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Abstract 

 

A Bayesian state-space production model with the Pella and Tomlinson function was developed 

to assess the stock status of albacore tuna (Thunnus alalunga) in the Indian Ocean. The catch 

data used span from 1950 to 2017, and the joint standardized CPUEs of longline fleets were 

used as the abundance indices. As a result, for the base case which used CPUE of R34 with the 

initial year of 1950 and no increase in catchability, the median estimates of carrying capacity 

(K), maximum sustainable yield (MSY), BMSY, and FMSY were 290,003 ton, 93,933 ton, 128,890 

ton and 0.748/year, respectively. And the ratios of B2017/BMSY, and F2017/FMSY for the base case 

were respectively estimated as 1.589, and 0.259, which indicate that the stock is not overfished 

and not subject to overfishing. However, in sensitivity analyses, the scenarios using CPUE of 

R3 showed that the stock is overfished and not subject to overfishing. 

 

 

Introduction 

As age-aggregated population dynamics models, a state–space production model has been 

used. A merit of this model is a possible incorporation of random errors in both the population 

dynamics (i.e. process errors) and the observations (i.e. observation errors) (Meyer and Millar, 

1999a). In this study, a stock assessment for the Indian Ocean albacore tuna was conducted by 

using a Bayesian state-space approach with Pella and Tomlinson function.  

 

 

Data and Methods 



IOTC-2019-WPTmT07(AS)-14_Rev1 

1. Data 

The IOTC database (as of December, 2018) was used for the nominal catch of albacore tuna 

in the Indian Ocean (Fig. 1). The abundance indices used this study were the joint standardized 

CPUEs over main longline fleets (Japan, Korea and Taiwan) with vessel effects from 1979 to 

2017 (Hoyle et al., 2019). We selected the joint indices for R34 and R3 because of the main 

area of longline fisheries fishing for albacore tuna. And as discussed at last IOTC WPTmT 

meeting (IOTC, 2019), the catchability (q) assumed to be 1% increase per year for sensitivity 

analysis. 

 

 

Fig. 1. Annual catch of albacore tuna by fleet (gear type) in the Indian Ocean, 1950-2017 (data 

source: IOTC database). 

 

2. Bayesian state-space production model 

A general deterministic model is expressed as  

 

𝐵𝑡+1 =  𝐵𝑡 + 𝑔(𝐵𝑡) − 𝐶𝑡,     (1) 

 

where Bt, Ct, and g(Bt) are the biomass at the beginning of year t, the total catch during year t, 

and the surplus production function, respectively. In this study, we used Pella and Tomlinson 

form (Pella and Tomlinson, 1969) as the surplus production function: 
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𝑔(𝐵) = 𝑟𝐵 (1 − (
𝐵

𝐾
)

𝑧

),     (2) 

 

where r, K, and z are the intrinsic growth rate, the carrying capacity and the shape parameter, 

respectively. 

The observed data are the annual catch (C) and CPUE (I), and the relative abundance index 

(CPUE) is expressed as biomass (B) and catchability coefficient (q). 

 

𝐼𝑡 = 𝑞𝐵𝑡       (3) 

 

  We can reparametrize equations (1) and (3) by expressing the annual biomass as a proportion 

of carrying capacity (Depletion level, D = B/K) (Meyer and Millar, 1999b; Otsuyama and 

Kitakado, 2016), and assume process error and observation error of lognormal distribution as 

Bayesian state-space model. 

 

𝐷𝑡+1 = (𝐷𝑡 + 𝑔(𝐷𝑡) −
𝐶𝑡

𝐾
) 𝑒𝑢𝑡 ,  𝑢𝑡~𝑁(0, 𝜏2)  (4) 

𝐼𝑡 = 𝑞𝐾𝑃𝑡𝑒𝑣𝑡 ,   𝑣𝑡~𝑁(0, 𝜎2)           (5) 

 

where ut and vt are the process error and observation error in year t, respectively. 

 

3. MCMC sampling 

A MCMC method (Gibbs sampling) was used to estimate parameters of models and posterior 

distributions of parameters (r, K, D, q, τ, σ). As there were non-informative prior distributions, 

a uniform distribution was used for all the parameters in the model. The range of prior 

distribution was set by the trial and error process. Checking the result of posterior distribution 

of each parameter, we adjusted the range of prior distribution to slightly wider than posterior 

distribution. As estimated values of each parameter, we employed posterior medians. 

 

4. Model runs 

  As for the initial year of assessment, two years were considered that were 1950, the first year 

in which catch was recorded, and 1979 when botch catch and CPUE were available. We 

selected the scenario using CPUE of R34 with the initial year of 1950 and no increase in 

catchability as a base case, and the scenario using CPUE of R34 with initial year of 1950 and 
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an increase in catchability (scenario 1), the scenario using CPUE of R34 with initial year of 

1979 and an increase in catchability (scenario 2), the scenario using CPUE of R3 with initial 

year of 1950 and no increase in catchability (scenario 3), and the scenario using CPUE of R3 

with initial year of 1950 and an increase in catchability (scenario 4) as for sensitivity analyses. 

Therefore, a total of 5 scenarios were examined in this study. 

 

 

Result and Discussion 

We iterated 3,000,000 simulations with 3 chains using a burn-in of 500,000 and a thinning 

of 500. 

Trace plots and posterior densities for the model parameters of each scenario are shown in 

Fig. 2, and the statistics are summarized in Table 1. As can be seen in Fig. 2, the posterior 

distributions of carrying capacity (K), catchability coefficient (q), and observations error (σ) 

are positively skewed. The median of carrying capacity (K) and maximum sustainable yield 

(MSY) are estimated as 290,003 ton and 93,933 ton, respectively (see Table 1). However, the 

uncertainty is high in both parameter estimates due to the wide range of 95% credibility 

intervals. 

Fig. 3 shows the convergence diagnostics of the model parameters, indicating that the factors 

of all parameters approached value of 1 and converged fully, along with the trace plots. 

The difference between the estimated and the observed CPUEs is minor, and the predictive 

95% credibility intervals cover all the observed CPUEs (Fig. 4). In terms of biomass estimates 

(Fig. 5), it sharply decreased at the beginning, 1951, and then there was no significant change 

over time other than showing a decline around 1989. The change of biomass is similar to the 

CPUE trend, which seems to be greatly affected by the CPUE. Furthermore, the range of 95% 

credibility intervals is wide as well. 

The B/BMSY ratio decreased dramatically at the beginning, and then showed a small decrease 

at a stable level (Fig. 6). In terms of the F/FMSY ratio, although it is at low level but has gradually 

increased with a relatively high upper boundary of 95% credibility intervals (Fig. 7).  

Fig. 8 shows the Kobe plots showing the trace of the stock status of Indian Ocean albacore 

tuna. For the base case, it indicates that the stock is not overfished and not subject to overfishing. 

However, in the case of scenarios 3 and 4 showed the stock is overfished and not subject to 

overfishing, and scenario 4 was a more pessimistic. 
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Table 1. Posterior medians of parameters for the Bayesian state-space surplus production model 

of each scenario 

Scenario K r MSY BMSY FMSY B2017/BMSY F2017/FMSY 

base case 290,003 1.122 93,933 128,890 0.748 1.589 0.259 

scenario1 327,521 0.722 69,598 145,565 0.481 1.042 0.533 

scenario 2 347,523 1.084 118,918 144,935 0.834 1.179 0.277 

scenario 3 260,348 0.945 72,181 115,710 0.630 0.997 0.534 

scenario 4 391,176 0.553 63,562 173,856 0.369 0.662 0.917 

 

 

  



IOTC-2019-WPTmT07(AS)-14_Rev1 

 

 

 

Fig. 2. Trace plots of the MCMC simulations and posterior distributions for the Bayesian state-

space surplus production model parameters of the base case. 
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Fig. 3. Gelman plot diagnostics for assessing convergence of MCMC Chains for the Bayesian 

state-space surplus production model parameters of the base case. 
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(a) base case                        (b) scenario 1 

 

(c) scenario 2                       (d) scenario 3 

 

(e) scenario 4 

 

Fig. 4. Observed CPUEs and posterior means of the predicted CPUEs with 95% credibility 

interval by the Bayesian state–space surplus production model of each scenario.  
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Fig. 5. Changes in biomass estimates by the Bayesian state-space surplus production model of 

each scenario.  
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Fig. 6. Changes in B/BMSY ratio by the Bayesian state-space surplus production model of each 

scenario. 
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Fig. 7. Changes in F/FMSY ratio by the Bayesian state-space surplus production model of each 

scenario.  
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(a) base case                           (b) scenario 1 

       

(c) scenario 2                          (d) scenario 3 

 

(e) scenario 4 

Fig. 8. Kobe plot for Indian Ocean albacore tuna by the Bayesian state-space surplus production 

model of each scenario. 
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