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ABSTRACT 

Albacore (Thunnus alalunga) is the third dominant catch of Indonesian tuna longline fishery operating 

in the eastern Indian Ocean. The percentage production of albacore catch was reaching up 6% of the total 

catch of tuna groups in Indonesia. This study aims to examine a relative abundance indices using 

standardized catch per unit of effort (CPUE) of longliner based on albacore tuna. This information will give a 

valuable input and information to support stock assessment particularly in the regional basis. In this study, 

we use Generalized Linear Model (GLM) with Tweedie distribution to standardize the CPUE and to estimate 

relative abundance indices based on the Indonesian longline dataset time series. Data were collected from 

January 2006 to December 2018 (2,811 data sets) by conducting direct onboard observation on tuna longline 

vessels operating in the Indian Ocean. The result show that year,  area, hooks between floats significantly 

influenced the nominal CPUE of albacore. CPUE standardization of ALB in the periods of 2006 to 2014 was 

tend to be stable and increase from year to year but in 2015 to 2018 the CPUE standardization  tend to be 

unstable and fluctuate due to changes in fishing patterns and changes in the area of onboard observer 

program. 
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INTRODUCTION 

 Management of fish resource using catch rate approach or  catch per unit of effort 

(CPUE) normatively is one of the model that can be used to recognize the utilization status 

of fish in the water. Catch rate is also ilustrated the ability of fishing gear catch per unit of 

effort and fish abundance index in a water (Riswanto, 2012; Chen & Chiu, 2009;  Maunder 

& Punt, 2004; Ortega-Garcia et al., 2003; Hilborn & Walter, 1991). The abundance index 

of fish is mostly based on CPUE index especially on industrial tuna longline fishery 

(Maunder & Punt, 2004; Maunder et al., 2006a; Maunder et al., 2006b; Ward & 

Hindmarsh, 2007). CPUE of tuna exploitation can serve as an effective index of fish 

abundance as long as different source of the catch-effort data are comparable (Maunder & 

Punt, 2004). The abundance index based on nominal CPUE on tuna longline fleets did not 

include confounding factors such as fishing strategy and water environment condition,  

which can separate indication of abundance based on hook rate (Bach et al., 2000;  

Hampton et al., 1998). The fish relative abundance index based on nominal CPUE data can 
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lead to mistakes and unable to reflect the actual condition of fish resource (Maunder & 

Punt, 2004; Walters, 2003).  

 Albacore (ALB) (Thunnus alalunga) is the third dominant catch after yellowfin 

tuna (Thunnus albacares) and bigeye tuna (Thunnus obesus) with the percentage of 

production reached up 6 % of the total catch of  tuna groups of 1.297.062 ton (DGCF, 

2012). However, based on the distribution of hook rate tuna in the Indian Ocean, ALB has 

the highest average catches of tuna longline vessels (Bahtiar et al., 2014). ALB resource 

spread widely in tropical and subtropical water in Pacific, Indian and Atlantic Ocean 

(ISSF, 2014). ALB is caught by Indonesian longline fleets which is operated in Eastern 

Indian Ocean is frozen product and exported to Sweden (53,4 %), Italy (18,7%), Poland 

(17,8%) dan Japan (10 %) (Davis & Andamari, 2003). ALB catches intensity is high, so 

we need of a sustainable management to avoid overfishing which is causes the decresing 

population of ALB  in Indian Ocean. CPUE data is important to know as one of valuable 

input for fish resource management study. 

 CPUE standardization is one of the general analysis  which is uses to predict fish 

abundance index and fish resource utilization rate by including confounding factors such as 

catch operational (Maunder & Punt, 2004; Bigelow & Maunder, 2007; Maunder et al., 

2006a). Several methods have been developed to standardize CPUE in fisheries data such 

as  generalized linear model (GLM), generalised additive model (GAM), generalised 

linear mixed model (GLMM) dan delta approachment (Dowling & Campbell, 2001; 

Maunder et al., 2006a; Maunder and Punt, 2004). Su et al. (2008) was used GLM, GAM 

and  delta approachment to analysis bigeye tuna CPUE standardization for Taiwan tuna 

longline fisheries. Sadiyah et al. (2012) was applied the GLM method to develop 

recommendation of CPUE standardization based on Indonesian tuna longline observer 

data. 

The aim of this study are to analysis ALB CPUE standardization model and 

comparison between nominal and standardized CPUE. The result is expected to support 

ALB management study in the Eastern Indian Ocean. 

MATERIAL AND METHODS 

Data Collection 

 Research material was ALB (Thunnus alalunga)  of tuna longline fleets based in 

Muara Baru fishing port (Jakarta), Palabuhanratu (West Java), Cilacap (Central Java) and 

Benoa (Bali). Data were collected from January 2006 to December 2018 (2,811 data sets) 

by conducting direct onboard observation on tuna longline vessels operating in the Indian 
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Ocean. The data collection was includes the total catch, the data specifications of fishing 

gear, vessel size, operational information and fishing area.  

Nominal Catch per Unit of Effort (CPUE)  

Catches data and the number of hooks per trip was used to calculate hook rate and 

nominal CPUE. Nominal CPUE or hook rate value  was the number of ALB catches in 100 

hooks. Nominal CPUE was calculated using equation of De Metrio and Megalofonou 

(1998): 

𝐻𝑅 =  
𝐽𝐼

𝐽𝑃
 𝑋 𝐴 ........................................................................................................ 1 

Where:  

HR= hook rate ; 

JI= the number of ALB catches; 

JP= the number of hook;  

A= 100 hooks. 

 

To determine whether there were any  difference of the average annual nominal 

CPUE based on different period of the season (west monsoon and east monsoon) and 

fishing sub-area, the t-test was used on the average of two independent samples with 

Microsoft Excel. Hypothesis to be test for different in season was H0 : the average CPUE 

in west monsoon was equal with the average CPUE in east monsoon and H1 : the average 

CPUE in west Monsoon was not equal with the average CPUE in east Monsoon. 

Hypothesis for different fishing sub-area was       H0 : the average of  CPUE area one (1) 

was equal with the average of CPUE area two (2) and   H1 : the average of CPUE area one 

(1) was not equal with the average CPUE area two (2). If value of t-test was greater than t-

table, then H0 rejected which mean there were any  differences in the average value of 

CPUE. 

Confounding Factors 

 Confounding factors were fishing practices and strategy which were used by 

Indonesian tuna longliner to catch tuna fish. Fishing practices and strategy often different 

from longliner althought they have similar target of fish. This different practice and 

strategy followed by  the different result and catchability. This phenomena would be 

affected the nominal CPUE trend of tuna longline fisheries. The confounding factor which 

would used in GLM model are : 

a. Year 

Year is the time of onboard observation which devided into 11 categorical data 

ranged from 2006-2018. 
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b. Season 

Fishing season devided into two (2) categorical data. There were west monsoon 

(December to May) and east monsoon (June to November). 

 

c. Fishing Area 

Fishing position recorded based on latitude and longitude for each setting 

throughout trips of onboard observation. Fishing area devide into two (2) sub-area 

which were operated in Eastern Indian Ocean, there were an area inside the 

Indonesian Exclusive Economical Zone (IEEZ) and outside the the Indonesian 

Exclusive Economical Zone  (Figure 1). Fishing sub-area were grouped in 50x50.  

 

 

 

 

 

 

 

 

 

 

Figure 1. Fishing sub area of  the onboard observation and 2 categorical  sub-area 

used for CPUE standardization. 

 

d. Hook Between Floats (HBF) 

The information on the number of hooks between floats (HBF) recorded based on 

setting data greatly varies with 4-21 HBF. Confounding factors of HBF devided as 

2 categorical i.e HBF ≤ 12 hooks dan HBF > 12 hooks, which will used on 

Generalized Linear Model (GLM) analysis. 

Catch per Unit Effort (CPUE) Standardization on GLM 

 The calculation of CPUE standardization was enclosed confounding factor as 

covariate variable used in GLM analysis. The result of Sadiyah et al. (2012) suggested that 

some significant confounding factor for CPUE standardization with GLM model were 

year, fishing area, and HBF. In this study, we were added another confounding factor i. e  

the period of season (west monsoon and east monsoon). GLM is flexible general model on 

linear regression in which respond variables have error distribution in addition of normal 

1 

2 
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distribution. The equation model of GLM used in CPUE standardization as follows 

(Candy, 2004, Basson & Farley, 2005) : 

𝐶𝑃𝑈𝐸 =  𝑐 +  𝛽1𝑗 𝑌𝑒𝑎𝑟𝑖𝑗 +  𝛽2𝑗 𝑠𝑒𝑎𝑠𝑜𝑛𝑖𝑗 +  𝛽3𝑗 𝑎𝑟𝑒𝑎_𝑖𝑗 +  𝛽1𝑗 𝐻𝐵𝐹_𝑖𝑗 +

 𝑜𝑓𝑓𝑠𝑒𝑡 (𝑙𝑜𝑔(𝑒𝑓𝑓𝑜𝑟𝑡))  +  𝑒𝑖................................ 2 

We used open source R software program to input and analysis GLM fit model.  

(Table 1) show the whole information of confounding factor which were used in this 

analysis. 

Table 1. Confounding factor (factor and covariate) used in GLM analysis 

Factor Level Category Type 

Year 1 to 13 2006- 2018 Categorical 

Season 1  West Monsoon 

(December – May) 

Categorical 

2 East Monsoon  

(June – November) 

 

Fishing Area 1 50-14.90 S; 950-1300 E Categorical 

2 150-350 S; 750-1150 E  

HBF 1 ≤ 12 hooks Categorical 

2 >12 hooks  

 

The first step of the GLM analysis was to determine normality of data using 

normality test (Kolmogorov-Smirnov and Shapiro-Wilk). If the significant value was 

greater than α0.05, its mean that the data was in normal distribution but if significant value 

was lower than α0.05 its mean that the data was not in normal distribution. The next step 

was to determine the fit distribution in GLM analysis. We used Tweedie distribution and 

log link function as fit distribution because the distribution has a power variance function 

with the power parameter (k) range between 1.1 and 1.9, which is suitable for zero CPUE 

in observation (Appendix 2) (Bason & Farley, 2005; Candy, 2004). 

The best model used in this analysis based on stepwise AIC (Akaike Information 

Criterion). We used AIC to avoid a problem of overfitting because the sample is greater 

that 1,000 sample (Shono, 2005). The best model is a model which has lowest in AIC. 

value. 
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RESULT AND DISCUSSION 

RESULT 

Nominal CPUE  

 The ALB nominal CPUE of longline catches throughout the onboard observation 

2006-2018 were fluctuated. Nominal CPUE ranged from 0.10 to 0.40 with an average of 

0.27 (Figure 2). The highest nominal CPUE in  2012 and the lowest nominal CPUE in 

2017. In 2007, 2008, 2010,2011, 2012,2014, 2016 nominal CPUE were in above the 

average CPUE and in 2006, 2009, 2015 and 2017 were in under the average CPUE 

threshold. Nominal CPUE regarding with different season shows the CPUE range along 

east monsoon was  0.07-0.51 and the CPUE range along west monsoon was  0.04-0.76 

(Figure 3). Nominal CPUE based on the different fishing sub-area shows CPUE range in 

area one (1) was 0.03-0.35 and CPUE range in area two (2) was 0.04-0.72 (Figure 4).  
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Figure 2. Nominal CPUE of ALB time series along this onboard observation ranged from  

2006-2018 

 



 IOTC-2019-WPTmT07(AS)-07 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018N
o

m
in

a
l 

C
P

U
E

 
(F

is
h

/1
0
0
 
h

o
o

k
s
) 

Year 

West Monsoon East Monsoon

 

Figure 3. Nominal CPUE of ALB based on season (east monsoon and west monsoon) 

throughout the onboard observation ranged from 2006- 2018 
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Figure 4. Nominal CPUE of ALB based on fishing area (sub-area 1 in IEEZ) dan (sub-area 

2 OutIEEZ) throughout the onboard observation ranged from 2006 - 2018 

  

Nominal CPUE based on different season shows that the average nominal CPUE in east 

monsoon is 0.25 and the average nominal CPUE in west monsoon is 0.30.  
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Standardized CPUE  

 The best model option for ALB standardization according to AIC criterion is 

presented in (Table 2). 

Table 2. List of model option for ALB according to AIC Value 

 

The best model that has smallest AIC was used to predict the CPUE standardization 

(Figure 5). In ALB GLM analysis, year, area and HBF (hooks between Floats) were highly 

significant (p-value<0.05). The result of significant level of each confounding factors were 

summarized in Table 3 and the predicted value of CPUE standardization, UCL (Upper 

Control Limit) and LCL (Lower Control Limit) were given in Table 4. The randomized 

quantile residual diagnostic for the best model was given in Appendix1. 

 

Figure 5. Nominal and standardization ALB CPUE as a time series between 2006-2018 

based on RITF onboard observer program in Eastern Indian Ocean 

 

 

 

 

 

 

 

No Model Option AIC
Probability 

Distribution Link Function

1 Model 1: Catch ~ 1 + offset(log(No.Hooks)) 13272.03 tweedie Log

2 Model 2: Catch ~ Year + offset(log(No.Hooks)) 13120.93 tweedie Log

3 Model 3: Catch ~ Year + Season + offset(log(No.Hooks)) 13122.57 tweedie Log

4 Model 4: Catch ~ Year + Season + Area + offset(log(No.Hooks)) 12784.68 tweedie Log

5
Model 5: Catch ~ Year + Season + Area + HBF + 

offset(log(No.Hooks)) 12775.73 tweedie Log
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Table 3. Summary of significant level of each confounding factor in ALB CPUE 

standardization 

 

 

 

Table 4. Predicted value of standardized CPUE of ALB and its standard error (upper and 

lower) 

 

Year Nom.CPUE Std CPUE LCL UCL

2006 0.612 0.725 0.733 0.719

2007 0.628 0.743 0.733 0.750

2008 0.907 0.995 1.058 0.949

2009 0.786 0.897 0.877 0.912

2010 1.481 1.331 1.388 1.289

2011 1.397 1.291 1.296 1.286

2012 0.852 0.952 0.968 0.941

2013 1.414 1.299 1.368 1.249

2014 1.475 1.328 1.385 1.286

2015 0.654 0.771 0.668 0.846

2016 1.615 1.390 1.439 1.354

2017 0.352 0.347 0.153 0.488

2018 0.827 0.932 0.933 0.931  

The characteristic of standardized CPUE was any smooth extreme peaks and troughs  in 

nominal CPUE time series. The spike and troughs in nominal CPUE for ALB were 

smoothed by standardization in 2006-2018 (Figure 5). 

DISCUSSION 

 Temporal trend of nominal CPUEs were much influenced by different factors  

which associated with fishing practice and environmental condition (Sadiyah et al., 2012). 

The different factor such as time of fishing (year), season, fishing area and hook between 

float (HBF) can cause an exstreme peaks and troughs in nominal CPUE time series. The 

standardization of CPUE used in this study can cause extreme peaks and troughs in 

nominal CPUE become more smoothed and refined. It was also supported by research 

Deviance DF

Residual Residual

NULL 2810 13082

Year 12 636.25 2798 12445.8 <0.00000000000000022***

Season 1 1.32 2797 12444.4 0.55095

Area 1 1188.73 2796 11255.7 <0.00000000000000022***

HBF 1 37.31 2795 11218.4 0.00151 **

---

Signif. codes: 0‘***’ 0.001‘**’ 0.01‘*’ 0.05‘.’ 0.1‘ 1’

Df DEV PR(>F)Pr(>Chi)
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conducted by (Song & Wu, 2011; Sadiyah et al., 2012). It’s seem that all variables used in 

this GLM analysis sufficiently representative for all confounding factor and the abundance 

and also described as real variables. 

 In this study, there were several type of models but only few that have significant 

relationship (Table 3). Its mean that a closed relationship and strong interaction always 

appear in standardized CPUE using GLM  analysis (Maunder & Punt, 2004). (Maunder & 

Punt, 2004) also stated that simple interpretation cannot be used as a basis information 

regarding to develop an abundance Index. 

 The data from onboard observer program  is long time data series (2006-2018), its 

mean that we could find any phenomena regarding with fishing practice and environmental 

condition including temporal and seasonal abundance pattern. Temporal and seasonal 

pattern were clearly define in GLM analysis and would give  some indication which would 

confounding factors may significantly influenced in  nominal CPUE time series. 

The construction of the number of hooks between floats (HBF) in the longline sets 

appears to be one of the most significant confounding factor in CPUE and catches of ALB. 

This is supported by previous research conducted by Sadiyah et al., 2012; Ijima et al., 

2015). The model with HBF as covariate did not in out perform and can be search for the 

relationship between HBF and CPUE using simple linear regression model.  

The determination of fishing area also has an effect of ALB catch because ALB is 

temperate tuna and will be moved in accordance with the environment and behaviour 

(Rochman et al., 2016; IOTC, 2014; Chen et al., 2005) . The distribution of ALB (mature 

and immature) are strongly influenced by Oceanographic condition (IOTC, 2014) such as 

sea surface temperature (SST), temperature at depth of 100 m (Temp_100), salinity at 

depth of 0 m (Sal_0) and dissolved Oxygen at 200 m depth (OXY_200). Sea surface 

temperature (SST) was the most significant for immature, spawning and non-spawning 

stage of ALB (Chen et al., 2005). Therefore area is one of the most significant covariate on 

GLM analysis. Each of fishing area (area 1; inside IEEZ; <15°S) and (area 2; outside 

IEEZ; >15°S) has the variation in the number and size of ALB catches. ALB caught in area 

two (2) has a smaller size than  in area one (1) but with a higher number of catches or 

nominal CPUE. The average size and nominal CPUE of ALB caught in area one was 

(98.49 cmFL and 0.167 ) , while in the area two was (96.49 cmFL and 0.583).  

CONCLUSION 

This study showed that confounding factors i.e year, area, and HBF significantly 

influenced the nominal CPUE. Standardizing CPUE by those confounding factors is a must 
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to recognize an actual CPUE index and condition of ALB resource. Temporal and seasonal 

pattern of ALB catch were clearly define in GLM analysis and would give  some 

indication which would confounding factors may significantly influenced in  nominal 

CPUE time series. 
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Appendix 1. Randomised quantile residual diagnostic of ALB GLMs 

 

 
 

 

Appendix 2. Power parameter (k) with 95% confidential interval in GLM analysis in 

Tweedie distribution 

 


