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Industrialised fishing is a major source of mortality for large marine 
animals (marine megafauna)1–6. Humans have hunted megafauna in 
the open ocean for at least 42,000 years7, but international fishing 
fleets targeting large, epipelagic fishes did not spread into the high seas 
(areas beyond national jurisdiction) until the 1950s8. Prior to this, the 
high seas constituted a spatial refuge largely free from exploitation as 
fishing pressure was concentrated on continental shelves3,8. Pelagic 
sharks are among the widest ranging vertebrates, with some species 
exhibiting annual ocean-basin-scale migrations9, long term trans-
ocean movements10, and/or fine-scale site fidelity to preferred shelf 
and open ocean areas5,9,11. These behaviours could cause extensive 
spatial overlap with different fisheries from coastal areas to the deep 
ocean. On average, large pelagic sharks account for 52% of all identi-
fied shark catch worldwide in target fisheries or as bycatch12. Regional 
declines in abundance of pelagic sharks have been reported13,14, but 
it is unclear whether exposure to high fishing effort extends across 
ocean-wide population ranges and overlaps areas in the high seas 
where sharks are most abundant5,13. Conservation of pelagic sharks 
– which currently have limited high seas management12,15,16 – would 
benefit greatly from a clearer understanding of the spatial relationships 
between sharks’ habitats and active fishing zones. However, obtaining 
unbiased estimates of shark and fisher distributions is complicated by 
the fact that most data on pelagic sharks come from catch records and 
other fishery-dependent sources4,15,16.

Here, we provide the first global estimate of the extent of space use 
overlap of sharks with industrial fisheries. This is based on the analysis 
of the movements of pelagic sharks tagged with satellite transmitters 
in the Atlantic, Indian and Pacific oceans, together with fishing ves-
sel movements monitored globally by the Automatic Identification 
System (AIS), developed as a vessel safety and anti-collision system 
(see Methods). Our study focused on 23 species of large pelagic 
sharks that occupy oceanic and/or neritic habitats spanning broad 
distributions from cold-temperate to tropical waters (Supplementary 
Table 1). All these species face some level of fishing pressure in coastal, 
shelf and/or high-seas fisheries, with the International Union for the 
Conservation of Nature (IUCN) Red List assessing almost two thirds 
as being Endangered (26%) or Vulnerable (39%), and a further quarter 
as Near Threatened (26%) (Supplementary Table 2). Regional fisheries 
management organizations (RFMOs) are tasked with the management 
of sharks in high seas areas, yet little or no management is in place for 
most species3,5,12–18.

Movement patterns of sharks and fishing vessels
Eleven of the largest shark species/taxa groups accounted for 96% of 
the 1,804 satellite tags deployed (blue Prionace glauca; shortfin mako 
Isurus oxyrinchus; tiger Galeocerdo cuvier; salmon Lamna ditropis; 
whale Rhincodon typus; white Carcharodon carcharias; oceanic whitetip 
Carcharhinus longimanus; porbeagle Lamna nasus; silky Carcharhinus 
falciformis; bull Carcharhinus leucas; and hammerhead Sphyrna spp. 
sharks) (Supplementary Tables 3−5). Movement patterns indicated that 
multiple species aggregated within the same major oceanographic fea-
tures (Fig. 1), such as the Gulf Stream (blue, shortfin mako, tiger, white 
and porbeagle sharks), the California Current (blue, shortfin mako, 
white and salmon sharks), and in the East Australian Current (blue, 
shortfin mako, tiger, white and porbeagle sharks), (Extended Data 
Fig. 1; Supplementary Results and Discussion 2.1). The global relative 
density map (Fig. 2a) reveals distribution patterns of pelagic sharks 
and locations of space use hotspots (defined here as those areas with 
≥75th percentile of weighted daily location density; Methods). Major 
hotspots of tracked pelagic sharks in the Atlantic Ocean were in the 
Gulf Stream and its western approaches, Caribbean Sea, Gulf of Mexico 
and around oceanic islands such as the Azores (Fig. 2a; Supplementary 
Table 6). In the Indian Ocean, hotspots were evident in the Agulhas 
Current, Mozambique Channel, the South Australian Basin and north-
west Australia, while Pacific hotspots were in the California Current, 
Galapagos Islands, and around New Zealand. Although tagging sites 
occurred as expected in some shark space use hotspots – as tagging 
rates are inherently higher in hotspots – we also identified hotspots 
where no tagging sites occurred: in the North Atlantic (outer Gulf 
Stream, Charlie Gibbs Fracture Zone, western European shelf edge 
and Bay of Biscay); Indian Ocean (southern Madagascar, Crozet and 
Amsterdam Islands, South Australian Basin); and the Pacific (Alaska 
Current, outer California Current, white shark ‘Café’ area11, North 
Equatorial Current, Clipperton Island, Kermadec Islands) (Extended 
Data Fig. 1). There was consistency between our fine-scale shark hot-
spots and coarse scale hotspots estimated from fishery-dependent catch 
data (Supplementary Results and Discussion 2.1).

To determine the extent to which shark space use hotspots fall under 
the footprint of global industrialised fisheries we mapped the move-
ments of fishing vessels carrying AIS transmitters, estimated to be fitted 
on 50–75% of active vessels >24 m length19–22. Firstly we mapped the 
mean annual and mean monthly fishing effort (days) of AIS-equipped 
fishing vessels using various gear types19 during 2012–2016 (Extended 

effective ocean management and conservation of highly migratory species depends on resolving overlap between animal 
movements and distributions and fishing effort. Yet, this information is lacking at a global scale. Here we show, using 
a big-data approach combining satellite-tracked movements of pelagic sharks and global fishing fleets, that 24% of 
the mean monthly space used by sharks falls under the footprint of pelagic longline fisheries. Space use hotspots of 
commercially valuable sharks and of internationally protected species had the highest overlap with longlines (up to 76% 
and 64%, respectively) and were also associated with significant increases in fishing effort. We conclude that pelagic 
sharks have limited spatial refuge from current levels of high-seas fishing effort. results demonstrate an urgent need for 
conservation and management measures at high-seas shark hotspots and highlight the potential of simultaneous satellite 
surveillance of megafauna and fishers as a tool for near-real time, dynamic management.
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Data Fig. 2; Methods) and then mapped the estimated global fishing 
effort of drifting pelagic longline and purse seine vessels separately 
as these two gears catch the majority of pelagic sharks12,15 (Fig. 2b; 
Extended Data Fig. 2). The global distribution map of longline fish-
ing effort identifies several large−scale, high−use areas such as the 
North Atlantic, southwest Indian Ocean, and the central equatorial 
and northwest Pacific regions (Fig. 2b; Extended Data Figs. 1, 2). There 
were also areas where industrial longline activity appeared sparse, for 
example the central and southwest North Atlantic, northeast Pacific, 
and northern Indian oceans. We focused our detailed analysis of shark 
overlap with that of longline fishing effort, as this gear catches most 
pelagic sharks globally15 and since most other AIS fishing vessel gear 
types represented in the dataset do not target or generate abundant 
bycatch of pelagic sharks19 (Supplementary Results and Discussion 2.2). 
The number of Atlantic AIS longline fishing effort days was positively 
correlated with the number of observed baited longline hooks deployed 
in the Atlantic (observed hooks, Spearman’s r = 0.182, p = 0.008;  
n = 241; see Methods), confirming AIS longline fishing effort days were 
indicative of actual fishing effort19.

Spatial overlap of sharks and fishing effort
To explore the spatial heterogeneities of sharks and vessels, we used 
generalised additive models to determine how shark relative density of 
location estimates and longline fishing effort were affected by environ-
mental covariates (see Methods; Supplementary Table 7). Distributions 
of pelagic shark density and fishing effort of pelagic longline vessels 
were best explained by the same drivers, with both demonstrating 
strong relationships with habitat types characterised by surface and 
subsurface temperature gradients (fronts23; thermoclines) and/or high 
primary productivity (Supplementary Table 8, Extended Data Fig. 3; 
Supplementary Results and Discussion 2.3). The similar environmental 
drivers identified predict high spatial overlap because sharks are known 
to aggregate in biologically productive features like fronts to enhance 
foraging opportunities5,6,23, a behaviour that fishers exploit to increase 
their chances of making higher catches of commercially valuable epipe-
lagic fishes, including sharks5,6.

We calculated the spatial overlap of tracked sharks with longline 
fishing effort for a mean month within the datasets (Methods). 
Overlap was defined as shark and fishing effort spatial co-occurrence 
within a 1 × 1° grid cell in an average month (Methods) (for grid-
cell size analysis see Supplementary Table 9, Extended Data Fig. 4, 
Supplementary Results and Discussion 2.4). Overlap between tracked 
sharks’ space use was dominated by pelagic longline gear (Fig. 2; com-
pare longline distribution in Fig. 2b with all AIS fishing vessels in 
Extended Data Fig. 2a). Globally, the distribution of longline fishing 
activity in the dataset overlapped 24% of the mean monthly space use 
of tracked sharks at the 1 × 1° scale (mean monthly overlap = 23.7% ± 
32.7 S.D.; median = 4.5%, n = 1,681 tracks). This estimate is unlikely 
to be biased by a majority of our tags being deployed in the northwest 
Atlantic or northeast Pacific oceans because there was relatively low 
AIS-monitored longline fishing effort in both regions (Figs. 1a, 2a-c). 
Across four regions where the majority of sharks were tracked, mean 
monthly spatial overlap of the 11 most frequently tracked species/
taxa groups with longline fishing effort was 8% (east Pacific), 24% 
(Oceania), 37% (North Atlantic) and 38% (southwest Indian Ocean) 
(Supplementary Table 10). Overlap patterns between ocean regions, 
and for species within regions, were not driven by the numbers of 
tags deployed (Supplementary Results and Discussion 2.1). Overlap 
varied across species and oceans, reflecting the heterogeneous distri-
butions of space use by sharks and longline fishing activity (Extended 
Data Figs. 6, 7). For example, monthly spatial overlap, averaged across 
all oceans, ranged from 49% for the blue shark, down to 1.3% for  
the salmon shark. Among oceans, the overlap of space use by blue 
sharks – the pelagic shark most commonly caught by open-ocean 
longline fleets17 – was 76% in the North Atlantic, decreasing to 14% 
in the east Pacific (median overlap values given in Supplementary 
Tables 10, 11).

To estimate the potential exposure of sharks in different ocean 
regions to longline fishing effort, we calculated the mean monthly 
fishing effort that individual sharks were exposed to in each grid cell 
they occupied during a corresponding month, standardised to account 
for variations in individual track durations (hereafter termed fishing 
exposure index, FEI; see Methods). As expected across all oceans and 
species, sharks were exposed to highly variable longline fishing effort 
(Supplementary Table 10). Given this, we tested whether FEI was indic-
ative of actual sharks captured and landed by fisheries. We compared 
the median monthly individual species FEI for North Atlantic shark 
species (the ocean for which we had the most species and tracks) with 
official records from the Food and Agriculture Organization of the 
United Nations (FAO) on mean annual North Atlantic landings of 
those species (Methods). We found a significant positive relationship 
between landings and individual species mean FEI (linear regression, r2 
= 0.45, n = 8 species/taxa group, F = 6.72, F0.05(1),1,7 = 5.59, p < 0.05) 
(Extended Data Fig. 5), implying the index reflects fishing-induced 
shark mortality.

Hotspots of spatial overlap of shark relative density and longline 
fishing effort were evident for example in the Gulf Stream and 
stretching eastward to the Azores, western European shelf edge, 
west African upwelling, California Current (and white shark 
Café11), Agulhas Current, the southern Great Barrier Reef, and New 
Zealand shelf waters (Fig. 2c). This demonstrates that high fishing 
effort is focused on extensive shark hotspots globally (compare 
Supplementary Tables 6 and 12). Nonetheless, significant areas of 
the high seas used by pelagic sharks may exist that are largely free 
from AIS-monitored fishing activity of longline and purse seine ves-
sels and which could be targeted for shark conservation measures 
(Supplementary Results and Discussion 2.7). Identifying such areas 
can only be addressed with the fishery-independent distributions 
presented here. However, a general characteristic of large areas with 
low longline fishing activity was also one of lower shark densities 
(<75th percentile of relative density; Fig. 2a), indicating sharks were 
not remaining in these areas but moving through them, potentially 
as part of foraging excursions or migrations for reproduction9,11. 
The lower relative density of sharks suggests lower productivity – 
supported by our modelling results (model 1; Extended Data Fig. 3) 
– and consequently poorer fishing opportunities, which may explain 
the apparent low fishing effort. The results also show that very few 
large hotspots of space use by pelagic sharks occurred in areas free 
from AIS fishing vessels, particularly longline and purse seine gears 
(Fig. 2c; Extended Data Fig. 2c, d).

Determining spatial risk to sharks from fishing
The extent of spatial overlap between shark relative density distribution 
and longline fishing effort indicates which species are more at risk from 
fishing and how this risk is distributed (Fig. 3). Since we demonstrate 
that a large proportion of shark fishing mortality as represented by 
landings is related to longline fishing effort in shark space use areas, it 
follows that sharks having both high fishing overlap and FEI (greater 
susceptibility) will be at greater risk of capture than those with low 
overlap and low FEI (Fig. 3). We found the main commercially valuable 
pelagic sharks were grouped within the highest potential risk zone in 
the North Atlantic and east Pacific (blue and shortfin mako sharks) 
(Fig. 3a,b; see Supplementary Results and Discussion 2.5 for signifi-
cance tests and results for other species). In the North Atlantic, short-
fin mako and blue sharks were at significantly greater risk compared 
to other tracked sharks because mean monthly space use overlap of 
62% (median, 71%) and 76% (median, 81%) respectively, co-occurred 
with high mean FEI (Fig. 3a; Extended Data Figs. 6, 7; Supplementary 
Table 10). However, exposure risk varied between oceans because 
although spatial overlap of blue shark remained relatively high in the 
southwest Indian Ocean and for blue and shortfin mako sharks in 
Oceania (mean, 18–47%; median, 11–33%; Supplementary Table 10), 
individual species FEI means were lower in those overlapping areas 
(Fig. 3a, c, d).
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Among sharks generally considered less commercially valuable, 
including tiger and bull sharks, we found risk from longlines was high 
in some but not all regions. Bull sharks used spatially limited near-shore 
habitats in tropical regions within the southwest Indian Ocean, and in 
those areas they were at increased risk due to high mean overlap (94%) 
and high mean FEI (Fig. 3c; Supplementary Table 10). This greater 
susceptibility could lead to high localised catches, which, if replicated 
elsewhere, could explain why bull sharks are one of the ten most com-
monly traded species in the Hong Kong fin market24. In contrast, tiger 
sharks were exposed to lower overlap and lower mean FEI in all ocean 
areas except Oceania, where they were within the highest potential 
risk zone (Fig. 3a-d; Supplementary Results and Discussion 2.5, 2.6).

High risk was evident for internationally protected sharks under 
CITES (Convention on International Trade in Endangered Species) 
Appendix II and RFMO regulations. The porbeagle shark (IUCN 
Red List Endangered globally) and white shark (Vulnerable globally) 
have low population sizes compared to historic levels (Supplementary 
Table 2). In the North Atlantic and Oceania we found porbeagle in the 
highest risk zone (Fig. 3a,d), indicating high potential for incidental 
bycatch mortality. White sharks were in the highest risk zone in all 
oceans where they were tracked with mean spatial overlap ranging 
from 15% (east Pacific; median, 13%) to 64% (southwest Indian Ocean; 
median 65%), except the North Atlantic where mean FEI was just below 
the average FEI for all species (Fig. 3; Supplementary Table 10). Our 
results showing high risk for porbeagle and white sharks from longlin-
ing across broad regions highlight the need for continued protection 
− including sufficient scientific observer coverage on vessels to under-
pin accurate data reporting − so that stock rebuilding can continue25, 
which for porbeagle is estimated to take a further 30 years18.

Decreasing the grid cell size in spatial analyses can lead to concom-
itant decreases in percentage spatial overlap estimates19, which could 
potentially affect the species risk exposure patterns we found. However, 
a grid-cell size analysis showed that the patterns of species occurrence 
within the high or low risk zones remained remarkably consistent irre-
spective of the spatial scale at which they were observed (Extended Data 
Fig. 4), or the subset of tracking years analysed (Extended Data Figs. 8, 
9; Supplementary Results and Discussion 2.4).

temporal variation in risk
The highest levels of exposure risk of sharks to longline fisheries were 
not constant through time but varied seasonally as shark and fishing 
vessel space use shifted in relation to each other (Fig. 4; Extended Data 
Fig. 10). Overall for species with sufficient data (plotted in Fig. 4), the 
mean monthly overlap of species space use with mean FEI showed 
sharks spent 4–6 months per year in the lowest risk zone and 2–6 
months in the highest, with differing patterns of changing risk from 
fishing evident across species (Fig. 4). For example, highest risk for 
southwest Indian Ocean white and North Atlantic blue sharks occurred 
at discrete times in the year. For Indian Ocean white sharks, this pattern 
arises from long-range seasonal movements (Dec–Feb, Jun/Jul, Oct) 
into annually persistent areas with high mean FEI. For blue sharks, 
the discrete pattern appears driven by sharks and longline vessels co- 
occurring maximally in boreal winter and summer, with lower exposure  
risk occurring in boreal spring and autumn as sharks migrate north 
before returning south5. Longline fisheries also made this seasonal 
south-north-south movement, but lagged behind movements of blue 
sharks and thus exhibited lower mean overlap and FEI during those 
times (Extended Data Fig. 10a-d). Similarly, annual risk patterns of 
east Pacific white and Australian tiger sharks were driven by migratory 
behaviour, with highest risk occurring for three consecutive months in 
boreal (white) and austral (tiger) spring as sharks arrive in areas with 
higher than average exposure to longline fishing effort (Fig. 4c, e). In 
contrast, shortfin mako sharks in the North Atlantic were exposed to 
high mean overlap (∼60%) and high mean FEI continually through the 
boreal summer and autumn (Jul–Oct), principally due to occupation 
of a space use hotspot located where the Gulf Stream and Labrador 
Current converge that results in persistent high overlap with high 

longline effort (Fig. 4b; Extended Data Fig. 10e-h). Shortfin mako and 
vessel tracking indicates that fishery-induced mortality within this 
hotspot is therefore likely to be high. This was confirmed by the high 
overall return rate of satellite tags (19.3%) attached to Atlantic shortfin 
makos (n = 119 tags; tracking duration: mean ± SD = 161.5 d ± 156.9; 
median = 109 d) that were returned to us after sharks were captured by 
Atlantic longline fleets during the study. To our knowledge, this is the 
highest species-specific return rate for sharks yet recorded on an ocean 
scale, as opposed to regional scale, study26,27 (Fig. 2c; Supplementary 
Table 13; Supplementary Results and Discussion 2.6).

Discussion
Our results show that globally important habitat areas for threatened 
pelagic sharks overlap significantly with industrial fishing activity in 
both space and time. Given the high fishing effort in hotspots of many 
species for significant portions of the year, and the very few tracked 
hotspots free from exploitation, our study reveals exposure risk of 
sharks to fisheries in the high seas is spatially extensive – stretching 
across entire ocean-scale population ranges for some species. Overall, 
the patterns suggest a future with limited spatial refuge from industrial 
longline fishing effort that is currently centred on ecologically impor-
tant oceanic shark hotspots. The distribution maps reported here are, 
therefore, a first but essential underpinning for a conservation blue-
print for pelagic sharks in the high seas. Our study highlights the scale 
of fishing overlap with shark hotspots and argues for more effective 
and timely monitoring, reporting and management of pelagic sharks 
as a result. To enhance the recovery of vulnerable species, one solu-
tion is designation of large−scale marine protected areas (MPAs)28 
around ecologically important space use hotspots of pelagic sharks23, 
notwithstanding the need for more complete reporting of catch data 
with enforcement to support stricter conventional management by 
catch prohibitions, quotas or minimum sizes5,16. This study outlines 
shark hotspot locations where AIS-monitored fishing effort appears 
currently relatively low, which is where shark conservation could be 
maximized, while minimizing impact on fishing activity not directed 
at sharks (Supplementary Results and Discussion 2.6, 2.7). Although it 
would be challenging to develop a legally binding treaty for managing 
high seas fauna20, burgeoning technology for global surveillance and 
enforcement now offers valuable additional options for a step change 
in ocean management6,29.

Satellite monitoring of marine megafauna1,5,11,30, oceanographic fea-
tures (eddies, fronts)6,23 and global fishing vessel distributions19 could 
provide signals of shifting space use by wide-ranging sharks and other 
marine megafauna due to environmental changes that, in turn, could 
inform designation of new temporary time-area closures to industrial 
fishing6 and tracking of fishers’ displacement activities20. The potential 
of near real time, synoptic measurements of marine megafauna, fishing 
activity and the marine environment, particularly given the remoteness 
and vast extent of the high seas, suggests technology-led conservation 
measures will be crucial tools for reversing the observed declines in 
iconic ocean predators3 such as pelagic sharks12–14,29. Conservation 
technology could develop in the future toward incorporation of adap-
tive management strategies6,29 that are actionable in real time to assess 
risks in the overlap between fishing vessels and sharks across the global 
ocean.
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Fig. 1 | Movements of oceanic and neritic pelagic sharks. (a) Daily 
state-space model locations estimated from locations obtained via satellite 
transmitters deployed on 1,681 sharks from 23 species between 2002–
2017. Extent of individual shark species space use areas are illustrated for 

the species with the greatest numbers of tags deployed across multiple 
ocean regions: blue Prionace glauca (b), shortfin mako Isurus oxyrinchus (c),  
tiger Galeocerdo cuvier (d), and white Carcharodon carcharias (e) sharks. 
Shark images created by M. Dando.
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Fig. 2 | Spatial distributions and overlap of sharks and longline fishing 
vessels. (a) Distribution of the mean monthly weighted, normalized 
location density of tracked sharks in 1 × 1° grid cells (shark hotspots 
were defined by cells with ≥75th percentile of relative density). (b) Mean 
annual distribution of fishing effort (mean days per grid cell) of AIS 
tracked longlining vessels in 2012–2016 (see Methods). (c) Distribution 
of the mean monthly overlap and level of fishing effort (days) sharks were 
exposed to in overlapping areas for all species within 1 × 1° grid cells 
(see Methods). Hotspots of spatial overlap of shark density and fishing 
effort were defined as cells with ≥75th percentile of mean FEI. Blue circles 
denote locations where tagged sharks were caught by commercial fishers 
mainly using pelagic longlines and coastal nets.
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Fig. 3 | Estimated exposure risk of sharks to capture by longline fishing 
activity. Plots (left) showing spatial overlap of sharks and longline fishing 
effort against species mean monthly fishing exposure index (FEI) indicate 
species subject to high overlap and FEI (higher than average overlap and 
FEI; higher risk red zone on plot) and those with lower overlap and FEI 
(lower than average overlap and FEI; lower risk green zone) for (a) North 
Atlantic, (b) eastern Pacific and (c) southern Indian oceans, and (d) for 
the Oceania region. Lines separating the coloured zones are fixed at the 
average values of spatial overlap (y axis) and FEI (x axis) for all species 
combined. For each ocean, the amount of fishing effort individual shark 
species were exposed to (mean FEI; see Methods for details) are given on 
right panels. Shark species identification codes (e.g. PGL) used on panels 
are given in Fig. 1. Error bars denote ± one standard deviation of the mean.
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Fig. 4 | Temporal changes in shark exposure risk to longline fishing. 
Monthly mean spatial overlap of sharks and longline fishing effort versus 
monthly mean FEI for all individuals of that species for the four most 
data-rich species in a relative year: (a) blue, (b) shortfin mako, (c, d) white, 
and (e) tiger sharks. Lines separating the coloured zones are fixed at the 
respective individual species average values of spatial overlap (y axis) and 
FEI (x axis) in a relative year. Horizontal bars denote months in different 
fishing exposure risk zones (red, highest risk; green, lowest). Error bars 
denote ± one standard deviation of the mean.
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MethOds
Study animals and tagging. From 2002–2017 we tagged 1,804 pelagic sharks with 
satellite transmitters at multiple tagging sites in the Atlantic, Indian and Pacific 
oceans (Extended Data Fig. 1), including 649 in the North Atlantic, 588 in the 
eastern Pacific, 151 in Oceania and 153 in the southwest Indian Ocean, with 60% 
of deployments occurring between 2010 and 2017 (Methods; Extended Data Fig. 1, 
Supplementary Tables 3–5). The number of tagged individuals varied among spe-
cies and ranged from one to 280. Two satellite-transmitter tag types (position-only 
ARGOS, Advanced Research and Global Observation Satellite transmitter; and 
PSAT, Pop-off Satellite Archival Transmitter) were used. Sharks were captured 
with baited hooks (longlines, rod-and-line angling, or with handlines), in purse 
seine during commercial fishing operations, or tagged free-swimming in the water. 
Tags were attached to the first dorsal fin or in the dorsal musculature. All animal 
handling procedures were approved by institutional ethical review committees and 
completed by trained personnel (see Supplementary Information for details). Data 
were provided by the data owners to the senior author and quality checked prior to 
archiving in a database. Poor quality data were reported for 123 tags (72 ARGOS 
and 51 PSAT) due to, for example, early tag failure, premature tag pop-off, or a 
high percentage of locations estimated with high spatial error, e.g. raw computed 
geolocations over land, all of which resulted in poor state-space model fits leading 
to short or unreliable track reconstructions. Hence, analyses were restricted to the 
remaining 1,681 tracks from 1,066 ARGOS and 615 PSAT tags on sharks from 23 
species ranging in total duration per species from 20 to 57,037 days with a median 
of 4.1 years total track time per species (Supplementary Table 3). The number of 
sharks tracked within each region is given in Supplementary Table 14.
Track processing. Movements of PSAT-tagged sharks were estimated using either 
satellite relayed data from each tag or from archival data after the tags were phys-
ically recovered. Data were provided as: (i) raw shark positions that were previ-
ously reconstructed using software provided by the tag manufacturers (e.g. Wildlife 
Computers, Redmond, USA; Microwave Telemetry, USA), where daily maximal 
rate-of-change in light intensity was used to estimate local time of midnight or 
midday for longitude calculations, and day-length estimation for determining 
latitude31,32; or (ii) filtered positions where a state-space model (SSM) (unscented 
Kalman filter with sea surface temperature, UKFSST)33 had been applied to correct 
the raw geolocation estimates and obtain the most probable track. In the first case, 
raw positions were corrected using the UKFSST SSM (UKFSST R package) in addi-
tion to a bathymetric correction applied to the initial Kalman position estimates 
(analyzepsat R add-on). A daily time-series of locations was estimated using a con-
tinuous-time correlated random walk (CTCRW) Kalman filter34 (crawl R package). 
UKFSST geolocations were parameterised with standard deviation (S.D.) constants 
which produces the smallest mean deviation from concurrent ARGOS positions35. 
In the latter case, the CTCRW SSM was applied to produce regular time-series.

For ARGOS transmitter tags, data were provided as raw ARGOS (Doppler  
frequency shift) position estimates. Location class (LC) Z data – assigned for 
a failed attempt at obtaining a position – were discarded from the dataset. The 
remaining raw position estimates (LC 3, 2, 1, 0, A and B) were analysed point-to- 
point with a 3 m s-1 speed filter to remove outlier locations. Subsequently, the 
CTCRW SSM was applied to each individual track, producing a single position 
estimate per day using model parameters implemented in the crawl R package34.

Shark tracking data from the Tagging of Pacific Predators (TOPP) program were 
downloaded from the Animal Tracking Network (ATN) hosted by the Integrated 
Ocean Observing System (<https://bit.ly/2G7BlHn>; downloaded September 
2017). Both ARGOS and light-based geolocation data in ATN had already been 
filtered with a Bayesian based SSM36. Briefly, the SSM was fitted to each track 
individually, using the WinBUGS software that conducts Bayesian statistical anal-
yses using Markov chain Monte Carlo (MCMC) sampling37. For each track, two 
MCMC chains each of length 10,000 were run and a sample of 2,000 from the 
joint posterior probability distribution was obtained by discarding the first 5,000 
iterations and retaining every 5th of the remaining iterations. SSM fits were poste-
riorly inspected for obvious problems (e.g. unrealistic movements11). Because two 
different SSMs were applied to data used in this study, we tested for possible biases 
in the spatial density analysis (see below) by comparing 1 × 1º density grid maps 
obtained with both UKFSST and Bayesian-based filtered tracks using a subset of 
83 ARGOS-linked tracks in the North Atlantic (blue shark, n = 27; mako, n = 42; 
white, n = 3; oceanic whitetip, n = 11). Differences in spatial grid density between 
the two methods were negligible (Supplementary Fig. 1). Thus, tracks with daily 
locations were reconstructed for 1,681 individuals totalling 281,724 tracking days 
(Supplementary Table 3).
Spatial density analysis. To obtain unbiased estimates of shark spatial density, 
gaps between consecutive dates in the raw tracking data were interpolated to one 
position per day. Long temporal gaps without tag-reported location data in a recon-
structed track can result in extensive interpolated movements driven by the under-
lying random walk model rather than a shark’s movement pattern11. Although 
the frequency of long temporal gaps without data (>20 days) in our dataset was 

low (Supplementary Table 15), nonetheless, any tracks with gaps without data 
exceeding 20 d were split into segments prior to interpolation, thus avoiding the 
inclusion of unrepresentative interpolated location estimates5. Similarly, location 
estimates derived for periods without data exceeding 20 d were also discarded 
from TOPP data11.

To account for biases in spatial location density associated with (i) variable track 
lengths and (ii) shorter tracks near the tagging location, we broadly followed the 
basic time weighting procedure of Block et al.11. In this study, each daily location 
estimate of an individual was weighted by the inverse of the number of all individ-
uals with location estimates for the same relative day of their track:

= / ∈w n i I1 for (1)it t

where wit is the weight for the tth location estimate of the ith individual’s track, nt 
is the number of total individuals with a tth location estimate, and I is the set of 
individuals of all species. We calculated weights for all individuals irrespective of 
species to estimate the global relative spatial density of pelagic sharks (i.e. Figure 2a; 
see below). Periods with gaps without data >20 d were not included when weight-
ing the locations. To minimize bias in estimates of spatial density patterns when 
sample sizes were lower, the modified weighting procedure of Block et al.11 was 
implemented such that location weights after a threshold day of the relative track 
were fixed equal to the weight on the day corresponding to the 85th percentile of 
track lengths. Under this weighting scheme, individual location estimates closer 
to the tagging location tended to receive a lower weight than later locations as, due 
to tag failure, transmission of satellite locations are more likely earlier in the track 
of an individual shark. Therefore, longer tracks received a higher total weight than 
shorter tracks because of the lower number of long tracks and consequently the 
lower value of nt towards the end of the track. Hence, calculated spatial densities 
were more representative of the actual distributions and less affected by tag loss, 
failure or a spatial bias towards deployment location.

The weights for all individuals (equation 1) were normalised so that they 
summed to unity. Therefore, within the study area, all individuals contributed 
equally to the described global spatial density patterns:

∑ ∑=
∈ =

D w (2)it
i I t

T

it
1

i

where Dit is the relative density contribution of the tth location estimate for indi-
vidual i, and Ti is the number of location estimates for individual i. The relative 
density contributions for all location estimates for all individuals (Dit) were then 
summed within each grid cell of the study area for each month of a relative year, 
which gave 12 spatial relative density maps to compare with monthly longline 
fishing effort. The mean annual Dit per grid cell for a relative year was calculated 
from the 12 monthly relative densities per grid cell to provide the global relative 
density of tracked sharks mapped in Fig. 2a. Hammerhead (3 species) and mako 
(2 species) shark species were analysed as taxa groups: Sphyrna spp. and Isurus 
spp., respectively. The spatial coverage of 1 × 1° grid cells occupied by sharks per 
ocean region was between 53% (East Pacific) and 25% (Oceania) of total grid cells 
(Supplementary Table 5). Spatial relative densities of locations were also calcu-
lated for each of the ten most data-rich species separately at a 1 × 1º grid cell size 
(Extended Data Figs. 6, 7). We followed the same procedure as that given above 
but instead weighted by the inverse of the number of total individuals of a single 
species on the same relative day of their track, and with the weights for each species 
normalised to one.

To examine how the broad spatial distribution of sharks between years may 
have changed we re-calculated the relative density contributions for all location 
estimates for all individuals (Dit) together within each of eight consecutive two-
year classes starting in 2002 (Extended Data Fig. 8). Each daily location within 
a class was weighted by the inverse of the number of individuals with location 
estimates for the same relative day of the 2 years (e.g. 1st January 2012 is the 
relative day number 1 of all tracks in each of two years that were active on that 
date). Similar to the weighting scheme applied to the main data, periods with gaps 
without data >20 d were not included when weighting the locations. After the 85th 
percentile of the track length, daily weights were fixed as before. Total weights for 
all individuals within each two-year class were normalised to one. In addition, due 
to a mismatch in the years of data availability between sharks and fishing vessels, 
exposure risk (overlap and fishing exposure index, FEI) was re-calculated for the 
period between 2012 and 2016 that was common to both sharks and longline 
fishing vessels (Extended Data Fig. 9). Relative density of all individuals (Dit) was 
re-calculated based on the weighting scheme described above, considering only 
individuals whose tracks were within the 2012 – 2016 period.
Fishing vessel geolocation data. The Automatic Identification System (AIS) was 
developed as a vessel safety and anti-collision system with global coverage, rather 
than to track fishing vessels for fishery management purposes19–22. However, its 
global coverage of locations of many thousands of ships through time enables 
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fishing effort distribution to be analysed19–22. Here, fishing effort (hours of fishing) 
data gridded at 0.01° by flag state and estimated gear type were obtained from 
Global Fishing Watch (GFW) (available at https://bit.ly/2GmF7Me). GFW used 
raw AIS vessel tracking data obtained from ORBCOMM via their AIS-enabled 
satellite constellation (https://bit.ly/2TuAdkb) to calculate fishing effort and derive 
the gridded data, described in detail in Kroodsma et al.19. Briefly, GFW uses two 
neural network algorithms to categorize different types of fishing gear, e.g. drifting 
longlines, purse seines, in addition to estimating the spatio-temporally resolved 
locations where fishing gears were most likely deployed by individual vessels19. 
We used the GFW gridded fishing effort data in the years 2012 to 2016 for all gear 
types, and for estimated drifting pelagic longlines and purse seines. The GFW 
gear-type classification algorithms are being continuously refined to correct for 
acknowledged contamination of some gear types with others in some regions19, 
e.g. drifting longlines with bottom-set longlines off New Zealand. For each type 
in this study, we summed the number of hours fishing in a month (expressed as 
days, where 24 h of fishing effort = 1 day) within each 1 × 1° grid cell to provide 
12 monthly global fishing effort maps. The mean annual fishing effort per grid cell 
in a relative year was calculated from the 12 monthly fishing effort maps. Global 
distributions of fishing effort for all gear types, longlines and purse seines were 
mapped separately and overlaid by shark spatial relative density of locations for 
all individuals (Dit) to determine spatial overlap intensity (fishing effort sharks 
were exposed to; see FEI below). AIS data coverage increased from 2012 to 2016 as 
more satellite AIS receivers were launched and commenced operation19. However, 
the global spatial distribution of longline vessel fishing effort was broadly similar 
across years (Supplementary Fig. 2) and variation in annual maximum fishing 
effort displayed no increasing trend over time, indicating our calculated mean 
annual fishing effort for 2012–2016 did not overestimate spatial overlap or fishing 
effort but can be considered conservative (Supplementary Fig. 2). To test that the 
numbers of AIS longline fishing days per grid cell were representative of actual 
fishing effort as measured by the numbers of baited hooks deployed by longline 
vessels, we correlated Atlantic AIS fishing days with ICCAT observed hook data 
(downloaded from https://bit.ly/2GmrYTt). We compared the total number of 
observed hooks in ICCAT data at a 5 × 5° grid cell size (the finest spatial resolution 
for these ICCAT data) with the total number of fishing days in the AIS dataset, 
also at 5 × 5°. To calculate the AIS fishing effort days in each 5 × 5° grid cell we 
summed the days in the 1 × 1° cells that fell within each 5 × 5° cell. Data were 
used from 2015, the most recent year for which we had both ICCAT hook data and 
comprehensive AIS longline coverage.
Shark and fishing effort environment modelling. To model shark and fishing 
vessel distributions in relation to environmental variables, data were extracted 
from online databases (Supplementary Fig. 3). The environmental variables were 
selected based upon their demonstrated importance in affecting shark occurrence 
and included: (i) sea water temperature (ºC) (abbreviation used in models: sea 
surface temperature, SST; temperature at 100 m, TEM_100) known to influence 
the presence of many pelagic shark species5,11; (ii) maximum thermal gradient 
(ΔºC/100 km) (TGR) influences shark spatial density5, and was calculated here 
based on the SST data and using maximum gradient maps by determining where 
for each pixel a geodetic–distance-corrected maximum thermal gradient was iden-
tified; (iii) sea water salinity (psu) (SAL), an important determinant of habitat use 
in some sharks1,38; (iv) sea surface height above geoid (m) (SSH) that influences 
shark presence5 and catches by fisheries6; (v) ocean mixed layer depth thickness 
or thermocline depth (m) (MLD) that affects pelagic shark foraging behaviour39; 
(vi) mass concentration chlorophyll a in sea water (mg m-3) (CHL) as a proxy for 
productivity that often characterises preferred habitats of sharks5,39; (vii) mole 
concentration of phytoplankton expressed as carbon in sea water concentration 
(mmol m-3) (PHY) as a direct measure of productivity; (viii) net primary produc-
tion of biomass expressed as carbon per unit volume in sea water per day (g m-3 d-1) 
(NPP) quantifying productivity; and (ix) mole concentration of dissolved molec-
ular oxygen in sea water (mmol m-3) (DO) that can strongly influence shark space 
use1. Environmental datasets i to v were downloaded from Copernicus Marine 
Environment Monitoring Service (CMEMS) Global Ocean Physics Reanalysis 
product (https://bit.ly/2MOJeSy; downloaded November 2017) and datasets vi to ix 
from CMEMS Global Ocean Biochemistry Hindcast product (https://bit.ly/2TwN-
bOq; downloaded November 2017). CMEMS data were available for 2002 to 2014 
from the surface to 5,500 m as monthly datasets. Overall averages (2002-2014) were 
calculated at a 1 × 1° grid cell resolution for surface and 100 m depth layers (with 
the exception of SSH and MLD; Supplementary Fig. 3). Most of these variables 
and interactions are also considered important for explaining fishing patterns5,6.

We developed and compared a set of generalised additive models (GAMs) with 
a gaussian family and an identity link using the log-transformed relative density 
of locations of all individual sharks (Dit) as response variable. We used the relative 
density of sharks rather than presence/absence data because our main aim was to 
highlight the areas where highest overlap with fishing effort might occur. Because 
we were interested in identifying areas (grid cells) with the highest overlap, and 

understanding how general environmental variables might influence shark density 
in specific locations, we considered the relative density for all 23 shark species 
combined without considering random effects per species. All environmental vari-
ables were standardised (mean-centred and divided by the standard deviation) and 
colinearity checked prior to inclusion in the models. Highly skewed environmental 
variables were logged before standardisation, this included most predictors at the 
surface (except for SAL and SSH) and also NPP (for sharks only) and TGR at 100 m  
(TGR_100). All possible combinations of 16 variables were not undertaken due 
to colinearity. Rather, we focused on testing ecologically relevant hypotheses. A 
description of the general hypothesis tested with each model included in the model 
set is given in Supplementary Table 7. Including models with a reduced number of 
variables was necessary as some variables were colinear and those variables were 
included in other models. Because sharks respond to surface and subsurface ther-
mal gradients which often support higher biological productivity5,6,11,39, we tested 
for interactions between MLD and SST, CHL and MLD at 100 m (MLD_100), CHL 
at 100 m (CHL_100) and TEM at 100 m (TEM_100), MLD and TGR at the surface, 
MLD and CHL_100, CHL_100 and TEM_100, and between SAL and TEM_100.

GAM with a Tweedie distribution and log link function provided the best 
modelling approach for the fishing effort data (including zeros in grid cells), as 
this distribution includes a family of probability distributions including normal, 
gamma, Poisson and compound Poisson-gamma. We considered two response 
variables separately: fishing effort (days of fishing per grid cell) of all AIS fishing 
vessels, and fishing effort of AIS longline vessels only. We did not consider pres-
ence/absence data since our aim was to understand how environment influenced 
variations in fishing effort. In our model set we included different combinations of 
a total of the same 16 explanatory environmental variables used for shark density 
modelling (see previous section; Supplementary Table 7), and also a null (all terms 
equal to zero), intercept-only model. The dimension basis for all terms was limited 
to 5 (i.e., k = 5) to assist controlling for overfitting40. We then used the Akaike’s 
information criterion (AIC)41 to compare the models in the model set for all sharks 
and fishing vessels. We assessed the relative strength of evidence for each model 
using the weights of AIC, and the goodness of fit of each model by calculating the 
percentage of deviance explained (%DE). All models were implemented in R using 
the mgcv package42.
Shark/vessel spatial overlap and effort. The spatial overlap (%) between an indi-
vidual tracked shark and fishing effort was calculated as the number of grid cells 
that sharks and fishing effort (days) occurred in the same 1 × 1° grid cells in an 
average month, as a function of all shark grid cells occupied and standardised for 
shark track length, and summarised as:

Spatial overlap (%)=100 (no/nc)

where no is the number of grid cells occupied by an individual tracked shark that 
overlap with grid cells with fishing effort, and nc is the total number of grid cells 
occupied by an individual tracked shark. The mean monthly spatial overlap of an 
individual shark was determined from monthly spatial overlap values, and the 
mean monthly spatial overlap per species was calculated by averaging the mean 
monthly individual spatial overlap values across all individuals of a species within 
each ocean region. A fixed 1 × 1° geographic grid cell (where 1° = 110.6 km) was 
chosen as it was the approximate length of high seas longlines, i.e. 100 km long 
with an average of 1,200 baited hooks5 that attract fish over long distances19, it 
was similar to the broad light-based geolocation error field of PSAT tags (n = 615 
sharks; 37% of the total tracks) after SSM processing that we used here, generally 
shown to be ∼0.4 – 1.5° latitude (∼45 – 167 km; refs. 31,43–45), and it exceeded the 
upper 95% confidence intervals of the mean daily movement distances of the wid-
est ranging sharks tracked (Supplementary Table 16). In addition, the 1 × 1° grid 
cell size was suitable to reduce the effects of gaps in AIS coverage that at smaller 
grid sizes could potentially result in significant unrecorded fishing effort per grid 
cell19–22. To examine the effect of grid cell size on spatial overlap estimates19,46 
we calculated the overlap of all sharks tracked with ARGOS transmitters, where 
locations estimated from SSMs were fitted to ARGOS observations (e.g. 2.4 – 5.5 
km spatial accuracy47), with longline fishing effort at 2 × 2°, 1 × 1°, 0.75 × 0.75°, 
0.50 × 0.50°, 0.25 × 0.25° and 0.10 × 0.10° grid cell sizes (Extended Data Fig. 4; 
Supplementary Fig. 4).

An estimate of an individual shark’s exposure to fishing effort within each grid 
cell occupied during its observed track was termed fishing exposure index (FEI) 
and calculated as:

=
∑

.=FEI
f d

n
(3)i

n
i i1

Here FEI pertains to an individual shark per month in a given year. The term fi is 
the fishing effort (vessel days) in grid cell i occupied by a shark during its track; 
di is the relative density contribution for all location estimates for an individual 
shark summed in grid cell i of its track (i.e. location estimates of an individual 
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were weighted by the inverse of the number of total individuals of a single species  
on the same relative day of their track, and with the weights for each species  
normalised to one; see Spatial Density Analysis); and n is the number of grid 
cells occupied by an individual shark during its track in a given month of a given 
year. Individual mean FEI was calculated for an individual shark by averaging 
an individual shark’s monthly FEI values through time (over the duration of its 
observed track in monthly steps). To estimate the typical exposure within a species, 
individual species mean FEI was calculated by averaging individual shark mean 
FEI values for that species within each ocean region (Figs. 3, 4).

To map the mean monthly spatial variation in overlap and fishing effort (fishing 
exposure) within the space used by sharks (Fig. 2c), we calculated the product of 
Dit and fi in each grid cell in each month of a relative year across individual sharks 
(regardless of species), and averaged across the 12 months within each grid cell. 
In addition, for comparing temporally matched shark-vessel spatial overlap and 
fishing effort in 2012 – 2016, we repeated the calculation above but including only 
those individuals (species) present within these years by multiplication of fi with 
the re-calculated Dit for those years only (see Spatial Density Analysis for details).

To test for differences in exposure risk of sharks to fishing activity between 
different species within the general fishing areas designated by the Food and 
Agriculture Organization of the United Nations (FAO) (Extended Data Fig. 1c), 
we undertook statistical analysis of exposure risk calculated for each shark as the 
product of the mean monthly spatial overlap and mean monthly fishing effort. 
Since data were not normal (Shapiro-Wilk normality test, p < 0.05), a Kruskal–
Wallis (KW) test was performed (with pairwise Wilcoxon rank sum tests as a 
post-hoc test). Because of differences in the number of tagged individuals per 
species, groups of >25 sharks per species were randomly selected and the KW test 
performed. This procedure was repeated 1,000 times and the percentage of times 
that significant differences were observed were recorded. Species with fewer than 
25 individuals tracked were removed from the analysis. Given the lower numbers of 
sharks tracked in the southwest Indian Ocean and Oceania regions (Supplementary 
Table 14), statistical tests were restricted to the North Atlantic and eastern Pacific 
regions. In the Atlantic selected species were: P. glauca (n = 152), Isurus spp. (n = 
120), G. cuvier (n = 131), C. carcharias (n = 26), C. longimanus (n = 99), L. nasus 
(n = 46), C. leucas (n = 38) and Sphyrna spp. (n = 40); Pacific, species were: P. 
glauca (n = 112), I. oxyrinchus (n = 113), L. ditropis (n = 172), R. typus (n = 77) 
and C. carcharias (n = 59).
Shark landings. Mean annual pelagic shark landings (t) by species/taxa groups 
were obtained from the FAO database (<FAO.org/fishery/statistics/global- 
capture-production/query/en>; downloaded September 2018) and related to 
the median monthly FEI of each species/taxa group. Landings reported for the 
North Atlantic (northwest, northeast, western central and eastern central Atlantic) 
between 2007 and 2016 were used in the analysis since it spanned the main period 
that most sharks were tracked (70% between 2007–2017) and longline fishing 
effort was monitored (2012–2016). Data were extracted for eight species or 
taxa groups that are regularly caught by shelf and/or high-seas fisheries in the 
North Atlantic, the region in which most tags were deployed. The species/taxa 
groups were: P. glauca, I. oxyrinchus, C. longimanus, C. leucas, L. nasus, G. cuvier,  
C. carcharias, and hammerheads (Sphyrna spp.) comprising S. lewini, S. mokarran 
and S. zygaena.
Reporting summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this paper.

Data availability
The source code used to undertake analyses and to prepare figures, in addition 
to the derived data underlying Fig. 2 maps (shark relative spatial density; longline 
fishing effort; and shark– longline overlap and FEI) and Fig. 3 plots (spatial over-
lap and FEI) are freely available on GitHub (github.com/GlobalSharkMovement/
GlobalSpatialRisk).
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Extended Data Fig. 1 | The locations of shark tag deployment sites in 
relation to shark space use hotspots, ocean currents, physical features 
and fishing areas. (a) Red circles denote the locations where satellite 
transmitters were attached and sharks released, and blue squares in the 
eastern Pacific denote annual median deployment locations of tags by 
the Tagging of Pacific Predators (TOPP) program (ref. 11). Shark space 
use hotspots are shown as the 75th (blue dotted lines) and 90th percentiles 

(red dotted lines) of the mean monthly relative density of estimated shark 
locations within 1 × 1° grid cells given in Fig. 2a. Schematic maps of major 
ocean currents (b) and physical features overlaid on FAO fishing areas (c)  
referred to in this paper. Coloured arrows in b denote thermal regime 
of currents, with warmer colours indicating higher water temperature. 
Abbreviations in c denote: CGFZ, Charlie Gibbs Fracture Zone; GBR, 
Great Barrier Reef; PNG, Papua New Guinea.
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Extended Data Fig. 2 | Spatial distribution of fishing vessels and overlap 
with sharks. (a) Distribution of AIS tracked fishing vessels’ effort (mean 
annual days spent per grid cell) between 2012 and 2016 (see Methods).  
(b) Distribution of the mean monthly overlap and level of all vessels’ 
fishing effort (days) sharks were exposed to in overlapping areas for all 
species within 1 × 1° grid cells (see Methods). Spatial overlap hotspots 
were defined as 1 × 1° grid cells with ≥75th percentile of mean FEI. Note 
the similar overlap pattern of sharks and all mapped AIS fishing vessels as 

that determined for sharks and longline vessels in Fig. 2c. (c) Distribution 
of AIS purse seine vessels’ fishing effort using mean annual days spent per 
grid cell between 2012 and 2016 (see Methods). (d) Distribution of the 
mean monthly overlap and level of purse seine vessels’ fishing effort (days) 
sharks were exposed to in overlapping areas for all species within 1 × 1° 
grid cells (see Methods). Spatial overlap hotspots were defined as 1 × 1° 
grid cells with ≥75th percentile of mean FEI.

ACCELE
RATED  

ARTIC
LE  

PREVIE
W  

ACCELE
RATED  

ARTIC
LE  

PREVIE
W  



ArticlereSeArcH

Extended Data Fig. 3 | Environmental modelling results. Estimated 
relationships between mean monthly relative density of all sharks (top 
panel) and AIS fishing effort of all vessels (middle panels) and longlines 
only (bottom panels) with all environmental variables in the highest 

ranked (Model 1) of the generalised additive models (GAM) tested. Third 
column shows the interaction results between the two variables described 
in the first and second columns. Asterisks indicate significance level for 
each smooth term included in the GAM, representing p < 0.001 (***).
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Extended Data Fig. 4 | Effect of grid cell size on risk exposure patterns 
of sharks to longline fisheries. (a) North Atlantic, (b) east Pacific,  
(c) southwest Indian oceans and (d) Oceania. Note that regardless of grid 
cell size at which the individual species mean spatial overlap and FEI were 
calculated the species occurring in the highest (red) and the lowest risk 

zones (green) remain remarkably conserved, indicating a general pattern 
not dependent on the scale at which these data were analysed. Shark-
species identification codes are given in Fig. 1. Error bars are ± 1 S.D. 
An additional comparison of 2 × 2° with 1 × 1° grid cell size is given in 
Supplementary Fig. 4.
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Extended Data Fig. 5 | Relationship between North Atlantic fisheries’ 
shark landings and shark density-longline fishing exposure index. Plot 
showing shark landings from the North Atlantic (mean, 2007−2016), 
extracted from the Food and Agriculture Organization of the United 
Nations (FAO) total capture production database, was dependent 
upon the North Atlantic longline fishing effort as estimated with the 
individual species FEI (70% shark tracked, 2007–2017; AIS, 2012−2016) 

(see Methods). Using linear regression, we tested the null hypothesis 
(H0) that β = 0 after normalising landings (in metric tonnes) by log 
transformation and for median FEI per species. Regression analysis 
gave the equation: Log(landings) = 1.364 + 8732 FEI, with a regression 
coefficient (b) standard error of 3369. We computed r2 = 0.45, F = 6.72 
and F0.05(1),1,7 = 5.59, therefore rejecting H0 at the 5% level of significance 
with p < 0.05. Full scientific names are given in Fig. 1.
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Extended Data Fig. 6 | Relative density and spatial overlap distributions 
for individual shark species. Mean monthly relative density of shark 
species (left panels) tracked in 2002–2017 in comparison with species 
mean FEI per grid cell for the 5 most data-rich species/taxa groups 

occurring in multiple oceans (right panels): (a) blue, Prionace glauca;  
(b) shortfin mako, Isurus oxyrinchus; (c) tiger, Galeocerdo cuvier; (d) whale 
shark, Rhincodon typus; and (e) white, Carcharodon carcharias. Red boxes 
denote areas shown in Fig. 3. Shark images created by M. Dando.ACCELE
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Extended Data Fig. 7 | Relative density and spatial overlap distributions 
for individual shark species (continued). Mean monthly relative density 
of shark species (left panels) tracked in 2002–2017 in comparison with 
species mean FEI per grid cell for the next 5 most data-rich species/taxa 
groups occurring in multiple oceans (right panels): (f) oceanic whitetip,  

Carcharhinus longimanus; (g) porbeagle, Lamna nasus; (h) silky, 
Carcharhinus falciformis; (i) bull, Carcharhinus leucas; and (j) hammerhead  
sharks, Sphyrna spp. (comprising: scalloped, S. lewini; great, S. mokarran; 
and smooth, S. zygaena). Shark images created by M. Dando.ACCELE
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Extended Data Figure 8 | Between years’ patterns in global spatial 
density of pelagic sharks. Mean monthly spatial density was calculated for 
each two year period across species. We used consecutive two-year groups 
to reduce gaps in coverage. Note that there were broad-scale shark tracks 
in the east Pacific in all eight 2-year periods (2002–03 to 2016–17), in the 

North Atlantic between 2006-07 and 2016-17, in the southwest Indian 
Ocean in 2010-11 to 2014-15, and in Oceania between 2004-05 and 2014-
15. This indicates temporal consistency of shark tracks was present within 
the ocean regions studied suggesting spatial hotspots identified were more 
likely to be persistent between years.
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Extended Data Figure 9 | Risk exposure patterns of sharks from 
longline fisheries between 2012−2016. (a) North Atlantic, (b) east 
Pacific, (c) southwest Indian oceans and (d) Oceania. Note that species 
patterns of exposure to risk in highest (red) and lowest risk zones (green) 
in the years 2012−2016, that matched shark density data with AIS longline 
fishing effort data directly, were very similar to patterns found for shark 
density (2002−17) and AIS longline fishing effort (species mean FEI) 
(2012−16) (shown in Fig. 3), indicating no important effect of temporal 
mismatched datasets on the results.
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Extended Data Fig. 10 | Seasonal shifts in sharks, longline vessels and 
overlap-fishing effort patterns. Mean quarterly relative spatial density of 
sharks (left map in each subpanel), longline fishing effort (days) (middle 
map), and mean fishing exposure index per grid cell (fishing effort sharks 
were exposed to in overlapped areas) (right map) for North Atlantic blue 

sharks (PGL) in (a) December – February, (b) March – May, (c) June – 
August and (d) September to November, and for shortfin mako sharks 
(IOX) in (e) December – February, (f) March – May, (g) June – August and 
(h) September to November.ACCELE
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection Shark satellite tracking: Raw location data from pop-off satellite archival transmitters (PSATs) processed after ARGOS satellite acquisition 
using tag manufacturers custom software (Wildlife Computers; Microwave Telemetry; Desert Star Systems) to calculate latitude and 
longitude. Raw positions processed using a UKFSST state space model (UKFSST R package). Raw ARGOS tag locations after satellite 
acquisition were processed with a speed filter (in R). For both tag types (PSAT and ARGOS), daily time series of locations estimated using 
a continuous time correlated random walk (CTCRW) Kalman filter (crawl R package). TOPP tag data was filtered with a Bayesian based 
state space model using WinBugs (for priors and MCMC sampling see Methods). 
Fishing vessel tracking: Processed data were acquired from the Global Fishing Watch. for code and processing details see ref. 19 in paper.

Data analysis R, Minitab v18 and ArcGIS

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The source code used to undertake analyses and to prepare figures, in addition to the derived data in spreadsheet form underlying Fig. 2 maps (shark relative 
spatial density; longline fishing effort; and shark– longline overlap and FEI) and Fig. 3 plots (spatial overlap and FEI) are freely available to download on GitHub 
(github.com/GlobalSharkMovement/GlobalSpatialRisk). Processed fishing vessel effort data are available to download at http://globalfishingwatch.org/datasets-
and-code/ 

Field-specific reporting
Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description The study describes the distributions of satellite tracked pelagic sharks and fishing vessels across the global oceans and calculates the 
extent of overlap and fishing effort different shark species are exposed to in space and time. See Methods for time periods of data 
collection.

Research sample Movements of individual pelagic sharks were satellite tracked (n = 1804) from 23 threatened species in the Atlantic, Pacific and 
Indian oceans. Species details including number and locations of tags deployed on each species are given in the paper. Fishing vessels 
(n > 80,000) were tracked globally using the automatic identification system. These data were downloaded from Global Fishing 
Watch.

Sampling strategy Pelagic sharks were captured alive at sea with baited hooks or with purse seines prior to tagging and subsequent release. Some 
sharks were tagged while free swimming. Tags were fitted externally within a few minutes. Tagging was undertaken by 30 different 
research groups across many countries with tagging procedures approved by institutional ethical boards and conforming to national 
regulations. 

Data collection Each research group collected shark track data independently by download from the ARGOS satellite service provider.

Timing and spatial scale Pelagic sharks were tracked between 2002 and 2017. Details of tag deployments and tracking durations are detailed in the paper.

Data exclusions Poor quality data were reported for 123 tags (72 ARGOS and 51 PSATs) due to early tag failure, premature tag pop-off and/or a high 
percentage of locations estimated with high spatial error, e.g. raw computed geolocations over land, all of which resulted in poor 
state space model fits and hence short or unreliable track reconstructions. These data were excluded. 

Reproducibility No experiments as such were conducted, rather our data are based on satellite tracked movements of individual pelagic sharks and 
fishing vessels.

Randomization Randomization procedures were used and are fully described in the Methods and Supplementary Information files.

Blinding Blinding is not relevant to this type of study because data are based on movements of wild animals and fishing vessels.

Did the study involve field work? Yes No

Field work, collection and transport
Field conditions Tags were deployed on pelagic sharks in the Atlantic, Pacific and Indian Oceans under a range of conditions.

Location Locations of tagging and subsequent tracks of sharks are detailed in the paper (Fig. 1; Extended Data Fig. 1).

Access and import/export No collections or import or export of samples was undertaken.

Disturbance Disturbance to individual shark behaviour was minimised through completion of tagging procedures within a few minutes if 
captured, or during free swimming. All procedures were approved by institutional and national ethical review committees.
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Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals N/A

Wild animals Satellite tags were fitted to individuals from 23 species of pelagic shark when captured or free swimming. Detailed information is 
provided in the Methods. All captured sharks were released after tag attachment. None were killed as part of the study. Tag 
release locations are given in Extended Data Fig. 1.

Field-collected samples N/A
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