within South African waters 
accrue their observer data to South Africa 

Vessel ID:   A unique identification number (or code) for each vessel 
Hooks set:   The total number of hooks per set  
Bird scaring lines:  The number of bird scaring (streamer) lines deployed per set  
Latitude:   The latitude of the start of the set  
Longitude:   The longitude of the start of the set 
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Proportion in daylight:  The proportion of the set in daylight was calculated using the set location 
and the ‘suncalc’ package in R 
(https://cran.rproject.org/web/packages/suncalc/suncalc.pdf) 

Moonphase:  The moonphase based on the set date was calculated via the ‘suncalc’ 
package in R  

Birds caught: The number of observed birds caught. South African data had some 
information on this element 

Set duration:   The length of time from start to end of set 
Depth:   This information was extracted from the National Oceanic and Atmospheric 

Administration (NOAA) website 
Depth (SD): Standard Deviation of Depth, calculated from NOAA depth data to infer 

changes in seafloor relief that is commonly aassociated with an increase in 
biological activity (i.e. shelf edge, seamounts, ocean ridges) 

Breeding season:  A categorical variable for non-breeding (October-April) and breeding seasons 
(May-September) based on the month of the set date  

 

The resulting data set contained approximately 13,000 spatially explicit records bounded by -50°W, -
20 °S, -60°S, and 50°E (Figure 1). Initial examination of the raw data showed high average BPUE 
clustered around the area off the coast of Brazil and South Africa (Figure 2). 

The proportion of sets completed during daylight hours (defined as between nautical dawn and 
nautical dusk) was determined based on the start and end time of the set and the vessel location. This 
proportion of sets showed a bimodal trend (Figure 4) with peaks at zero (indicating night setting) and 
a decline towards one (daytime setting). Of all the sets, 57% showed night setting only, 32% showed 
less than half the set was set during daylight (but not fully night), and 9% were sets that occurred 
completely during daylight hours. 

The observed sets showed a bimodal distribution throughout the year, with a peak of observed sets 
at the end of the breeding season towards the beginning of the non-breeding season, and another 
during the middle of the breeding season (Figure 5). The median size of the set, measured in hooks 
per set, was slightly larger during the non-breeding season (Figure 6), with the overall range being 
greater during the end of breeding season (April) and the non-breeding season. Sets were nearly 
evenly spaced throughout the month by moon phase (Figure 7). 

For modelling purposes, the dataset was confined to consider sets that fell between 2 and 8 hours of 
duration and at least 500 hooks per set, under the assumption that any sets outside those ranges were 
failed or non-standard sets. 

Analyses 
Geospatial modelling can take many forms, from including location in generalised linear/additive 
models (GLMs/GAMs) to more advanced models such as Integrated Nested Laplace Algorithms (INLA), 
and Vector Autoregressive Spatio-Temporal (VAST) models. These methods estimate density in areas 
with little data, taking into account (to the extent possible) the operational factors relating to the 
fishing technique, the species distribution and the distribution of fishing that occurs in each area, and 
the spatial auto-correlation between these processes. The more advanced, techniques allow for the 
estimation of spatio-temporal variation in density, and can be used to predict range shifts over time 
and account for other covariates i.e. non-random selection of fishing locations. These methods 
estimate BPUE in space and time that is unbiased with respect to the other model covariates. To 
estimate the total number of birds caught in the area considered per year (N), the total pelagic longline 
fishing effort is incorporated into the modelling framework. 

https://cran.rproject.org/web/packages/suncalc/suncalc.pdf
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Many different methods have previously been applied to estimate total seabird bycatch from fishing 
activity (Lewison and Crowder, 2003; Benjamins et al., 2008; Jiménez et al., 2010). In general, most of 
these studies used data collected by observers on individual fishing operations. The data are then 
scaled up from observed catch to total catch. This approach estimates seabird bycatch via a bycatch 
rate for individual strata, usually area/time/fishery (or fleet) and is  termed stratified ratio-based 
estimator. To estimate the total bycatch for broad area/time strata such as a RFMO convention area, 
a second step is required to extrapolate bycatch estimates to all substrata of interest, by multiplying 
the stratified BPUE estimate by the effort in that strata, and then to aggregate all of the results. 

 Stratified Ratio Based Estimator for Seabird Bycatch 

Ratio based estimators were generated for 5° by 5° cells south of 20°S, between the eastern coast of 
South America and the eastern coast of South Africa (extended to western Indian Ocean area as 
previously defined). Estimates had to be extrapolated for the majority of strata (90%) and hence the 
results of this method are conditioned on the available data. Stratifying the dataset by time (year-
quarter) and area resulted in many empty cells and was found to provide too coarse coverage of strata. 
Essentially, assumptions on time-invariant catch rates are used to generate these estimates, with 
either a grand mean for strata with no coverage/or use of nearest neighbour. 

Three datasets (Brazil, Republic of Korea and South Africa including Japanese flagged joint-venture 
vessels), were combined for the years 2012-2015 to estimate bycatch rates by fleet and area and 
expanded to effort in the strata where these data existed. Data were pooled across years to estimate 
BPUE according to breeding season or non-breeding season. Estimates of overall observed strata and 
catches are shown in Figures 8-15 for 2012, 2013, 2014 and 2015. The points in the lower panel 
indicate where the sampling occured for that year and where effort occurred. Catch estimates using 
all BPUE data observed in all strata were estimated as shown below. Different fleets were used to 
estimate these bycatch rates, total seabird bycatch estimates shown in Table 1. The basic estimator is 
shown in equation 1: 

�̂�𝑠,𝑡 = 𝐵𝑃𝑈𝐸̅̅ ̅̅ ̅̅ ̅̅
𝑠,𝑡𝐸𝑠,𝑡          (1) 

where s is strata (5° by 5° cell and season), t denotes the year, C is the number of estimated bycatch 
of seabirds across all species, BPUE is the bird bycatch per unit effort (1000 hooks), and E is the effort 
(1000 hooks). 

Estimates appear to be increasing from 2012 to 2013 when multiple tRFMOs were instituting CMMs. 
Between 2013 and 2015 there is a decline in bycatch rates, but this is statistically not significant, as 
indicated in Figure 16. Species-specific rates are difficult to estimate but if some known proportion of 
mortalities can be estimated by time and area, this can also be enumerated using eq. 2: 

�̂�𝑆𝑃,𝑠,𝑡 = 𝑃𝑆𝑃𝑃,𝑠,𝑡𝐵𝑃𝑈𝐸̅̅ ̅̅ ̅̅ ̅̅
𝑠,𝑡𝐸𝑠,𝑡         (2) 

Where SP indicates species and P is the proportion of catch by species in strata s and time t. Data at 
that level of resolution remain unavailable at this time. 

 Generalised Additive Models (GAMs) 

GAMs provide a flexible tool for estimating catch per unit of effort in space and time. Often the 
objective of the modelling is to identify whether there is evidence for a space-time interaction in 
abundance, which may suggest local aggregation (hotspots) or strong seasonal variability. The 
combined dataset was fitted with a GAM to produce spatio-temporal estimates of the BPUE in the 
southern Atlantic and western Indian oceans. Multiple models were explored. The model presented 
here assumes that BPUE follows a Tweedie distribution, which provides a efficient means to account 
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for high proportion of zeros in the data. The functional relationships between BPUE and 
environmental variables are likely to be non-linear (Bigelow et al., 1999). The GAM for the BPUE 
standardisation therefore included splines (s) and was specified as: 

BPUE = s(Depth) +s(sd.Depth) +s(Moonphase)+s(Proportion Daylight)+Season+ s(Latitude:Seanson)+  

Flag +                (3) 

where the s denotes splines, the “:” denotes interactions and  errors distributed according to the 
Tweedie distribution.  The partial effect plots (the effect of each of the factors individually) are shown 
in Figure 17. To calculate the total seabird bycatch, a multi-dimensional prediction matrix was 
constructed to predict BPUE on a 5°×5° resolution disaggregated by season, fleet and different moon-
phases.  Proportion Daylight was set to fleet-specific averages. These predicted BPUE surfaces are then 
multiplied by the fleet-specific reported effort, after aggregating the mean BPUE to 10°x 10° 
resolution. Reported effort for fleets that were not represented by available observer data were 
assigned to preliminary clusters. For example, stratified Taiwanese (province of China) longline effort 
was multiplied by the mean BPUE predicted for Japan and Korea. Estimates from the GAM model are 
shown in Table 2 and indicate decreasing catches between the years 2010 and 2015, with values 
between 11,000 and 17,000 seabirds caught per year. 

Integrated Nested Laplace Algorithms (INLA) 

Like many fisheries datasets, seabird bycatch data are characterised by complicated statistical 
features, such as excess of zeros, nonlinearity, nonconstant variance structure and spatiotemporal 
correlation. Althouigh INLA has several principles in common with generalized linear models and 
GAMs, INLA  can more adequeatly model datasets with complex spatial structure.  The main difference 
is that instead of representing space as a set of fixed or continuous variables, INLA constructs flexible 
fields that are able to capture the characteristics of the dataset. In practice, INLA is implented as a 
hierarchical Bayesian spatiotemporal estimation model. 

This analysis presents estimates of total seabird bycatch based on three distinct scenarios for the 
specification of spatial and temporal interactions. The first scenario consists of estimating the total 
bycatch for all longline fisheries fleets and assuming a spatial correlation between the years. The 
second scenario is aimed to estimate the total bycatch for all longline fleets with a spatial correlation 
between the months. The third scenario is aimed at estimateing the total capture with spatial 
correlation between seasons. 

Each scenario was analysed using INLA models that use a Bayesian framework. INLA implements a 
basic generalised additive model of the form: 

𝜂𝑖 = 𝛽0 + ∑ 𝛽𝑚𝑥𝑚
𝑀
𝑚=1 +∑ 𝑓𝑙(𝑧𝑙𝑖)

𝐿
𝑙=1                                                            (4) 

where ηi is the linear predictor structured as an additive function of Φi (usually the mean E(yi)) and 
this relation is observed by a link function g(.), such that g(Φi) = ηi. β0 is a scalar representing the 
intercept; βm quantify the (linear) effect of some covariate x on the response, and; fi = {f1(.), …, fL(.)} 
is a collection of functions defined in terms of a set of covariates z = (z1, …, zL). The terms fi(.) can 
assume different forms such as smooth and nonlinear effects of covariates, time trends and seasonal 
effects, random intercept and slopes as well as temporal or spatial random effects (Rue et al., 2009; 
Blangiardo and Cameletti, 2015; Zuur et al., 2017). 

Additionally, the models implemented were structured with spatial dependency through the 
neighborhoods of first order, in other terms, only the squares immediately neighboring were 
considered to be a spatial influence to seabird bycatch estimation. This spatial dependency was 



Geo-Statistical Estimation of Seabird Bycatch                                              IOTC–2018–WPEB14–XX 

6 
 

treated with an Intrinsic Conditional Autoregressive (iCAR) structure. The final model was structured 
as follows: 

𝐵𝑃𝑈𝐸 = 𝛽0 +∑𝑓𝑙(𝑦𝑒𝑎𝑟)

𝐿

𝑙=1

+ ∑ 𝑓𝑚(𝑚𝑜𝑛𝑡ℎ)

𝑀

𝑚=1

+∑𝑓𝑛(𝑓𝑙𝑎𝑔)

𝑁

𝑛=1

+ 𝛽1𝑑𝑎𝑦𝑙𝑖𝑔ℎ𝑡 + 𝛽2𝑚𝑜𝑜𝑛𝑝ℎ𝑎𝑠𝑒 + 𝑓(. ) 

where β0 is the intercept, and β1 and β2 are the linear regression coefficients for the covariates; the 
functions f represents the sum of smooth functions defining as the random effect of year – with an 
autoregressive structure with order 1; month – with an autoregressive structure with order 1 and flag 
– structures with independent random variable. The function f(.) is a semiparametric function defining 
the spatiotemporal random effect.  

In general, BPUE refers to the birds catch by the fishing gear (dead or alive) and year has an 
autoregressive correlation with order 1, as does month. Flag is included as a random variable without 
specific structure, daylight and moonphase as a linear numeric regression, and the spatial was 
structured as an iCAR with correlation between seasons. 

Results 
The estimates of seabird bycatch based on the stratified ratio based, GAM, and INLA models are 
broadly comparable as shown in Tables 1 ,2, and 4, respectively. Comparison of estimates of total 
seabirds caught are presented in Figure 22 along with a comparison to a reference estimate made 
based on a direct ratio estimate, assuming 0.2 birds per 1000 hooks. 

In general, the majority of the estimates range between 10 000-20 000 birds caught per year in the 
study area. The exception is the estimates from the stratified ratio-based estimates using the Brazilian 
observer data and also the INLA based estimates which range from approximately 10 000- 50 000 birds 
caught per year. 

The results from the GAM vary by breeding and non-breeding season. The GAM predicts high 
(potential) seabird bycatch in the most southern latitudes (breeding areas) during breeding season 
and high densities between 35° S and 45° S Latitude during the non-breeding season (presumably core 
foraging areas). This is illustrated in Figure 18.  The standardised mean BPUE (5°x5°) and the 
aggregated mean annual effort in 1000 hooks (10°x10°) are shown in Figure 19. This provides an broad 
approximation of the overlap between the estimated BPUE and the reported effort – the combination 
of which forms our estimates of seabird bycatch.  The total estimated annual seabird bycatch ranged 
between 11500 and 17620 birds for 2010-2015 with the mean of 14200. At this point all estimates are 
considered preliminary and subject to revision. 

Three spatial correlations between times were tested a) spatial was structured as an iCAR with 
correlation between seasons; b) spatial was structured as an iCAR with correlation between months 
and c) spatial was structured as an iCAR with correlation between years (Table 3). Judging by the 
Watanabe-Akaike information criterion (WAIC) the best model was the model with model (a) where 
the spatial correlation was structured as an iCAR with correlation between seasons. All models showed 
no failures in convergence (i.e. FAIL in Table 3) and in the Conditional Predictive Ordinates (CPO). The 
CPO is the probability of an observed response based on the model to fit to the rest of data. In general, 
it is important to see low values in this metric. The final step in the analysis is to conduct the prediction 
and estimation of total seabird bycatch. This step was completed by predicting the total bycatch based 
on the predicted BPUE and reported effort obtain the total estimates of birds caught on an annual 
basis (Table 4). 
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Conclusions   
This paper considered multiple analytical approaches for producing estimates of seabird bycatch 
(including live releases) for all birds caught in the study area. This is a initial step towards developing 
and comparing methods for seabird bycatch estimation on a global scale. Although this work should 
be regarded as preliminary, the relatively small range of estimates produced by the different methods 
is encouraging. More work needs to be done to estimate uncertainty, align the different assumptions 
among the methods, standardize estimates to the same prediction data matices and refine the 
incorporation of environmental and biological covariates. However, there are limitations to statistical 
inference based on a relatively small (<10%) subset of time area strata with detailed observer data. To 
substantially improve on these estimates a larger proportion of sets observed and fleet coverage 
across the entire fishing footprint as well as more detailed information on species-specific bird 
distribution would be desirable. Other approaches that consider the effect of spatial and overall 
observer coverage on the model  datasets that include the analysis of simulated data could show what 
biases are to be expected.   
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Tables 
 

Table 1: Estimates of seabird bycatch based on BPUE observed by vessels in different CPCs (BZ for 
Brazil, ZAF for South Africa, JPN for Japan, KOR for Korea, Avg. for average and SD for the standard 
deviation of the estimates) using stratified ratio-based estimates. 

Year BZ ZAF JPN KOR Avg. SD 

2012 32319 8779 10427 7596 14780 11750 

2013 36077 9657 11447 8397 16395 13181 

2014 28178 7134 8641 6234 12547 10468 

2015 25847 6854 8142 5949 11698 9476 

 

 

Table 2: Annual estimates of seabird bycatch (live and dead captures) for the study region for the 
years 2010-2015. Esitmates are based on the predicted BPUE from   the GAM model and publically 
available data on longline effort. 

Year 
Seabird 
Bycatch 

2010 16,324 

2011 17,265 

2012 12,989 

2013 14,903 

2014 12,396 

2015 11,534 
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Table 3: Comparison of final model selction based on spatial structur and diagnostics. Model dianostics 
are the   Watanabe-Akaike information criterion (WAIC),  Conditional Predictive Ordinates (CPO), and 
convergence failure (FAIL). 

Spatial Structure Likelihood WAIC CPO FAIL 

     

iCAR between seasons Poisson 4541.31 0.3 0 

iCAR between month Poisson 8299.49 0.3 0 

iCAR between years Poisson 8017.67 0.3 0 

 

 

Table 4: Annual (2012-2015) estimates of seabirds caught and 95% confidence intervals (based on the 
2.5% and 97.5% quantiles using the INLA model. 

Year Birds Caught 2.5% 97.5% 

2012 32,368 372 67,220 

2013 9,915 53 20,108 

2014 21,519 85 40,610 

2015 53,744 198 98,959 
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Figures 
 

 

Figure 1. Distribution of total fishing effort observed in pelagic longline fleets operating in the Atlantic 
and south-west Indian oceans. Data were from observer programmes of Brazil (2000-2017), South 
Africa (2002-2016) and the Republic of Korea (2012-2016). Observer data from South Africa include 
foreign charter vessels 

 

Figure 2. Distribution of the observed BPUE from tuna longline fleets of Brazil, South Africa and Korea, 
combined. Data represent combined averages of BPUE over individual 5° cells. 
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Figure 3. Distribution of BPUE by month for all sets (top panel) and only those with seabirds caught (a 
positive catch rate, bottom panel) 

 

 

Figure 4. Proportion of observed sets from tuna longline fleets of Brazil, South Africa and Korea, 
conducted in daylight 
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Figure 5.  Number of observed sets from tuna longline fleets of Brazil, South Africa and Korea, by 
month, 2010-2015 combined, coloured by seabird breeding (October-April, blue) and non-breeding 
(May-September, green) season 

 

Figure 6.  Number of hooks per set, by month, from tuna longline fleets of Brazil, South Africa and 
Korea, by month, 2010-2015 combined. 
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Figure 7. Sets from tuna longline fleets of Brazil, South Africa and Korea, 2010-2015 combined by moon 
phase, where 0.5 represents a full moon, and 0 represents a new moon and 1 represents the waning 
crescent 

 

 

Figure 8. Seabird bycatch estimates for non-breeding season and for observed strata for 2012. Lower 
panel indicates effort coverage (circles), and observations squares. Estimates for unsampled strata for 
the year where other years’ observations were available are shown in the top panel 

 

Figure 9. Seabird bycatch estimates for breeding season in observed strata for 2012. Lower panel 
indicates effort coverage (circles), and observations squares. Estimates for unsampled strata for the 
year where other years’ observations were available are shown in the top panel 
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Figure 10: Seabird bycatch estimates for non-breeding season in observed strata for 2013. Lower panel 
indicates effort coverage (circles), and observations squares. Estimates for unsampled strata for the 
year where other years’ observations were available are shown in the top panel 
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Figure 11. Seabird bycatch estimates for breeding season in observed strata for 2013. Lower panel 
indicates effort coverage (circles), and observations squares. Estimates for unsampled strata for the 
year where other years’ observations were available are shown in the top panel 
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Figure 12. Seabird bycatch estimates for non-breeding season in observed strata for 2014. Lower panel 
indicates effort coverage (circles), and observations squares. Estimates for unsampled strata for the 
year where other years’ observations were available are shown in the top panel 
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Figure 13. Seabird bycatch estimates for breeding season in observed strata for 2014. Lower panel 
indicates effort coverage (circles), and observations squares. Estimates for unsampled strata for the 
year where other years’ observations were available are shown in the top panel 
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Figure 14. Seabird bycatch estimates for non-breeding season in observed strata for 2014. Lower panel 
indicates effort coverage (circles), and observations squares. Estimates for unsampled strata for the 
year where other years’ observations were available are shown in the top panel 
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Figure 15. Seabird bycatch estimates for breeding season in observed strata for 2014. Lower panel 
indicates effort coverage (circles), and observations squares. Estimates for unsampled strata for the 
year where other years’ observations were available are shown in the top panel 
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Figure 16. Estimates of total seabird bycatch based on BPUE by flag state (BZ = Brazil, ZAF = South 
Africa, JPN = Japan, KOR = Korea); or aggregated with variability across BPUE across flag states 
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Figure 17. Partial effects plots (the effect of each of the factors individually) of variables affecting 
seabird bycatch estimates. The top row shows the effect of latitude by season (breeding is on the left), 
mu.depth represents the average depth of the seabed in the  5° by 5° cell, sd. depth is the standard 
deviation of the depth in the 5°X5° cell and set.daylight is the proportion of the set in daylight. 
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Figure 18. Estimated seabird BPUE from the GAM model. Darker colors represent higher BPUE and 
blue diamonds represent observed sets. The top panel represents the non-breeding season and the 
bottom panel represents the breeding season 

 



Geo-Statistical Estimation of Seabird Bycatch                                              IOTC–2018–WPEB14–XX 

24 
 

 

Figure 19. Estimated mean seabird BPUE (on a 5° by 5° basis, top panel) and the mean annual effort 
in units of 1000 hooks. 
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Figure 20. Summary of the spatial random effect (Gaussian random fields) for each year and season (breeding and non-breeding) – mean. 

 
Figure 21. Summary of the spatial random effect (Gaussian random fields) for each year and season (breeding and non-breeding) –standard deviation. 
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Figure 22. Comparison of estimates of total seabirds caught, abbreviations are as defined above for 
GAM, and INLA. A comparison to an estimate made based on a direct ratio-based estimate (Ratio_0.2, 
where 0.2 birds per 1000 hooks is assumed) is included for reference. SR = stratified ratio-based 
estimates, BZ = Brazil data, ZAF = South Africa data, JPN_ZAF = Japanese effort in South Africa, KOR = 
Korea data, and AVG as the average of the estimates. 
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Annex 1 Background on the CO/ABNJ Seabird Project 
 

In 2017, with the support of the FAO’s Common Oceans program, BirdLife commenced supporting 
national scientists to undertake work towards the evaluation of seabird bycatch from tuna longline 
fishing in the waters south of 25°S. The purpose of this work is twofold: 

1. To estimate the number of seabird bycatch in tuna longline fishing annually, from the most 
recent and credible set of annual observer and effort data (expected 2012 to 2016). 

2. To evaluate the impact of seabird bycatch mitigation measures on BPUE. 

The first phase of the project focused on national scientists compiling national bycatch data and 
producing standardised reports and undertaking basic exploratory analysis. The second phase of the 
project (occurring concurrently with phase 1) is oriented at national scientists undertaking 
collaborative, intersessional work to collate datasets and identify factors contributing to the 
differences in BPUE between fleets (to the extent possible).  The third phase of the project is pair of 
workshops focusing on  data preparation (held in February 2018)  and analysis (to be held February 
2019) to complete the goals of the project. 

For more information on this project, please contact: Nini van der Merwe, International Liaison Officer 
Nini.vdmerwe@birdlife.org.za 

mailto:Nini.vdmerwe@birdlife.org.za

