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The South African (SAF) yellowfin tuna (Thunnus albacares) fishery represents a potential example of misalignment between management
units and biological processes. The SAF fishery spans an operational stock with a boundary at 20�E, either side of which fish are considered
part of Atlantic or Indian Ocean regional stocks. However, the actual recruitment of fish from Atlantic and Indian Ocean spawning popula-
tions into SAF waters is unknown. To address this knowledge gap, genomic analysis (11 101 SNPs) was performed on samples from Atlantic
and Indian Ocean spawning sites, including SAF sites spanning the current stock boundary. Outlier loci conferred high discriminatory power
to assignment tests and revealed that all SAF fish were assigned to the Indian Ocean population and that no Atlantic Ocean fish appeared in
the SAF samples. Additionally, several Indian Ocean migrants were detected at the Atlantic spawning site demonstrating asymmetric dispersal
and the occurrence of a mixed-stock fishery in Atlantic waters. This study highlights both the spatial inaccuracy of current stock designations
and a misunderstanding of interactions between the underlying biological units, which must be addressed in light of local and global declines
of the species. Specifically, the entire SAF fishery must be managed as part of the Indian Ocean stock.
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Introduction
The worldwide depletion of fish communities (Myers and Worm,

2005) with evidence of fishery induced economic (Botsford et al.,

1997) and biological extinctions (Jackson et al., 2001) highlights

the importance of identifying biologically distinct units within

marine fishes for both sustainable management and conservation

of marine biodiversity (Ruzzante, 2006). The ability to monitor

the dynamics of such components within systems involving sea-

sonal migration and potential spatial overlap is beneficial, as

more easily exploited and/or less productive units may be suscep-

tible to overharvesting, contributing to loss of diversity and adap-

tive potential (Iles and Sinclair, 1982) and producing negative

effects on recruitment potential and population/fishery viability

(Ryman et al., 1995). Recent advances in population genomic

methods offer considerable potential as tools to meet the many

challenges associated with sustainable fishery management

(Allendorf et al., 2010). However, this potential is yet to be fully

harnessed for a variety of reasons. The integration of genomics

data and fishery management is particularly hampered in devel-

oping countries where threats to fishery sustainability may be

most concentrated (Waples et al., 2008; Willette et al., 2014;

Bernatchez et al., 2017).

Yellowfin tuna, Thunnus albacares is globally distributed in

tropical waters and supports fishery stocks that extend across
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boundaries of national exclusive economic zones (EEZs) and into

the high seas. The species accounts for the second largest world-

wide catch of tuna and tuna-like species (after skipjack tuna

Katsuwonus pelamis) in terms of catch weight and volume

(Miyake et al., 2010; Juan-Jordá et al., 2013; FAO, 2017), with an

average annual catch of �1.25 million metric tons over the past

decade (Pecoraro et al., 2017). At present, four regional tuna

management units are described, Atlantic, Indian, Eastern Pacific,

and West Central Pacific, and each is managed as a single stock

by the respective tuna Regional Fisheries Management

Organisations (tRFMOs) (Pecoraro et al., 2017). Recent genomic

studies have confirmed genetic differences and restricted inter-

breeding among regional groups (Pecoraro et al., 2016; Barth

et al., 2017). As previous studies have been macrogeographic in

scale, there is still considerable uncertainty over the fine-scale

boundaries and interactions among genetic groups and their con-

gruence with current operational stock boundaries. Mismatch be-

tween biological and management units is recognized as a major

threat to global fishery sustainability (Reiss et al., 2009), and clari-

fying any such inconsistencies for yellowfin tuna is an urgent con-

sideration as the management units are currently described as

fully exploited and may even be overexploited (Majkowski, 2007),

with the species being described as “near threatened” by the

IUCN (Collette et al., 2011).

The South African (SAF) yellowfin tuna fishery provides a

striking case where management units may be incongruent with

biological population processes of dispersal, interbreeding and

adaptation. The present management boundary between the

Atlantic and Indian Ocean operational stocks lies off South Africa

at 20�E (FAO, 2017), and the two stocks are assessed and man-

aged by the International Commission for the Conservation of

Atlantic Tunas (ICCAT) and the Indian Ocean Tuna

Commission (IOTC), respectively (Figure 1). Yellowfin tuna

catches west of the 20�E are reported to ICCAT for inclusion in

the Atlantic Ocean stock assessment, whereas catches east of this

line are reported to the IOTC. However, this boundary is not

based on any recognized biogeographic boundary or species-

specific biological information but is based on a geographic

feature, the southernmost tip of Africa at Cape Agulhas at the

confluence of the Atlantic and Indian Oceans. Yellowfin tuna do

not spawn off the southern coast of South Africa, as the local en-

vironment does not provide conditions for optimal survival of

early life stages (Pecoraro et al., 2016), and thus adults occurring

there represent allochthonous feeding migrants. Barth et al.

(2017) suggested that the Benguela current system (BCS) along

southwest African coast may be a barrier to dispersal of individu-

als from Atlantic spawning areas north of the BCS into SAF wa-

ters. It could therefore be hypothesized that the SAF fishery is

being sustained solely by individuals from Indian Ocean spawn-

ing population(s). If so, the accuracy of current stock monitoring

methods is fundamentally compromised. These inaccuracies need

to be urgently resolved, because the Standing Committee on

Research and Statistics of ICCAT has reported the Atlantic stock

as over-fished (ICCAT, 2017), and the Scientific Committee of

the IOTC has declared the Indian Ocean stock as overfished and

has proposed an interim rebuilding plan (IOTC, 2016).

The present research aimed to build on and extend previous

studies of yellowfin tuna by using RAD-Seq genotyping to assess

the membership of yellowfin tuna adults sampled in SAF waters,

from sites spanning the operational stock boundary, to Atlantic

and Indian Ocean genetic stocks. A specific hypothesis being

tested was that, in line with current management unit delineation,

Western Cape and Southern/Eastern Cape yellowfin are derived

from distinct Atlantic and Indian Ocean spawning populations,

respectively. This study reports robust genetic patterns that both

corroborate previous studies and reveal new aspects of yellowfin

biocomplexity that collectively highlight both the spatial inaccu-

racy of current stock designations and a misunderstanding of dis-

persal patterns and population boundaries. These discrepancies

prevent the accurate assessment of population productivity and

dynamics, and so undermine the effectiveness of management

actions that may compromise resilience and sustainability of the

resource.

Material and methods
Sample collection, DNA isolation, and species
verification
Our sampling strategy (Table 1 and Figure 1) was devised to in-

clude fish off the Western (Atlantic Ocean waters) and Eastern

(Indian Ocean waters) Cape Provinces, as well as fish from puta-

tive spawning areas of regional stocks in the Atlantic Ocean [Gulf

of Guinea (CG), ICCAT, 2016 and Indian Ocean (KwaZulu-

Natal), IOTC, 2014]. Fin clips from individual yellowfin tuna

were fixed in 95% ethanol. DNA was extracted from fin clips us-

ing a phenol/chloroform/isoamyl alcohol (PCIA) method follow-

ing Winnepenninckx et al. (1993). A segment of the

mitochondrial Control Region was amplified with the polymerase

chain reaction (PCR) and sequenced in both directions using the

species-specific primers (50-TCCTACCCCTAACTCCCAAAG-30;
and reverse primer: 50-AAACTGTGGGGATTCTCAC-30).

Sequences were used to confirm species identity using the BLAST

function in GenBank. MtDNA summary statistics and estimates

of inter-sample differentiation were calculated following

McKeown et al. (2015).

SNP genotyping
SNP genotyping by sequencing was performed using tunable

Genotyping By Sequencing (tGBS), a modified version of RAD-

Figure 1. Geographical location of sample sites (codes correspond to
Table 1) with approximate location of the Benguela Current System
(BCS), and 20�E operational stock boundary (dashed line). Solid line
denotes proposed location of new management boundary at
�13.35�E based on genetic results from this study.
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Seq that incorporates digestion with two enzymes for genome re-

duction and results in an increased number of reads per site (Ott

et al., 2017). The tGBS libraries were sequenced on a Life

Technologies’ Ion Proton System. Sequenced reads were analysed

using a custom Perl script (available at https://github.com/orgs/

schnablelab; accessed 20 July 2018), which assigned each read to a

sample and removed barcode sequences. Seqclean (sourceforge.-

net/projects/seqclean) was then used to remove proton adaptor

sequences and chimaeric reads harbouring internal restriction en-

zyme sites. Retained reads were subjected to quality trimming in

two phases using the software Lucy2 (Li and Chou, 2004) in

which bases with PHRED scores <15 (of 40) were removed.

In the first phase, sequences were scanned at each end; whereas in

the second phase, sequences were scanned using overlapping

10 bp windows. Quality trimmed sequence reads were aligned to

the reference genome of Pacific bluefin tuna, Thunnus orientalis

(Nakamura et al., 2013), using GSNAP (Wu and Nacu, 2010).

Sequence alignments were then scanned for polymorphisms. A

SNP was called homozygous if at least 15 reads supported the ge-

notype at the site and at least 90% of all reads covering that site

shared the same nucleotide. A SNP was considered heterozygous

if each of the two nucleotide variants were reported at least 10

times, and each allele was represented in >30% of the total reads.

SNP summary statistics and outlier analysis
Allele frequencies and observed (HO) and expected (HE) hetero-

zygosities were estimated using ARLEQUIN 3.4.2.2 (Excoffier and

Lischer, 2010). ARLEQUIN was also used to test for departures

from expectations of Hardy–Weinberg Equilibrium (HWE).

There are numerous challenges to detect SNP “outlier” loci that

are putatively under selection (Narum and Hess, 2011). Even

though the concept of balancing selection is well established,

there remain methodological limitations for its identification in

hitchhiking mapping (Hansen et al., 2010). Therefore, we re-

stricted our analysis to the detection of signals of directional se-

lection using two conceptually different approaches. First, we

used the FDIST2 outlier detection method (Beaumont and

Nichols, 1996) implemented in LOSITAN (Antao et al., 2008).

We used the “force mean FST” option to obtain the genome-wide

mean (neutral) FST value, to reduce the rate of false-positive de-

tection of outliers. We used a null model distribution of the mean

FST as a function of HE under an island model of population sub-

division using 50 000 simulations. Positive outlier SNPs were

identified as those falling above the 99% confidence intervals of

the null distribution. Second, the Bayesian approach imple-

mented in BAYESCAN 2.1 (Foll and Gaggiotti, 2008) was per-

formed using default Markov Chain Monte Carlo (MCMC)

parameters. Following the suggestion of Foll and Gaggiotti,

(2008) to minimize false positives, we used the “decisive” crite-

rion under Jeffreys’ scale of evidence (Jeffreys, 1961) to identify

outliers. Loci were considered to be under directional selection if

identified as outliers using both methods, as the detection of out-

liers through multiple methods increases the confidence that

these loci are non-neutral. The results between global and pair-

wise sample tests were compared to confirm consistency of outlier

designations. Functional significance of loci was investigated us-

ing BLAST in GenBank following Milano et al. (2014).

Geographical structuring of genetic variation
Genetic differentiation among samples was quantified by global

and pairwise FST (Weir and Cockerham, 1984) with statistical sig-

nificances evaluated in ARELQUIN with 10 000 permutations.

Genetic structuring was also investigated using the Bayesian clus-

tering method in STRUCTURE 2.3.4 (Pritchard et al., 2000), which

identifies the most probable number of genetically distinct groups

(K) represented by the data and estimates assignment probabilities

(Q) for each individual (specifically their genomic components) to

these groups. The analysis can be run without prior information;

however, incorporating prior information using the LOCPRIOR

model allows the clustering algorithm to assume that the probabil-

ity of assignment varies among samples thereby increasing power

while not biasing results (Hubisz et al., 2009). The analysis was per-

formed with and without the LOCPRIOR model, in both cases as-

suming admixture. Simulations were run 10 times for each

proposed value of K (1–5) to assess convergence. Each run had a

burn-in of 100 000 MCMC samples followed by 1 000 000 MCMC

repetitions. Models were assessed using DK (Evanno et al., 2005).

To complement the STRUCTURE analysis, classical assignment

tests were performed in GENECLASS 2.0 (Piry et al., 2004). The

“detect migrants” function was used to identify first generation

migrants born in a population other than the one in which they

were sampled (Paetkau et al., 2004; Piry et al., 2004). The test

Table 1. Sample information and summary indices of variation for mtDNA (N¼ number of individuals sequenced; NHap¼ number of
distinct haplotypes resolved; h¼ haplotype diversity; p¼ nucleotide diversity) and nuclear SNP data including numbers of individuals
genotyped (N) and polymorphic SNPs (NpolySNP), observed and expected heterozygosities (HO and HE, respectively) and their standard
deviations, and FIS (FIS values all non-significant).

Sample (code)
Sample coordinates
and date

mtDNA Nuclear SNPs

N N Hap h p N Npoly SNP HO HE FIS

Gulf of Guinea (GG) 2.5N/0.30W 20 20 1 0.025 20 10 710 0.228 (0.160) 0.256 (0.148) 0.13
August 2015

Western Cape, South Africa (WC) 35.61S/18.70E
October 2014

16 16 1 0.026 13 9 831 0.241 (0.163) 0.276 (0.145) 0.11

Eastern Cape, South Africa (EC) 34.72S/25.18E 17 17 1 0.024 16 10 413 0.235 (0.164) 0.264 (0.148) 0.11
June 2015

KwaZulu-Natal, South Africa (KZN) 30.83S/30.48E 20 20 1 0.022 20 10 766 0.224 (0.225) 0.254 (0.149) 0.11
July 2015

Mozambique (MOZ) 36.53S/34.50E 20 19 0.99 0.026 20 10 755 0.227 (0.160) 0.255 (0.148) 0.11
August 2015
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statistic Lh was used following Paetkau et al. (2004) and employing

Nei’s DA (Nei et al., 1983), which does not require conformance to

HWE. The simulation method in GENECLASS (10 000 simula-

tions) was also used to exclude individuals from a candidate popu-

lation if that individual’s probability of assignment to that

population fell below a 0.05 threshold. Genetic structuring was also

assessed using the discriminant analysis of principal components

(DAPC) implemented in ADEGENET (Jombart et al., 2010).

Whereas STRUCTURE assigns cluster membership by minimizing

Hardy–Weinberg and linkage disequilibria within clusters, DAPC

employs fewer assumptions and simply maximizes differences be-

tween groups while minimizing differences within groups with the

optimal number of groups identified using the Bayesian

Information Criterion (BIC).

Results
MTDNA variation
Alignment of 633 bp sequences across 93 individuals revealed 137

variable sites that defined 91 haplotypes, of which 89 were found

in a single individual. BLAST confirmed that all sequences were

yellowfin tuna. Haplotype diversity was high (h¼ 0.999) across

samples (Table 1). Global and pairwise tests of differentiation

among samples yielded non-significant values (global

UST¼ 0.001; p¼ 0.3).

Nuclear variation
A total of 179 521 855 raw sequenced reads across 96 yellowfin

tuna were obtained with between 56 871 and 10 442 486 raw reads

(average¼ 1 870 018) per individual. Seven individuals from the

WC sample with >60% of identified SNPs missing were removed

from the dataset, resulting in a dataset of �30 000 SNP loci for 89

individuals. The number of genotypes was further reduced by re-

moving SNP loci that were missing in >10% of individuals; this

resulted in a final SNP genotype dataset of 11 101 SNP loci for 89

fish with a mean of 10 495 (SD¼ 398) SNPs per individual. Levels

of genetic variability were similar across samples, and all samples

conformed to HWE (Table 1). Global genetic structuring was

weak (FST¼ 0.002) but statistically significant (p< 0.0001).

Pairwise tests revealed this significant structuring largely resulted

from the divergent GG sample, which showed significant FST val-

ues with all other samples (Table 2). All other pairwise FST values

were not significant, and excluding GG global structuring was not

significant (FST¼�0.0002).

The LOSITAN outlier analyses consistently reported a greater

number of positive outlier loci than the BAYESCAN analysis in

the various global and pairwise tests. For example, in the initial

global outlier test LOSITAN identified 756 positive outliers com-

pared with 11 by BAYESCAN. In all cases, outliers identified by

BAYESCAN were also among the outliers identified by

LOSITAN. Therefore, we restricted our discussion to the smaller

number of outliers identified using BAYESCAN, as the consensus

outliers were ultimately defined by the BAYESCAN results. The

results of outlier tests revealed a clear pattern that aligned with

the differentiation of GG from the remaining samples. Firstly, no

outliers were identified in global tests excluding the GG sample

compared with the detection of 11 in global test including GG.

Second, in tests between pairs of samples outliers were only iden-

tified in comparisons involving GG. All outliers identified in pair-

wise tests were among the 11 identified initially in the global test

and certain outlier were common across different pairwise com-

parisons. BLAST analysis did not provide insight into potential

functional associations of any of the outlier loci.

When outlier loci were excluded, the pattern of significant dif-

ferentiation of the GG sample from all other (non-differentiated)

samples was still evident in FST values (Table 2; Figure 2a) and

PCA clustering (Figure 2b). Analysis of the 11 outlier loci

reported considerably higher levels of differentiation of the GG

sample while retaining the pattern of homogeneity among the

remaining samples (Table 2; Figure 3a and b). Bayesian clustering

analysis of outlier genotypes unanimously supported a model of

K¼ 2, with identical results for the analyses with and without

LOCPRIOR. Under K¼ 2, all non-GG fish strongly assigned to

group B with high individual Q values, whereas the majority of

GG fish had higher or intermediate (overlapping confidence

Table 2. Pairwise FST values between samples with statistically significant values in bold.

GG WC EC KZN MOZ

Gulf of Guinea – 0.330 0.351 0.341 0.344
Western Cape 0.005/0.005 – –0.013 0.028 –0.011
Eastern Cape 0.004/0.003 –0.0016/–0.0017 – 0.056 –0.005
KwaZulu-Natal 0.005/0.003 –0.0008/–0.0001 –0.0004/–0.0006 – 0.005
Mozambique 0.005/0.004 0.0003/0.0002 0.0009/0.0007 0.0001/–0.0001 –

Below diagonal: Estimates across all SNP loci/neutral SNP loci. Above diagonal: estimates based on outlier loci only.

Figure 2. (a) Principal co-ordinate analysis of FST based on neutral
loci. (b) Principal component analysis (PCA) clustering analyses of
individuals based on neutral loci. For b ellipses summarize variation
per site using ADEGENET’s default “cellipse” settings.
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intervals for Q values) assignment probabilities of belonging to

group A (Figure 4). Four individuals in the GG sample had larger

Q membership values for group B. On the basis of the lack of dif-

ferentiation among the SAF/Indian Ocean samples, the samples

were pooled for the classical assignment tests between GG and the

remaining samples. Assignment tests identified the same four GG

individuals that had higher group B Q values as being first gener-

ation migrants from the pooled SAF/Indian Ocean group. No

other migrants were detected with all individuals correctly

assigned to the CG or Pooled group. Exclusion analysis using the

strict 0.05 threshold further highlighted the genetic differentiation

between both groups; first, of 16 non-migrants in the GG sample,

13 could be excluded from the Atlantic group, second, 42 of 69

non-migrants in the Atlantic/Indian ocean group could be ex-

cluded from GG.

Discussion
Mismatches between fishery management units and biological

population processes of dispersal, interbreeding and adaptation

are recognized as fundamental threats to fishery sustainability

and to long-term resilience to climate change (Reiss et al., 2009).

In light of global declines in yellowfin tuna numbers and contin-

ued intensive harvesting, a primary objective of our study was to

assess the biological validity of the current Atlantic Ocean and

Indian Ocean operational stocks through genomic analysis of fish

spanning the current stock boundary off the south coast of South

Africa. The salient findings were (i) a lack of population structur-

ing among the SAF samples, and (ii) genetic differentiation of the

GG population from the SAF population. These patterns were ev-

ident in FST estimates from the entire SNP and neutral SNP data

sets. A major hindrance to the integration of genetics into fishery

management has been the inability of traditional FST-based meas-

ures to infer short-term demographics because these measures re-

flect connectivity over multiple generations (Whitlock and

McCauley, 1999; Hellberg, 2009; Berry et al., 2012). Additionally,

divergence is expected to be slow for large populations experienc-

ing little genetic drift. Increasingly, individual-based kinship and

assignment tests are being used to directly assess dispersal

(Christie et al., 2010). Combining assignment tests with outlier

loci can provide high discriminatory power even with low levels

of background differentiation among populations (Helyar et al.,

2011; Bekkevold et al., 2015). This approach revealed two genetic

clusters in which all SAF specimens were assigned to one cluster

with the other comprising only GG fish. Collectively the neutral

and non-neutral genetic data concurrently resolved two genetic

groups.

On the basis of our sampling scheme, it can be assumed that

the two genetic groups (GG vs. the rest) correspond respectively

to the distinct Atlantic and Indian ocean genetic stocks previously

suggested by allozyme variation (Ward et al., 1997) and con-

firmed by genomic studies (Pecoraro et al., 2016; Barth et al.,

2017). The results therefore demonstrate that Western Cape yel-

lowfin tuna, currently assigned to the Atlantic operational stock,

are derived from an Indian Ocean genetic stock. Tagging data

corroborate the movement of yellowfin tuna individuals from the

western equatorial Indian Ocean to the southern Benguela region

off western South Africa (Eveson et al., 2015; Murua et al., 2015).

The concordant results among the present and previous genetic

studies and the temporal sampling range represented point to a

temporally stable pattern in which the Atlantic population is not

contributing to recruitment in SAF waters. Nevertheless, it cannot

be ruled out that there may be seasonal variation in stock mixing

or overlap.

The identification of isolating mechanisms is a crucial facet for

inferring demographic independence with a central topic in fish-

eries genetics being the relative roles of environmental forcing

and behaviour (Heath et al., 2008; McKeown et al., 2017). The

spatial genetic structure reported here and in Barth et al. (2017) is

compatible with a role for the cool upwelled waters of the BCS as

a potential barrier to dispersal of Atlantic yellowfin tuna into SAF

waters. Cold water barriers have been reported for several marine

Figure 3. (a) Principal co-ordinate analysis of FST based on outlier
(non-neutral) loci. (b) Discriminant analysis of principal components
(DAPC) describing variation among groups of individuals from
different samples estimated from outlier loci. For b ellipses
summarize variation per site using ADEGENET’s default “cellipse”
settings.

Figure 4. Bar graph illustrating average patterns of Bayesian clustering of individual under the optimum model of K¼ 2. Arrows above bar
graph denote Q values from those individuals identified as migrants in the GENECLASS tests.
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fishes (Gwilliam et al., 2018). Big eye tuna, T. obesus, is an inter-

esting comparison because genetically distinct Atlantic and

Indian Ocean fish mix in SAF waters. Yellowfin and bigeye tuna

have similar geographical distributions but occupy different eco-

logical niches and vertical habitats (Schaefer et al., 2009); bigeye

tuna are more tolerant of cooler water temperatures than are yel-

lowfin tuna (Brill and Lutcavage, 2001). Hence, the cold water of

the BCS may have less influence on the movement of bigeye tuna

from Atlantic Ocean waters north of the BCS into SAF waters,

than on yellowfin tuna.

Barth et al. (2017) reported evidence of asymmetric Indo-

Pacific-to-Atlantic gene flow across the BCS in yellowfin tuna,

and Reid et al. (2016) described a similar pattern in the cosmo-

politan bluefish (Pomatous saltatrix). In the present study, the

Bayesian clustering analysis revealed patterns compatible with

unidirectional gene flow from South Africa to GG. However,

such gene flow is typically regarded as being historical and no

studies have yet revealed recurrent dispersal of adults across the

BCS in species for which the BCS is a barrier to contemporary

gene flow. The multilocus identification of four Indian Ocean yel-

lowfin tuna among GG fish is striking as it shows that Indian

Ocean spawned yellowfin tuna are crossing the BCS and are mix-

ing with members of the Atlantic genetic stock. These dispersals

may be linked to Agulhas warm-core rings (Schouten et al., 2000)

that can facilitate the transfer of larvae/adults across the BCS and/

or to active swimming. In the latter case, unidirectional dispersals

may be facilitated by distinct genetic/plastic thermal tolerances of

Indian Ocean spawned fish. This suggests that a cryptic mixed-

stock fishery exists north of the BCS. Temporal studies are needed

to assess the consistency with which Indian Ocean migrants cross

the BCS.

The maintenance of genetic integrity of the Atlantic Ocean

stock in the face of potentially high rates of dispersal of Indian

Ocean genotypes implicates additional mechanisms that may be

isolating both stocks. The capacity for active dispersal of adults

highlights the potential importance of natal homing (Gaggiotti

et al., 2009; McKeown et al., 2017). Indian Ocean fish may mi-

grate into Atlantic spawning areas but return to the Indian Ocean

to spawn. If this is occurring samples collected during spawning

times should contain fewer migrants than at other times. In this

study the GG sample was collected outside of the spawning pe-

riod and so comparative analysis of a spawning sample from this

area could be highly informative regarding the role of homing.

The two genetic stocks may also be isolated by adaptation (Nosil

et al., 2009) with migrant offspring being selected against

(Hendry, 2004). The increased level of genetic divergence between

groups at outlier loci might be explained by directional selection,

with the resolved groups corresponding to differentially adapted

units (Milano et al., 2014). Alternatively, outlier loci may reflect

endogenous forces stemming from pre- and/or post-zygotic in-

compatibilities between populations with different genetic back-

grounds to produce intrinsic incompatibilities, rather than

reflecting adaptive environmental selection through genotype-

environment associations (Bierne et al., 2011). However, adapta-

tion and intrinsic incompatibilities are not mutually exclusive.

Along with natal homing, the identification of slowly changing

isolating factors is important, as these factors may lead to resis-

tance to hybridization, colonization of new habitats, and by ex-

tension, recovery of stocks (e.g. Svedäng et al., 2007).

Applications and management implications
The use of management units that include only a portion of a

larger population can present problems with understanding pop-

ulation stock dynamics and environmental linkages (Frisk et al.,

2008). Conversely, management units containing multiple biolog-

ical populations can lead to inaccurate descriptions of

population-specific abundances and productivity, and may con-

ceal the declines of vulnerable populations (Kell et al., 2009; Ying

et al., 2011). Our study reveals that the management of the yel-

lowfin tuna fishery around southern Africa presents both types of

problems. At a local level, it is recommended that the South

Africa Department of Agriculture, Forestry and Fisheries report

all future yellowfin tuna catches in SAF waters to the IOTC for in-

clusion in Indian Ocean stock assessments. Our results indicate

that the SAF catch is derived entirely from Indian Ocean spawned

fish. It may be more accurate to move the boundary between the

Atlantic and Indian Ocean management stocks to the western ex-

tent of South Africa’s EEZ at 13.35�E (Figure 1). At a regional

level, it is essential to understand the proportions of individuals

derived from the Atlantic and Indian Ocean genetic stocks over

space and time in the mixed-stock fishery north of the BCS. The

proportion of “consensus” outliers identified here (0.9%) was

generally smaller than the proportions of outlier loci reported by

other studies (5.2%, Bradbury et al., 2013; 4.5%, Milano et al.,

2014; 3.65%, Hess et al., 2013; 0.99%, Guo et al., 2015). These

outlier loci represent a resource that can be used to identify

migrants and to characterize mixed-stock dynamics. At present

the indiscriminate harvesting of both stocks in the region means

that the Atlantic spawning stock biomass is overestimated.
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