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SUMMARY 

 

We analysed the catch effort data from the Iranian gillnet fishery in the coastal waters of Persian Gulf 

and Oman sea, and applied statistical models to obtain abundance indices from nominal catch per unit 

effort (CPUE) for the main neritic tuna species captured in the fishery. The spatial and temporal trend 

of catch and effort was characterised, and standardisation analysis using GLM models was conducted 

for longtail tuna (Thunnus tonggol), narrow-barred Spanish mackerel (Scomberomorus commerson), 

kawakawa (Euthynnis affinis), and frigate tuna (Auxis thazard), using trip-level catch effort data 

collected from the port-sampling program from 2008 to 2017. Additional analyses using Bayesian 

MCMC and mixed effects models were also investigated. The analyses showed that the standardised 

catch rates have declined for the longtail tuna and has been increasing for the narrow-barred Spanish 

mackerel in recent years, and standardised catch rates for kawakawa and frigate tuna showed a slight 

increasing, but overall stable trend. The caveats of the data used for CPUE standardisations were 

discussed. This analysis represents the first attempt to estimate a relative abundance index from the 

Iranian gillnet fishery for potential use in stock assessments of IOTC neritic tuna stocks.   
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1. BACKGROUND 
 

Neritic tuna is of great commercial values to many Indian Ocean coastal states and support important 

artisanal and semi-industrial fisheries across the Indian Ocean. Neritic tuna species accounted for 

approximately 40% of total catches of commercial species under IOTC mandate in recent years (IOTC–

WPNT07 2017). However, due to poor availability of data, so far IOTC neritic tuna stocks have been 

assessed using data limited method (Zhou & Sharma 2013, Fu & Martin 2017, Martin & Fu 2017). 

These assessments are associated with very large uncertainty because of highly uncertain catch history, 

and particularly the lack of catch-and-effort and indices of abundance, limiting their usefulness in the 

provision of sound management advice. The lack of detailed information about catch and effort of the 

large gillnet fleet is a critical issue for the assessment and management of stocks of tunas and of many 

other species in the Indian Ocean (Andrade 2017).  

 

For most of the important fisheries catching neritic species in the Indian Ocean, catch-and-effort is 

either not available, or only partially reported. To date, there are only a few standardised CPUE analysis 

ever performed for IOTC neritic tuna species, including the attempt to standardise the catch effort data 

from the Maldives Pole and Line fishery for Kawakawa (Sharma, et al. 2015) and for longtail tuna from 

the gillnet fishery in Sultanate of Oman (Al-Siyabi et al. 2014). In this context, capacity building 

activities, through data compliance and support missions, aiming at improving the availability of catch 

effort data and developing standardised CPUE series for fleets which account for the largest catches of 

neritic tuna and tuna-like specie, have been considered as a high priority by IOTC Working Party on 

Neritic Tuna, Working Party on Data and Statistics, and Scientific Committee (IOTC–SC20 2017).  

 

I.R. Iran accounts for the second largest catches of neritic species in the Indian Ocean but had only 

reported partial catch-and-effort according to the IOTC standards in the past. A data compliance and 

support mission were conducted by the IOTC Secretariat in 2017 to evaluate the status of data collection 

and reporting of Iranian fisheries data to the IOTC. Discussions were also held regarding the possibility 

of developing standardized CPUE series for the Iranian gillnet fleet, given that Iran Fisheries 

Organization (SHILAT) has collected catches and fishing effort for around 15 years, in addition to 

information on vessel and fishing characteristics. Following that mission, the SC requested that the 

IOTC Secretariat collaborate with I.R. Iran to explore options for developing standardized CPUE 

indices from its coastal gillnetters targeting neritic tunas for use in future stock assessments. In response 

to that request, a second data support mission to I.R. Iran was conducted 8-12 June 2019 by the IOTC 

Secretariat to collaborate with SHILAT to analyse the drift gillnet data for the main neritic tuna species. 

This report summarised the results of the analysis performed.  

 

 

2. OVERIEW OF IRANIAN FISHERIES IN THE SOUTHERN WATERS  
 

The southern waters of Iran (Figure 1) support important fisheries of large pelagic species, accounting 

for over 50% of the country’s aquatic production (Rajaei 2017). Over 12 thousand vessels consisting of 

fishing boat, dhows and ships are engaged in fishing in the Persian Gulf and Oman Sea (Naderi 2017). 

A range of fishing methods are employed to target tuna and tuna-like species in the coastal and offshore 

waters, including gillnet, purse seine, longline, and trolling. Gillnet is the dominant fishing gear 

targeting large pelagic species (especially tuna and tuna-like), and majority of the catches comes from 

the gillnet vessels operating within EEZ of Iran as well as offshore waters (Rajaei 2017).  

 

The neritic tuna is major component of the pelagic fisheries in the coastal waters and approximately a 

third of the catches were attributed to neritic tunas, which included longtail tuna (Thunnus tonggol), 

narrow-barred Spanish mackerel (Scomberomorus commerson), kawakawa (Euthynnis affinis), Frigate 
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tuna (Auxis thazard), and Indo-Pacific king mackerel (Scomberomorus guttatus) (Naderi 2017). In 

2014, the total catches were around 65610 t for longtail, 29400 t for narrow- barred Spanish mackerel, 

23640 t for kawakawa, and 13490 t for frigate tuna (Naderi 2016). The longtail tuna accounted for 

approximately 40% of all tuna catches.  

  

Over the last decade, the Iranian gillnet fishery have been characterised by changes in fleet dynamics 

with varying targeting on neritic and tropical species (IOTC–WPNT07 2017). Catches of tropical tunas 

declined with the onset of the threat of piracy in the late-2000s, and during this period the catches of 

neritic tunas increased due to changes in targeting and relocation of fishing effort. Since 2011, large 

declines in catches of longtail tuna have been reported by I.R. Iran. The reasons are unclear, but possibly 

related to the establishment of management measures for downsizing the fishing effort (Naderi 2016). 

Catches of tropical tuna are increasing again in more recent years but the catches of neritic tuna species 

have not decreased by the same magnitude, with the exception of longtail tuna (IOTC–WPNT07 2017).  

 

 
Figure 1: A map showing the coastal fishing grounds in Iranian southern waters (Persian Gulf and Oman 

Sea). The fishing grounds are designated in Iran Fishery Data Collection System as areas 1-3 (Khozestan), 

3-9 (Busherhr), 10-17 (Hormozgan), 18, 19-181 (Sistanan baluchestan) 
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3. DATA 
 

Fishing statistics from the Iranian coastal and offshore fisheries in the southern waters (Persian Gulf & 

Oman Sea) since 2005 have been collected and managed under the Iran Fishery Data Collection System 

(IFDCS). The IFDCS collects catch and effort data through a port sampling regime that covers 

approximated 10% of the vessels. The sampling scheme has adopted a stratified random design to 

ensure representative coverage of fleet size and capacity. The data are stored and managed in a SQL-

Server database (SIMAB) which are comprised of a series of inter-linking tables containing information 

on vessel characteristics, fishing gear, catch and effort. The database covers a range of fishing methods 

including trawl (bottom, Midwater, and shrimp), Gillnet (Bottom, Drift, Encircle), Trap/Cage, 

Longline, Hook, Trolling and boat Purse-since. Catches have been reported at species level covering 

over 40 species (including IOTC species). The following data from the database were considered for 

the CPUE standardisations.  

  

Vessel registry (Mojavez) – All vessels are required to obtain permission or a licence before the start 

of fishing. The Mojavez table contains vessel number, permit number, vessel capacity (GT), trip 

start/end dates, active days at sea, fishing gear, and fishing ground. A permit is issued for a duration for 

up to a month during which period multiple trips are usually conducted. Thus, the registered trip 

start/end dates in Mojavez table covers the duration of all trips under the same permit number 

(sometimes these dates are not accurate as local regulations or sea conditions resulted in delay in 

departure and return), and consequently, ‘active days at sea’ is an aggregated number of multiple trips 

(unless there is only one trip under the permit). Vessels are classified into four size categories: 0–3t 

(boats), 3–20t (dhows); 20–50t, and 50–200t or larger. A target species is recorded but it is understood 

that this seldom represents the true fishing strategy employed by the fisher.  

 

Trip effort (Por) – The Por table contains information on a subset of completed fishing trips collected 

by enumerators through the port-sampling scheme which covers approximately 10% vessels. Each 

record in the table correspond to an individual fishing trip under a permit number (there could be 

multiple records/trips under the same permit). The data includes the permit number, start/end dates of 

the fishing trip, fishing duration at sea (in hours), and fishing ground. The fishing grounds consist of 

twenty-five coastal zones (Figure 1), and one offshore area which refers to areas 24-nautical miles 

offshore including high seas. 

Catch (Por_fish) – The table contains catch weight by species for fishing trips sampled by enumerators.  

 

A CPUE dataset was extracted from the database for the standardisation analysis. The dataset was 

restricted to the drift gillnet fishery and covers four neritic tuna species –longtail (LOT), narrow-barred 

Spanish mackerel (COM), kawakawa (KAW), and frigate tuna (FRI). Trip effort were extracted from 

the Por Table, and were linked to the Mojavez Table (for vessel information) and the Por_fish table (for 

catch information). Each record in this dataset represents a trip-level, aggregated fishing event with 

following variables: vessel_no, vessel_tonnage, trip_start_date, trip_end_date, fishing_ground, 

panel_number gear_duration_at_sea, lot, com, kaw, and fri (catch weight in Kg).  The catch of a species 

is set to zero if it was not reported for the trip. Over 2000 gillnet vessels were sampled annually from 

2008 to 2017 (Table 1). The sampled catch and number of trip days are shown in Table 2. 

 

Some grooming was conducted to remove erroneous data including duplicated /mismatched records, 

and potential outliers.  We have focused only on obvious errors and a more thorough checking routine 

needs to be developed to resolve some of the inconsistency in the database in future analyses. The 

threshold values chosen for identifying outliers were based on discussions with SHILAT officers. 
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3.1 Further notes on fishing effort 
 

CPUE standardisation requires a robust measure of fishing effort. For a passive fishing method such as 

drifting gillnet, the fishing effort should be quantified as the time between the deployment and hauling 

of a set. The port-sampling collates information at the trip level and therefore the fishing effort are 

available only in aggregated form. There sampling questionnaire records fishing effort in several fields 

– trip start/end dates, active_days_at_sea, and gear_duration_at_sea.  The duration based on trip 

start/end dates includes sailing time to and from the fishing ground and is not appropriate for measuring 

effort for longer trips (e.g. A 40-day fishing trip could include up to 15 days of sailing time).  

active_days_at_sea is recorded for each permit and is aggregated over multiple trips. It is also not 

entirely clear what ‘active days’ means (whether not it is always associated with fishing). 

gear_duration_at_sea (hours) is understood to provide the best estimates of fishing duration for a trip.  

 

The number of panels is also an important indicator of fishing effort. However, discussions with 

SHILAT officers revealed that the panel_number does not always indicate the actual numbers used for 

fishing and it may have included all the panels on-board (including spare ones). It has been suggested 

that panel number over 100 should be reduced by 20% if they are to be included in the standardisations. 

Table 1: Number of sampled drift gillnet vessels by size category in the SIMAB database 2008 to 2017. 

Year 0-3t 3-20t 20-50t 50-200t Total 

2008 870 330 297 145 1 642 

2009 1 142 340 386 350 2 218 

2010 1 183 339 408 316 2 246 

2011 1 242 311 429 333 2 315 

2012 1 093 277 436 295 2 101 

2013 1 112 269 420 281 2 082 

2014 1 210 273 495 358 2 336 

2015 1 162 243 554 324 2 283 

2016 1 022 233 591 316 2 162 

2017 1 034 221 644 323 2 222 

 
Table 2： Sampled catch weight (t) for the four neritic tuna (LOT, longtail; COM, narrow barred Spanish 

mackerel; FRI, frigate tuna), and trip days from the drift gillnet fishery 2008–2017. 

Year LOT COM KAW FRI  Trip days  

2008 1 921 419 819 443  76 956  

2009 3 952  694 1 279 470  136 819  

2010 5 199 1 027 1 420 572  130 394  

2011 6 848 1 144 1 844 886  128 160  

2012 7 501 1 359 2 396 831  146 405  

2013 6 879 1 389 2 086 675  130 525  

2014 7 793 1 877 2 863 1 425  155 438  

2015 7 305 1 666 2 610 1 075  133 869  

2016 6 461 1 517 2 764 1 000  125 406  

2017 7 411 1 859 3 208 1 190  121 237  
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4. DESCRIPTIVE ANALYSIS OF DATA 
 

The groomed data included 185, 065 trip records from 2008 to 2017 and retained approximately 80% 

of sampled catches for each of the four neritic tuna species. 

 

The sample data showed a rapid increase of longtail tuna catch between 2006 and 2012 (Figure 2), 

largely a result of the shift of fishing effort into coastal areas due to the threat of piracy. The catches for 

the other three species also increased, albeit at a slower rate. Fishing effort appeared to be stable with a 

peak in 2014 and a decline in the last few years (Figure 2). 

 

Most fishing trips were less than 20 days (Figure 3 - left). Small boats (< 3 t) normally conducted daily 

trips whereas dhows and larger vessels conducted longer trips. There is generally a good 

correspondence between the total gear duration and trip days although some longer trips had low gear 

duration (Figure 3 - right), presumably because they had longer sailing time. 

   

Most longtail catches were attributed to fishing ground 9–21 off the Hormozgan and Sistanan 

baluchestan Provinces (Figure 4-left), and there also appeared to be significant catches of longtail tuna 

from high seas (fishing ground 25, label as ‘20’ in Figure 4). However, this could be misleading as the 

sampling questionnaire only requires the fishers to report one fishing ground per trip (only one fishing 

ground is registered with a permit number) whereas the vessel could fish a much larger area during the 

trip especially for larger vessels taking longer trips. This could potentially undermine the CPUE analysis 

as the fishing ground is an important standardisation variable. However, it is understood that the fishers 

would normally fish in adjacent areas due to cost constraints.  

 
Catches of the four neritic tuna species were generally taken all year round but the longtail catch was 

low in winter and the catch of narrow-barred Spanish mackerel was small in summer (Figure 4-right). 

Overall the catches would decline in June and July as many fishing crafts cease their fishing activities 

due to poor weather conditions in the Oman Sea.  

 
The plot of the catch rates (kg / hour) and vessel tonnage showed a positive relationship (Figure 4Figure 

5). The strongest effect occurs between 3 and 20t of vessel size and the relationship appears to be weak 

at larger sizes. Most of neritic tuna catch by the gillnet fishery was attributed to the traditional fishing 

boats and wooden-hull vessels less than 50 t as larger vessels are primarily fishing in offshore waters. 
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Figure 2: Sampled catches (t) for longtail, narrow-bared Spanish mackerel, kawakawa, and frigate tuna, 

and trip days from 2008–2017 in the drift gillnet CPUE dataset. 

 

  
Figure 3: Distribution of trip days (left) and trip days vs. gear duration (hours) for individual trips (right) 

for the drift gillnet CPUE dataset.  The colours indicate four different vessel size classes.  
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Figure 4: Sampled catches for longtail, narrow-bared Spanish mackerel, kawakawa, and frigate tuna by 

fishing ground and year (left) and by month and year (right) in the drift gillnet CPUE dataset. Note that 

the scale is not comparable between the two plots. 

 

 
Figure 5: The relationship of (log) catch (the total of the four neritic tuna) per hour and vessel tonnage, as 

derived from simple GLM models: dots represent individual observations; triangles represent estimated 

individual tonnage effects (log(CPUE) ~ factor(vtonnage)); the blue line represents an overall non-linear 

effect (log(CPUE) ~ log(vtonnage)).  The coloured lines represent estimated linear effects within each of 

the four vessel size classes. 

 

 



 

IOTC–2019–WPNT–17 

10 
 

5. CPUE STANDARDISATIONS 
 

The primary goal of CPUE standardization is to estimate a time series of relative abundance, and this 

is accomplished by identifying and removing the effects of various sources of CPUE variation that are 

attributable to causes other than changing abundance (e.g. changes in efficiency of the fleet due to 

improvements in technology). The analysis involves estimation annual time series of relative abundance 

using Generalized Linear Models (GLMs). The GLMs estimate the effects of independent variables 

which are expected to influence catchability, such that the effect of these variables can be removed to 

estimate a time series in which (ideally) the main source of variability is changing abundance.  

 

We used the delta-lognormal approach to the standardize the catch rates for each of the four neritic tuna 

species. The process involves fitting two separate models to the CPUE dataset (for each species): a 

binomial model for the probability of obtaining a nonzero catch for individual fishing trips and a 

lognormal model for the positive catch rates. An annual/quarter index was derived from both models 

and then combined to provide an overall standardised index.  

 

For the binomial model, the response variable is the presence/absence of the catch (e.g. longtail), and 

explanatory variables include gear_duration, year, quarter, fishing_ground, and vessel_vtonnage. The 

model links the probability of obtaining a positive catch to the set of explanatory variables through a 

logit link function. Year/quarter was included as a single variable (or alternatively as an interaction 

term). vtonnage is included as a category variable with four levels (0–3t, 3–20t, 20–50t, 50–100 t).   

 

For the lognormal model, the response variable is the log transformed catches, the explanatory variables 

are essentially the same as the binomial model, except that (a) the gear_duration was as an offset term 

(it means the effect is not estimated but assumed known); (b) vessel tonnage effects (including an 

intercept and a slope) were estimated separately within each vessel size category. 

 

The models were implemented using the glm function in R (R Core team 2019).  To obtain the annual 

index, the predict function was used to predict the probability of obtaining a positive catch (binomial) 

and the catch rate (lognormal) for each year/quarter, with other variables fixed at median or most 

common values (e.g. gear_duration = 6 hours). The combined index is obtained by multiplying the 

binomial indices by the exponentially-transformed lognormal index.  The resulting indices are shown 

in Figures Figure 6–Figure 9 for each for the four species. A selection of model diagnostics is given in 

Appendix A. 

 

Two alternative modelling approaches were also experimented:  Bayesian MCMC modelling and mixed 

effects models. Both models are based on the binomial-lognormal framework and were applied to the 

longtail tuna. The Bayesian model aims to obtain a MCMC approximation to the Bayes posterior of 

effects assuming to affect catchability and is presumably better to capture the variance/uncertainty of 

the abundance index (Medley et al. 2017). The Bayesian model was implemented using Stan software 

(Stan Development Team 2017). The resulting index for the longtail tuna is given in Appendix B. 

 

The mixed effects model incorporated individual vessel effects as random effects (i.e. the effect of a 

vessel is equal to the sum of a fixed vessel size effect and a random effect). This is perhaps a more 

appropriate approach as the vessels in the CPUE dataset could be considered as a random sample of the 

‘vessel’ population (the port sampling covered about 10% of vessels in the fishery). For the analysis, 

the CPUE dataset was reduced to include only vessels that that is above 3t (vessel size category 0-3t 

was dropped) and had conducted more than 10 fishing trips with at least one trip of positive longtail 

catches. The data was further restricted to the main fishing ground for longtail tuna (Hormozgan and 

Sistanan baluchestan Provinces). The model was implemented in Template Model Builder (Kristensen 

et al. 2016). The resulting index for the longtail tuna is given in Appendix C. 
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5.1 Longtail tuna 
 

(a) 

 

(b) 

 
(c) 

 
Figure 6: Standardised CPUE indices (year-quarter) for longtail tuna using the GLM Binomial-Lognormal 

models: (a) index from the binomial model on the presence/non-presence of longtail catch; (b) index from 

the lognormal model on the positive longtail catch rates; (c) combined index (over-laid with lognormal 

index). 
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5.2 Narrow barred Spanish Mackerel 
(a) 

 

(b) 

 
 
 

(c) 

 
Figure 7: Standardised CPUE indices (year-quarter) for narrow-barred Spanish mackerel using the 

GLM Binomial-Lognormal models: (a) index from the binomial model on the presence/non-presence of 

narrow-barred Spanish mackerel catch; (b) index from the lognormal model on the positive narrow-

barred Spanish mackerel catch rates; (c) combined index (over-laid with lognormal index). 
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5.3 Kawakawa 
 

(a) 

 

(b) 

 
(c) 

 
  

 
Figure 8: Standardised CPUE indices (year-quarter) for kawakawa using the GLM Binomial-Lognormal 

models: (a) index from the binomial model on the presence/non-presence of kawakawa catch; (b) index 

from the lognormal model on the positive kawakawa catch rates; (c) combined index (over-laid with 

lognormal index). 
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5.4 Frigate 
 

(a) 

 

(b) 

 
(c) 

 
Figure 9: Standardised CPUE indices (year-quarter) for frigate tuna using the GLM Binomial-Lognormal 

models: (a) index from the binomial model on the presence/non-presence of frigate tuna catch; (b) index 

from the lognormal model on the positive frigate tuna catch rates; (c) combined index (over-laid with 

lognormal index). 
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6. DISCUSSIONS 
 

The analysis represents the first attempt to explore options of standardising the catch effort data from 

Iranian coastal gillnet fishery to provide time series of abundance for neritic tuna species. The data 

collected from the port-sampling program provides ample information on vessel characteristics, gear 

effort, and spatial and temporal distribution of catches, which potentially allow abundance indices to be 

examined in a standardisation framework. The analysis indicated that standardised catch rates have 

distinctive trends over the time-period examined for the major neritic tuna species targeted by the 

Iranian drifting gillnet fishery: the index has declined for the longtail but has been increasing for the 

narrow-barred Spanish mackerel in recent years, and the index for kawakawa and frigate tuna showed 

a slight increasing, but overall stable trend. However, like most CPUE standardisations, it is difficult to 

verify whether the resulting time series can index the underlying stock without alternative, independent 

source of abundance information. The reliability of these indices depends mostly on whether various 

sources of variation in the catchability have been captured and correctly accounted for in the 

standardisation process.  Below we briefly discussed some of the caveats of the data and analysis that 

might influence the interpretation of the resulting CPUE indices.  

 

The analysis was based on data collected from the port-sampling program which adopted a stratified-

random design to ensure that the sampling covers approximately 10% of the vessels in each size 

category. As neritic tuna is migratory, and catches are seasonal, it would be useful to conduct a more 

detailed analysis on whether the data is representative of the fishery with respect to its spatial and 

temporal distribution. This would increase the confidence of using the data as a monitoring tool, in 

addition to deriving catch effort statistics for the fishery. 

 

Limited data grooming was performed as part of the analysis, but more robust criteria need to be 

developed to remove and/or correct for inconsistency in the data.  For example, the average daily gear 

duration for some trips are suspiciously low (even if the sailing time is considered), considering that the 

normal set time (between the deployment and hauling) is approximately 6 hours. There are some issues 

related to the fact that information is collated at trip level rather than for individual fishing events. For 

example, the information on fishing ground is known not to be very precise (and no location information 

if fishing offshore). With the introduction and implementation of VMS, the accuracy and availability 

of finer scale spatial information is expected to improve.  Another complication arises from vessels 

fitted with multiple gears (e.g. gillnet and trap), and such vessels could register for one gear, but report 

catch effort under the other gear. It is understood that multi-gear vessels are not encouraged (or even 

permitted in some provinces) but they were very common, therefore some revisions to the data reporting 

system is perhaps needed to accommodate this.  The panel number is another important effort variable, 

but the reported panel number may not have reflected what’s used. Preliminary modelling of longtail 

tuna suggested there was almost no relationship between catch and panel number. This might be because 

the panel number is positively related to the vessel size which has been accounted for in the model.   

 

Changes in targeting strategy attributes greatly to variations in CPUE and most standardisation analyses 

invested greatly in identifying targeting strategy. For the drifting gillnet fishery, in addition to the 

inshore-offshore fleet dynamics there is also differential targeting among the neritic tuna. Longtail tuna 

and Spanish mackerel are caught by the drift gillnet with different mesh sizes and the other species 

(frigate, kawakawa, king mackerel) are largely considered as bycatch. Different net materials (e.g. 

Monofilament vs. multifilament) are also used to target different neritic tuna species in different seasons. 

However, the effort data specific to the different types of gear configurations are not available so expert 

knowledge on possible changes in targeting will need to be explored to be fully understand the dataset. 

 

The delta approach is used to explicitly account for the encounter probability of the species in the catch. 

This type of modeling generally requires a clear definition of the fishery sector that has a close 



 

IOTC–2019–WPNT–17 

16 
 

association of the species. For example, vessels or areas by which the species was seldomly caught may 

be considered as being irrelevant to the fishery. Given the time constraint, the GLM standardizations 

used all the data, and as a result, the binomial models estimated a very proportion of zero catches for 

each of the four neritic tuna species (up to 80, 90%, see Figures Figure 6–Figure 9 ). Clearly many of 

the ‘zero’ catches are ‘false’ zeros (if the fishers are targeting the species or regularly taking it as bycatch, 

it might be expected that they could at least caught a few fish during a fishing trip). The standardizations 

of longtail tuna using the mixed effects models provided a useful exploration of defining fishery that is 

more relevant to the species (by restricting to te Hormozgan and Sistanan baluchestan Provinces and to 

vessels larger than 3t).  

  

The standardised index for longtail tuna showed a large decline since 2012. Discussions with fishers 

suggested a number of alternative interpretations on this trend. One relates to the market condition: the 

recent increase in demand and price for hairtail has prompted many fishers to switch from longtail tuna 

to hairtail fishing (using hooks). The other relates to fish behaviour: longtail tuna dwell both at the 

surface and the bottom and overtime they have adapted to the fishing strategy and some are able to 

swim under the gillnet panel to dodge the gear (as a result it has become more and more difficult to 

catch them). This behaviour (bottom-dwelling) also means it is difficult for smaller boats to catch 

longtail tuna as they usually deploy shallower net panels than large vessels.  

 

There is a very strong seasonal pattern in the catch rates of Spanish mackerel, with the CPUE being 

high in winter, and low in summer (see Figure 7). Grandcourt (2011) suggested that there is a seasonal 

productivity cycle in the southern gulf which sees a reduction in the abundance of zooplankton and 

small pelagic species during the warm summer months, and the high CPUE coincided with reduced 

water temperatures and an increase in the abundance of the fish in winter. There maybe market factors 

too as it was suggested that fishermen were trying to avoid Spanish mackerel during summer because 

the meat quality was not good due to high sea temperature. The recruitment variability is also likely to 

be very high as the fishery is mainly based on the first two cohorts (Grandcourt 2011). 

 

As a final point, the standardized indices derived from the Iranian coastal drift gillnet fishery are very 

unlikely to represent the abundance for the entire Indian ocean. Effort should also be made to develop 

indices for fisheries in other regions where suitable data are available (e.g. the Pakistan drift gillnet 

fishery).  Nonetheless indices developed in this analysis could be incorporated in a biomass dynamic 

model or an integrated assessment model to further evaluate its utility as relative abundance indices for 

neritic tuna populations. 
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Appendix A: Selected diagnostics from the GLM CPUE standardisation models 
 

 
Figure A1: distribution of normalised residuals (left) and normal QQ plot (right) from the lognormal 

model for the longtail tuna. 

  
Figure A2: distribution of residuals by year quarter, vessel size class, and fishing ground from the 

lognormal model for the longtail tuna. 
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Figure A3: Influence plots shows the annual distribution of number of trips by fishing ground (top) and 

vessel size class (bottom), as well as their influence on the predicted years effects from the lognormal 

model for longtail tuna. 
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Figure A4: Estimated vessel effects by vessel size class for the binomial model (left) and lognormal model 

(right) for the longtail tuna. The dots represent the proportion of longtail tuna in the catch (among four 

neritic tuna species) for individual trips (left), and the log catch rate (kg per hour) of longtail tuna (right). 

 
  

 
 
Figure A5: distribution of normalised residuals (left) and normal QQ plot (right) from the lognormal 

model for the narrow barred Spanish mackerel. 
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Figure A6: distribution of normalised residuals (left) and normal QQ plot (right) from the lognormal 

model for the kawakawa. 

 

 
 
 

 
 
Figure A7: distribution of normalised residuals (left) and normal QQ plot (right) from the lognormal 

model the frigate tuna. 
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Appendix B: CPUE standardisation using Bayesian MCMC modelling for longtail 
 
 

(a) 

 

(b) 

 
Figure B1: Standardised CPUE indices (year-quarter) for longtail tuna using the Bayesian MCMC: (a) 

index from the binomial model on the presence/non-presence of longtail catch; (b) index from the 

lognormal model on the positive catch rates of longtail tuna. 
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Appendix C: CPUE standardisation using random effects models for longtail 
 
  

(a) 

 

(b) 

 
Figure C1: Standardised CPUE indices (year-quarter) for longtail tuna using the random effects model: 

(a) index from the binomial model on the presence/non-presence of longtail catch; (b) index from the 

lognormal model on the positive catch rates of longtail tuna. 
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(a) 

 
(b) 

 
 
Figure C2: Maximum likelihood estimates of individual vessels effects (modelled as random effects) from 

the mix effects models for the longtail tuna: (a) from the binomial model on the presence/non-presence of 

longtail catch; (b) from the lognormal model on the positive catch rates of longtail tuna. 

 


