
IOTC-2019-WPM10-15 

 

A comparative study on CPUE standardization of bigeye tuna in the Indian Ocean 

using multi-scale fisheries data and environment data 

Tianjiao Zhang1,2, Liming Song1*, Hongchun Yuan2, Ebango Ngando Narcisse1 

1 .College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China 

2. College of Information Technology, Shanghai Ocean University, Shanghai 201306, China 

 

Abstract  

Environmental and spatial variability could impact the relative abundance of highly 

migratory species. It becomes especially problematic when the variability affect the 

standardization of CPUE (catch-per-unit-effort) used to assess the status of fish stocks. This 

paper presents CPUE standardization and model comparison procedures for bigeye tuna 

(Thunnus obesus) in the Indian Ocean based on multi-scale fisheries data and environment 

data from 2008 to 2015. We used the fisheries datasets from two sources for comparison: (1) 

the statistical longline datasets published by IOTC Secretariat with monthly catch-and-effort 

of the 5ºor 1ºgrid; and (2) the survey datasets from the Chinese longline fishery with set by 

set catch-and-effort data. We calculated multiple marine environmental factors for CPUE 

standardization models. Beside those frequently used factors, such as sea surface temperature 

(SST), concentration of sea surface chlorophyll a (Chla), sea surface wind speed (WS), we 

also calculated factors that could possibly affect the fish distribution habitat but were rarely 

used in previous CPUE standardization study, such as the vertical ocean temperature and 

salinity factors based on 15 profiles of the ARGO buoys, the nearest distance between CPUE 

positions and the SST fronts (DF), and the eddy kinetic energy (EKE) derived from 

geostrophic velocities. We applied cluster analysis methods to identify suitable environmental 

locations for the target species. The cluster group parameter was then included as a categorical 

factor in models. We used generalized linear model (GLM) with lognormal constant analyses 

for CPUE standardization. We generally built three types of models based on the fishery 

dataset sources and the inclusion of potential environmental factors. Basically, for the whole 

region, using IOTC 5º datasets could capture the underlying bigeye tuna CPUE trends; While 
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for the R1 region, Chinese set by set fishery dataset at higher resolution improved the model 

fit for subarea standardization. The inclusion of some environmental variables aided the CPUE 

standardization process as well. For the whole region models, habitat clusters, WS, Chla, 

vertical temperature at depth of 0m, 100m, 150m, and 500m, vertical salinity at depth of 5m, 

200m and 500m have showed great significance in the related best model; For the R1 region, 

habitat clusters, EKE, vertical temperature at depth of 50m, 150m, 500m and vertical salinity 

at depth of 0m, 200m and 500m have contributed to some level to the related model fit. In 

conclusion, IOTC 5ºfishery dataset was in the appropriate scale for the whole region CPUE 

standardization, and IOTC 1ºor set by set fishery dataset in finer scale was suitable for 

estimating the subarea indices. The meaningful explanatory environmental factors in our 

models could be served as recommendations for further practices for CPUE standardization 

within multi-scale regions. 

 

1 Introduction 

Fishery-dependent time series of catch per unit effort (CPUE) is often used for estimating 

indices of fish abundance and therefore is an integral part of the stock assessment process 

(Forrestal. et al, 2018). Nominal CPUE values are often not proportional to the abundance of 

the stock as the variations due to changes in the spatial extent of fish population, shifts in fish 

movement patterns, as well as habitat environmental changes over time (Bigelow et al., 1999). 

Bigeye tuna (Thunnus obesus) is a target species of the tropical longline fishery in the Indian 

Ocean and the joint CPUE standardization for bigeye tuna has been implemented for years and 

deepened our understanding of movements, habitat utilization and stock structure of this 

species in the Indian Ocean (Hoyle et al., 2016). However, the best practices for incorporating 

environmental variables within appropriate spatial scale in CPUE standardization have not 

been defined, which adds uncertainty in choosing standardization methods aimed at 

minimizing CPUE bias.  

In this study, we used the fisheries datasets from two sources for comparison: (1) the 

statistical longline datasets published by IOTC Secretariat with monthly catch-and-effort of 
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the 5º or 1º grid; and (2) the survey datasets from the Chinese longline fishery with set by set 

catch-and-effort data. We calculated multiple marine environmental factors for CPUE 

standardization models. Beside the frequently used factors, such as sea surface temperature 

(SST), sea surface height (SSH), concentration of sea surface chlorophyll a (Chla), we also 

calculated factors that could possibly affect the fish habitat distribution but were rarely used in 

previous CPUE standardization study, such as the vertical ocean temperature and salinity 

factors based on 15 profiles of the ARGO buoys, the nearest distance between CPUE positions 

and the SST fronts, and the eddy kinetic energy (EKE) derived from geostrophic velocities. 

We also made clustering analysis to identify the spatial effect on species composition in each 

cluster group. We used generalized linear model (GLM) with lognormal constant analysis for 

the CPUE standardization. Totally 15 comparison models were built based on the multi-scale 

fisheries data and the environmental factors. The goal of this work is to determine the 

meaningful explanatory environmental variables and the appropriate fishery datasets scales for 

CPUE standardization. 

2 Material and Methods 

2.1 Data sources 

The study area is defined as 40S−25N, 20E−150E in the Indian Ocean. The regional 

structures in the joint analysis for bigeye tuna CPUE standardization (Hoyle et al. 2016) was 

adopted in this study (Figure 1). 
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Figure 1. Map of the regional structures used to estimate bigeye tuna CPUE indices in the 

Indian Ocean. 

The bigeye tuna data were collected from two sources: (1) the statistical longline datasets 

published by IOTC Secretariat. The fields of the datasets include year, month, location (5 or 

1 of latitude and longitude), number of hooks, and catch in number and weight of bigeye 

within the whole study area; (2) Chinese longline fishery with set by set catch-and-effort data. 

Observations of each set included year, month, date, number of hooks, longitude and latitude, 

bigeye tuna catch in number, and most of the observations were within R1 region. As the 

Chinese fishery datasets were only available on discrete months from 2008 to 2015, we 

collected the IOTC datasets with all fields in the same year period for comparison. 

Multiple marine environmental factors were calculated for CPUE standardization models. 

Beside those frequently used factors to reflect sea surface environment, such as sea surface 

temperature (SST), concentration of sea surface chlorophyll a (Chla), surface wind speed 

(WS), we also calculated factors that could possibly affect the fish distribution habitat but 

were rarely used in previous CPUE standardization study, such as the vertical ocean 

temperature and salinity factors based on 15 profiles of the ARGO buoys, the nearest distance 

between CPUE positions and the SST fronts, the eddy kinetic energy (EKE) derived from 

geostrophic velocities. We also considered the geographical area of each 1 or 5 grid as a 

R1 R2 

R3 R4 
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factor to minimize the spatial area inconformity between equatorial and middle and high 

latitudes.  

The data source, time range, spatial resolution and data preprocessing for each marine 

environmental factor are shown in Table 1. VIF methods were used to remove the correlations 

between the environmental metrics. 

Table 1   Marine environment data  

Environmental factors  Data source 

Duration of 

data 

collection 

Resolution Data preprocessing 

Sea surface 

temperature （℃） 
NOAA Ocean 

Watch 

(https://oceanwatc

h.pifsc.noaa.gov/) 

2008—2015 0.5° 
SST, Wind speed and Chla dataset were 

downloaded in .csv format based on the 

extent of study area in the related years and 

were matched with fishery dataset records 

based on latitude and longitude using R 

script. 

Wind speed (m/s) 2008—2015 0.5° 

Concentration of 

Chlorophyll a 

(milligrams/m3) 

2008—2015 0.5° 

Vertical Temperature 

（℃） 

 

Asia-Pacific 

Data-Research 

Center 

(http://apdrc.soest.

hawaii.edu/data/d

ata.php/) 

 

2008—2015 1° 

The raster datasets of 15 levels depth for both 

vertical temperature and vertical salinity were 

downloaded based on the extent of study area 

in the related years. Each factor was matched 

with the fishery dataset records based on 

latitude and longitude using R script. 

Vertical Salinity  2008—2015 1°  

EKE (cm2/s2) 

Copernicus 

Marine 

Environmental 

Monitoring 

2008—2015 1° 

The eastward velocity (u) and northward 

velocity (v) raster files were downloaded and 

EKE were calculated with the Raster 

Calculator function in Spatial Analyst 
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Service website 

(http://marine.cop

ernicus.eu) 

extension in ArcGIS 

Df (km) 

Marine 

Environmental 

Monitoring 

Service website 

(http://marine.cop

ernicus.eu) 

2008—2015 4° 

The image of MODIS (SST) were used in the 

Cayula-Corbillon single-image algorithm in 

the MGET (Marine Geospatial Ecology 

Tools) based on the ArcGIS to detect the SST 

fronts. Histogram analysis were made to 

detect the formal portion of the edge and 

calculate the nearest distance between CPUE 

position and the SST fronts based on ArcGIS  

“Field Calculator” function. 

 

Grid area (km2) 

Global 

Self-consistent, 

Hierarchical, 

High-resolution 

Geography 

Database 

(GSHHG)( https:/

/www.ngdc.noaa.g

ov/mgg/shorelines

/gshhs.html) 

2015 1° 

High resolution continental land masses 

and ocean islands boundaries .shp files were 

downloaded. Each 1° grid area was calculated 

based on Projected Coordinate System: 

World_Goode_Homolosine_Ocean in 

ArcGIS. 

2.2  Modeling methods 

2.2.1 Cluster analysis 

Data were aggregated by location and then clustered on species composition in the catch, 

using the Ward hclust method. 

For the IOTC datasets with 5 grids, clustering was carried out for the whole region; For 

https://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html
https://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html
https://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html
https://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html
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the IOTC datasets with 1 grids and the Chinese longline fisheries datasets, clustering was 

carried out for R1 region only. 

2.2.2 Selecting the number of groups 

Hclust method was used firstly to examine the hierarchical trees and subjectively 

estimate the number of distinct branches. Then kmeans deviances were then plotted with 

number of groups k ranging from 1 to 10. The optimal group number was the lowest value of 

k after which the rate of decline of deviance became slower and smoother.  

2.2.3 Selecting vertical environmental factors 

We used the variance inflation factor (VIF) (Rose, 1995) to quantify the severity of 

multicollinearity between vertical environmental variables within each model. We used the 

‘fmsb’ package in R to calculate the VIF values (Nakazawa, 2012). As an initial step, a linear 

model was created which related the variables to a dummy variable. Based on the linear model, 

the VIF for each variable was calculated and the variable with the highest value removed. The 

VIFs were recalculated for the new variable set and again the variable with highest value was 

removed. This iterative process was repeated until all variables had a VIF < 10.  

2.2.4 CPUE standardization 

CPUE standardization methods generally followed the approaches used by Hoyle and 

Okamoto (2011) with some modifications. The operational data were standardized using 

generalized linear models in R. 

Lognormal constant analyses were carried out using generalized linear models that 

assumed a lognormal distribution. In this approach the response variable log (𝐶𝑃𝑈𝐸+0.01) 

was used, and a Normal distribution assumed.  

ln(𝐶𝑃𝑈𝐸𝑠+𝑘)~ 𝑐𝑜𝑣𝑎𝑟𝑖𝑡𝑒𝑠 +𝜖 

We generally built three types of models based on the fishery dataset sources. 

(1) Model with response variable of CPUE estimated based on the IOTC 5 grids, with 

model abbreviation: Model 5d series.  

The covariates in the models were in three forms: 

Model 5d-1, only the related time and spatial location covariates within the whole region 
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were included, without cluster and without environmental metrics; 

Model 5d-2, the related time, spatial location and cluster covariates were included, and 

without environmental metrics within the whole region; 

Model 5d-3, the related time, spatial location covariates and the environmental factors 

based on VIF analysis were included within the whole region; 

Model 5d-4, the same covariates as in Model 5d-3 were used, but the response variables 

of CPUE were scaled by the geographical area of the IOTC 5 grids. 

Model 5d-5, Model 5d-6, and Model 5d-7, the same covariates as in Model 5d-1, 2, 3 

were used, but the study area was narrowed to R1.  

Model 5d-8, the same covariates as in Model 5d-7 were used for R1.The same amount of 

catch records (295) as in Chinese fishery dataset were randomly sampled in R1 for 

comparison.  

(2) Model with response variable of CPUE estimated based on the IOTC 1 grids, with 

model abbreviation: Model 1d series.  

The covariates in Model 1d-1, Model 1d-2, and Model 1d-3 were also in three forms as 

Model 5d-1, Model 5d-2 and Model 5d-3. 

Model 1d-4 used the same covariates as in Model 1d-3.The same amount of catch records 

(295) as in Chinese fishery dataset were randomly sampled in R1 for comparison.  

(3) Model with response variable of CPUE estimated based on the Chinese set by set 

fishery dataset, with model abbreviation: Model Ch series. 

The covariates in the models were also in three forms as Model 5d series but the study 

area was narrowed to R1. 

The details for each model were described in Table 2. 

Table 2 Description, time period and model function for 15 models 

Model  Description Time Period Model function 

Model

5d-1 

generalized linear model (GLM) with 

CPUE estimated based on IOTC 5 fisheries 

dataset, and the related time and spatial 

2008-2

015 

glm(log(bet_cpue+0.01)~as.factor(Y

ear)+ 

as.factor(MonthStart)+as.factor(DegreesL
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location covariates within the whole region.  atitude)+as.factor(DegreesLongtitude)  

Model

5d-2 

generalized linear model (GLM) with 

CPUE estimated based on IOTC 5 fisheries 

dataset, and the related time, spatial location 

and the cluster covariates within the whole 

region. 

2008-2

015 

glm(log(bet_cpue+0.01)~as.factor(Y

ear) 

+as.factor(MonthStart)+as.factor(Degrees

Latitude)+as.factor(DegreesLongtitude)+

as.factor(cluster) 

Model

5d-3 

generalized linear model (GLM) with 

CPUE estimated based on IOTC 5 fisheries 

dataset, and the related time, spatial location, 

the cluster covariates and the environmental 

factor𝑠 selected based on VIF within the 

whole region. 

2008-2

015 

glm(log(bet_cpue+0.01)~as.factor(Y

ear) 

+as.factor(MonthStart)+as.factor(Degrees

Latitude)+as.factor(DegreesLongtitude)+

as.factor(cluster)+tem.0m+tem.100m+te

m.150m+tem.500m+sal.5m+sal.75m+sal.

200m+sal.500m+sea_surface_temperatur

e +wind_speed+chla+EKE+DF+Grid area 

Model

5d-4 

generalized linear model (GLM) with 

CPUE estimated based on IOTC 5 fisheries 

dataset scaled by the grid area, and the related 

time, spatial location, the cluster covariates 

and the environmental factor𝑠 selected based 

on VIF within the whole region. 

2008-2

015 

glm(log(bet_cpue+0.01/grid 

area)~as.factor(Year) 

+as.factor(MonthStart)+as.factor(Degrees

Latitude)+as.factor(DegreesLongtitude)+

as.factor(cluster)+tem.0m+tem.100m+te

m.150m+tem.500m+sal.5m+sal.75m+sal.

200m+sal.500m+sea_surface_temperatur

e +wind_speed+chla+EKE+DF+Grid area 

Model

5d-5 

generalized linear model (GLM) with 

CPUE estimated based on IOTC 5 fisheries 

dataset, and the related time and spatial 

location covariates within the R1.  

2008-2

015 

glm(log(bet_cpue+0.01)~as.factor(Y

ear)+ 

as.factor(MonthStart)+as.factor(DegreesL

atitude)+as.factor(DegreesLongtitude)  

Model

5d-6 

generalized linear model (GLM) with 

CPUE estimated based on IOTC 5 fisheries 

2008-2

015 

glm(log(bet_cpue+0.01)~as.factor(Y

ear) 
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dataset, and the related time, spatial location 

and the cluster covariates within the R1. 

+as.factor(MonthStart)+as.factor(Degrees

Latitude)+as.factor(DegreesLongtitude)+

as.factor(cluster) 

Model

5d-7 

generalized linear model (GLM) with 

CPUE estimated based on IOTC 5 fisheries 

dataset, and the related time, spatial location, 

the cluster covariates and the environmental 

factor𝑠 selected based on VIF within the R1. 

2008-2

015 

glm(log(bet_cpue+0.01)~as.factor(Y

ear) 

+as.factor(MonthStart)+as.factor(Degrees

Latitude)+as.factor(DegreesLongtitude)+

as.factor(cluster)+tem.0m+tem.100m+te

m.150m+tem.500m+sal.5m+sal.75m+sal.

200m+sal.500m+sea_surface_temperatur

e +wind_speed+chla+EKE+DF+Grid area 

Model5d-8 generalized linear model (GLM) with CPUE 

estimated based on IOTC 5 fisheries dataset, 

and the related time, spatial location, the 

cluster covariates and the environmental 

factor𝑠 selected based on VIF within the R1, 

with same amount of data records (295) as in 

Model Ch series randomly sampled in R1. 

2008-2015 glm(log(bet_cpue+0.01)~as.factor(Year) 

+as.factor(MonthStart)+as.factor(Degrees

Latitude)+as.factor(DegreesLongtitude)+

as.factor(cluster)+tem.0m+tem.100m+te

m.150m+tem.500m+sal.5m+sal.75m+sal.

200m+sal.500m+sea_surface_temperatur

e +wind_speed+chla+EKE+DF+Grid area 

Model

1d-1 

generalized linear model (GLM) with 

CPUE estimated based on IOTC 1 fisheries 

dataset, and the related time and spatial 

location covariates.  

2014 glm(log(bet_cpue+0.01)~as.factor(Y

ear)+ 

as.factor(MonthStart)+as.factor(DegreesL

atitude)+as.factor(DegreesLongtitude)  

Model

1d-2 

generalized linear model (GLM) with 

CPUE estimated based on IOTC 1 fisheries 

dataset, and the related time, spatial location 

and the cluster covariates. 

2014 glm(log(bet_cpue+0.01)~as.factor(Y

ear) 

+as.factor(MonthStart)+as.factor(Degrees

Latitude)+as.factor(DegreesLongtitude)+

as.factor(cluster) 

Model generalized linear model (GLM) with 2014 glm(log(bet_cpue+0.01)~as.factor(Y
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1d-3 

 

CPUE estimated based on IOTC 1 fisheries 

dataset, and the related time, spatial location, 

the cluster covariates and the environmental 

factor𝑠 selected based on VIF. 

ear) 

+as.factor(MonthStart)+as.factor(Degrees

Latitude)+as.factor(DegreesLongtitude)+

as.factor(cluster)+tem.0m+tem.50m+tem.

100m+tem.200m+sal.0m+sal.50m+sal.10

0m+sal.150m+sal.500m+sea_surface_tem

perature+wind_speed+chla+EKE+DF+Gr

id area 

Model

1d-4 

 

generalized linear model (GLM) with 

CPUE estimated based on IOTC 1 fisheries 

dataset, and the related time, spatial location, 

the cluster covariates and the environmental 

factor𝑠 selected based on VIF, with same 

amount of data records (295) as in Model Ch 

series randomly sampled in R1. 

2014 glm(log(bet_cpue+0.01)~as.factor(Y

ear) 

+as.factor(MonthStart)+as.factor(Degrees

Latitude)+as.factor(DegreesLongtitude)+

as.factor(cluster)+tem.0m+tem.50m+tem.

100m+tem.200m+sal.0m+sal.50m+sal.10

0m+sal.150m+sal.500m+sea_surface_tem

perature+wind_speed+chla+EKE+DF+Gr

id area 

Model

Ch-1 

generalized linear model (GLM) with 

CPUE estimated based on Chinese set by set 

fisheries dataset, and the related time and 

spatial location covariates.  

2008,2

009,2012,20

13,2014,201

5 (with 

scatted 

months) 

glm(log(bet_cpue+0.01)~as.factor(Y

ear)+ 

as.factor(MonthStart)+as.factor(DegreesL

atitude)+as.factor(DegreesLongtitude)  

Model

Ch-2 

generalized linear model (GLM) with 

CPUE estimated based on Chinese set by set 

fisheries dataset, and the related time, spatial 

location and the cluster covariates. 

2008,2

009,2012,20

13,2014,201

5 (with 

scatted 

glm(log(bet_cpue+0.01)~as.factor(Y

ear) 

+as.factor(MonthStart)+as.factor(Degrees

Latitude)+as.factor(DegreesLongtitude)+

as.factor(cluster) 
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months) 

Model

Ch-3 

generalized linear model (GLM) with 

CPUE estimated based on Chinese set by set 

fisheries dataset, and the related time, spatial 

location, the cluster covariates and the 

environmental factor𝑠 selected based on VIF. 

2008,2

009,2012,20

13,2014,201

5 (with 

scatted 

months) 

glm(log(bet_cpue+0.01)~as.factor(Y

ear) 

+as.factor(MonthStart)+as.factor(Degrees

Latitude)+as.factor(DegreesLongtitude)+

as.factor(cluster)+tem.0m+tem.50m+tem.

300m+sal.0m+sal.75m+sal.150m+sea_sur

face_temperature+wind_speed+chla+EK

E+DF+Grid area 

2.2.5 Model evaluation and comparison 

Firstly, an Akaike Information Criterion was computed for each model to assess model 

relative fit: the lower the AIC, the better the model (Akaike, 1974).  

Secondly, we examined several deviance- based quantities (null, residual and explained) 

as a proxy of the model reliability to standardize CPUE indices. A high explained deviance 

can indicate a good fit, whereas a high null deviance and a high residual deviance can indicate 

a bad one.  

Finally, we plotted Q-Q plot of residuals to evaluate the absolute goodness- of-fit of the 

models, with x-axis represent the theoretical values of the quantiles of the standard normal 

distribution and y-axis shows the empirical values. In a perfect case, the Q-Q plot should show 

dots following a straight 45 line. 

3 Result 

3.1 Cluster analysis 

The aim of the cluster analysis was to identify locations fit for each species. The hclust 

trip and kmeans set methods separated the 5 locations into 5 clusters in the whole region; the 

1 degree locations into 4 clusters in the R1 region; and the set by set locations into 4 clusters 

in the R1 region (Fig 2). 

Species compositions were plotted for each cluster (Fig 3). The spatial distributions of 

clusters in the whole region were shown in Fig 4. 
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For the whole region, cluster 4 and 5 consisted mostly of bigeye tuna; cluster 3 was for 

high proportion of yellowfin tuna; cluster 1 and 2 was mainly for albacore tuna. The 

proportions of swordfish catches in all clusters were obviously lower than other species. The 

map of the whole region showed that cluster 4 and 5 with high caches of bigeye tuna mainly 

concentrated tropical waters. Cluster 3 with high proportion of yellowfin tuna mainly 

concentrated western subtropical and temperate waters. Albacore tuna catches occupied most 

of the subtropical and temperate waters, while the lowest proportion of swordfish scatted on 

the whole region.  

For the R1 region, four cluster groups generated from IOTC 1 dataset all showed a high 

proportion of bigeye tuna. Cluster 2 consisted of more yellowfin tuna. The proportions of 

albacore tuna and swordfish catches in all clusters were obviously lower than other species. 

Cluster 1 with the highest proportion of bigeye tuna didn’t show a congregation on the map, 

while cluster 2 with a mix of bigeye tuna and yellowfin tuna concentrated in western tropical 

waters.  

Clusters based on the Chinese set by set fishery dataset differentiate species compositions 

more clearly. Cluster 4 consisted mostly of bigeye tuna and cluster 3 consisted mostly of 

yellowfin tuna. Cluster 1 was mixed by high percentage of yellowfin tuna, few bigeye tuna 

and swordfish, while Cluster 2 was mixed by high percentage of both bigeye tuna and 

yellowfin tuna. The map showed that cluster 4 and 2 with relative high catch of bigeye tuna 

concentrated in tropical and western subtropical waters, while cluster 3 with high yellowfin 

tuna concentrated in the southeastern part of region R1. 
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Fig 2: Cluster analysis for the whole region with 5 dataset (top), R1 region with 1 dataset (middle) and Chinese set by 

set datasets (bottom); The hierarchical Ward clustering analysis to estimate the number of distinct classes of species 

composition (left); The total sums of squares within-group from kmeans analyses with a range of numbers of clusters (right). 



IOTC-2019-WPM10-15 

 

 



IOTC-2019-WPM10-15 

 

Fig 3: Boxplots showing species composition by cluster in the whole region based on IOTC 5 fishery dataset (top four 

figures); species composition by cluster in the R1 region based on IOTC 1 fishery dataset (middle four figures); species 

composition by cluster in the R1 region based on Chinese set by set dataset (bottom four figures);  
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Fig 4: Maps of the spatial distributions of clusters in the whole region and R1 region  

3.2 Environmental factor correlations 

The correlations among the vertical environmental variables within each model series 

were shown in Fig 5. 

In the Model 5d series, high correlations were observed within the salinity factors of the 

upper 150m; within the tem factors of the upper 125m; within the salinity and the temperature 

at the depth of 200~500m;  

In the Model 1d series, there were even higher correlations (spearman’ rho >0.9) within 

the salinity of the upper 50m, the temperature of the upper 50m and 125~300m. High 

correlations also existed in the salinity and the temperature at the depth of 400~500m.  

In the Model Ch series, there were also high correlations (spearman’ rho >0.9) among the 

salinity of the upper 50m and the temperature of the upper 50m. The correlations among the 

salinity and the temperature at the depth of 300~500m were even higher than those in Model 

1d series.  

The selection procedures based on VIF considerably reduced the number of vertical 

variables. The removal of correlated variables resulted in Model 5d series containing 8 

variables, Model 1d series containing 9 variables, and Model Ch series containing only 6 

variables. The variables remained in each model series could basically represent the vertical 

environmental condition at the depth above 500m and the correlations among the variables 

have been reduced substantially (Fig 6). 
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Fig 5. Pearson Correlation between vertical environmental variables within each model series (Model5d series, top; 

Model1d series, middle; ModelCh series, bottom) 
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Fig 6. Pearson Correlation between vertical environmental variables within each model series after VIF analysis (Model5d 

series, top; Model1d series, middle; ModelCh series, bottom) 

3.3 Evaluation and comparison of models 

The indices: AIC, explained deviance, null deviance and residual deviance for each 

model were shown in Table 3. Among the model series for the whole region from Model 5d-1 

to 5d-4, Model 5d-3 showed the lowest AIC and the highest explained deviance. Among the 

model series for R1, the highest explained deviance was computed for the Model Ch series, 

which indicated a better model fit compared to Model 1d series that, despite a low AIC, 

showed very low explained deviance. The explained deviances varied between 68.82% for the 

Model Ch-1 and 77.55% for the Model Ch-3. In addition, the model fit of Model 5d-8 and 

Model 1d-4 have been obviously improved with random sampling the same amount of catch 

records with Chinese set by set datasets. Therefore, the best model for the whole region was 

Model 5d-3; while for R1 the best models included: Model 5d-8, Model 1d-4, and Model 

Ch-3. 

The normal Q-Q plots for the best models were also shown in Fig. 7, and they indicated that 

the residuals approximated to be normal distributions. 

Table 3. Indices used for the comparison of the 15 models 

Model AIC Explained deviance Null deviance Residual deviance 

Model(5d-1) 20150 39.12% 13099 7975 

Model(5d-2) 19722 40.18% 12856 7691 

Model(5d-3) 14658 40.31% 9385 5602 

Model(5d-4) 14673 37.53% 8998 5621 

Model(5d-5) 12034 25.03% 5876 4405 

Model(5d-6) 11787 26.23% 5784 4267 

Model(5d-7) 9051 29.08% 4557 3232 

Model(5d-8) 672 35.54% 287 185 

Model(1d-1) 450 22.69% 119 92 

Model(1d-2) 409 16.67% 96 80 
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Model(1d-3) 357 29.27% 82 58 

Model(1d-4) 100 71.79% 39 11 

Model(Ch-1) 1075 68.82% 1456 454 

Model(Ch-2) 1015 75.00% 1456 364 

Model(Ch-3) 832 77.55% 1207 271 

 

Fig. 7 The normal Q-Q plots for Model 5d-3(left-top), Model 1d-3(right-top) and Model Ch-3(bottom)  

3.4 CPUE standardization 

For the whole region, we estimated the CPUE indices based on Model 5d-3 (Fig. 8). The 

long term tropical indices in the whole region showed a relative low level before the end of 

2011 and then sharply increased in months of 2012 and 2013. Then declining trend 

subsequently resumed and continued until the end of 2015. The CPUE was estimated to be at 

its lowest level from 2014 to 2015. The estimated indices based on Model 5d-4 with the 

response variable scaled by geographical area showed almost the same year-month trends as 

Model 5d-3. The scatter plot of the relation between the CPUE indices before and after scaled 
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by geographical area of each 5° grid was almost on a straight 45 line (Fig. 9). The spearman 

correlation coefficient was above 0.95, which indicated that the standardized CPUE didn’t get 

effect from the spatial area inconformity between equatorial and middle and high latitudes.  

 

Fig. 8 Nominal CPUE and Standardized CPUE indices estimated based on Model 5d-3 

 

Fig. 9 Scatter plot of the relation between the Standardized CPUE indices before and after scaled by 

geographical area of each 5° grid 

For R1 region, Nominal CPUEs estimated from different fisheries datasets were 

presented in Fig. 10 and the standardized CPUEs estimated based on three best models: Model 

5d-8, Model 1d-4, and Model Ch-3 for R1 were shown in Fig 11. Nominal CPUEs estimated 

based on different fisheries datasets showed totally different trends over the same period from 

Dec, 2013 to Apr, 2014 for R1 and the differences were mirrored in standardized CPUEs. 
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Fig. 10 Nominal CPUEs estimated from three different fisheries datasets 

 

Fig.11 Standardized CPUEs estimated based on three best models with the same amount of catch records: 

Model 5d-8, Model 1d-4 and Model Ch-3 

For bigeye tuna in region 1, IOTC 1° dataset were only available for 2014 (Fig 12). The 

Standardized CPUE dropped at the first three months and then increased until June and then 

declined again until August. The indices arrived at the peak on November and then declined 

again. 
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Fig. 12 The Nominal CPUE and Standardized CPUE estimated based on 1° datasets within Model 1d-3 for 

R1.  

Chinese fishery dataset for bigeye in R1 were relatively sparse for the months from 2008 

to 2015. For the last four months in 2008, standardized CPUEs were at a high level, with the 

scaled values above 0.5; but then the values declined fast during 2009, 2012 and 2013. The 

indices peaked at the end of 2013 but then declined again until August, 2015 and then 

increased again. 

 

Fig. 14 The Nominal CPUE and Standardized CPUE estimated based on Chinese set by set dataset within 

Model Ch-3 for R1.  

The coefficients and significant codes of the environment covariates in the ‘best’ models 

were shown in Table 4. For the whole region, we could find that most of the covariates used in 

Model 5d-3 contributed to the model, while Year, Month, Latitude, cluster group, tem 100m, 

tem 500m and Sal.500m were important factors with confidence coefficient >0.999. For R1, 
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Year, Month and cluster group were the most significant factors in Model Ch-3. Other 

variables such as tem.0m, Sal.500m, Sal.0m, tem.50m, EKE, chla, windspeed, and DF also 

contributed to some level to model fit.  

Table 4: The Coefficients (and Signif. codes) of the environment covariates in the ‘best’ models. (Signif. 

codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1) 

Covariate Model(5d-3) Model(5d-8) Model(1d-4) Model(Ch-3) 

Year -4.097e-01(***)  -7.332e-01(***)  4.533e+00(***) 

Month -2.519e-01(***) -6.953e-01(.)  -5.903e+00(***) 

Latitude 6.450e-01(***)  2.372e+00(.) -4.228e+00(*) 3.269e+00(.) 

Longitude -1.477e+00(.)  1.116e+00(.) -1.513e+00(.) 4.135e+00(.) 

cluster 9.830e-01(***) -6.69(.) 

 

 1.806e+00(***) 

tem.0m -9.122e-02(**)    

tem.50m    1.208e+00(**) 

tem.100m 6.718e-02(***)    

tem.150m -6.648e-02(*) 1.604e-01 (.)   

tem.500m -4.815e-01(***) -6.251e-01 (.)   

Sal.0m    -5.112e+00(.) 

Sal.5m 3.167e-01(**)  -7.908e+00(*)  

Sal.150m     

Sal.200m 6.470e-01(*)    

Sal.500m 3.674e+00(***)  1.005e+01(.)  

windspeed -3.123e-02(*)    

Chla -5.184e-01(.)    

DF -1.245e-03(**)    

EKE   -9.973e-01(.) 8.652e-01(.)  

 4 Discussion 

The aim of this study was to examine the differences in performance of CPUE 

standardization models at various spatial scales with more explanatory environmental 
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variables. Results of our model series were discussed as following: 

1) For the whole region, using IOTC 5° datasets could capture the underlying CPUE 

trends, while for R1 region, using dataset with a higher resolution could improve the model fit. 

Indices based on Model 5d series showed similar trends with the joint indices developed 

in 2016 (Hoyle, et al, 2016), which was characterized by a decline during 2013-2015 followed 

by a sharp increase in 2012. We have used 11294 catch records in IOTC 5° datasets for 

training the models in 6 years (72 months) and the explained deviance was relatively high 

(above 40%) compared to previous study. That means the quantity and the spatial scale of 5° 

monthly fishery datasets could be sufficient for training GLM models and capture the 

underlying CPUE trends. The 2013 IOTC CPUE workshop (Anon 2013) recommended using 

5° area to account for changes in effort distribution. We scaled the response variables of CPUE 

by the geographical area of the IOTC 5°grids in Model 5d-4, but no significant difference 

occurred. This may be because GLM model was not sensitive to slight scale change of the 

response variable. We should explore further by using area effects as the adjusted statistical 

weights to allow for changing effort concentration as recommended (Campbell 2004).  

For R1 region, Model Ch series had the highest explained deviance among the three 

model series. Even using the same amount of catch records (295) as Chinese set by set 

datasets for training Model Ch and 1d series, Model Ch series still performed best. The reason 

may lie in the hypothesis of GLM lognormal model: samples were selected randomly and 

distributed uniformly. The dataset at a higher resolution could represent more spatial details 

and the related Nominal CPUE log forms tend to better met the model requirement. However, 

several zero records in the Model Ch series may lead to model over-fit, which may also lead to 

high explained deviance. Therefore, we should explore more about the set by set fishery data 

for testing their reliability. 

2) The addition of environmental variables obviously improved the accuracy of the 

estimated indices.  

In each of our model series, cluster analysis was made to separate species composition 

based on the spatial locations of the catches. Our results indicated that clusters based on the 5° 
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dataset and the Chinese set by set fishery dataset differentiated the spatial distribution of 

species compositions more clearly, and therefore they played important roles in the related 

model 5d and Ch series. We infer that identifying species composition change in different 

spatial environment and figuring out the main spatial distribution area of target fish could 

improve the accuracy of CPUE standardization models. 

Our study used both vertical temperature and vertical salinity in 15 levels at depths to 

500m in the models and almost each vertical factor has contributed to the model fit, though 

not in the same model. Previous studies have mentioned the environmental values at depth 

influenced species’ distribution (Forrestal, et al, 2018). Our results helped to explain why 

longline sets target bigeye tuna typically during the day at depths of 100–400 m (Abascal, et al, 

2018).  

The common used factor: concentration of sea surface chlorophyll a (Chla) and sea 

surface wind speed (WS) also appeared to affect the model indices. However, the factor sea 

surface temperature (SST), which has been verified to have indication significance for tuna 

distribution, did not show its importance in our models. The reason may be the high 

correlation between SST and the vertical temperatures, which made the models failed to 

identify SST. The factor DF appeared to have a negative correlation with CPUE indices, and 

this was in line with the conclusion of previous study: when fishing locations were close to the 

SST fronts, higher CPUEs were observed (Tseng, et al, 2014). We calculated EKE to reflect 

the influence of ocean eddy conditions to the distribution of our target fish. However, the 

factor only contributed to Model 1d series for R1 region, but not to the whole region, which 

may be the high spatiotemporal variability in the distribution of the mesoscale eddies.  

3) Our exercise highlights some further work to improve the methods for CPUE 

standardization. 

Although our methods have shown the use of environmental variables increased the 

model accuracy, but we didn’t consider the interactions among the variables. We added all the 

environment covariates in the models at once and this may cause problems for interpretation 

of some correlative covariates. We have used the variance inflation factor (VIF) to remove 
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some vertical temperature and salinity factors that related to a dummy variable, but we could 

still find collinearity between the remained factors. In addition, more factors such as HBF and 

vessel effect have been confirmed to be related to the CPUE trends, but we were not able to 

include them because of unavailable of these data. 

We suggest the following priorities for further work: 

(1) Include more valuable environmental variables to improve the accuracy of the estimated 

indices. 

(2) Explore the amount of fishery dataset that could meet the model accuracy requirement 

based on the spatial scale.  

(3) Employ more factorial design to further explore the interaction of factors within the CPUE 

standardization methods. 

(4) Use grid area effects as the adjusted statistical weights in the GLM models to test the effect 

of spatial area inconformity on the standardization process. 

5 Conclusions 

This study used fisheries datasets at various spatial scales and more explanatory 

environmental variables to derive a set of “best practices”. Overall, using IOTC 5° datasets 

could capture the underlying CPUE trends for the whole region, and Chinese set by set fishery 

dataset at higher resolution could improve the model fit for R1 region. The inclusive 

environmental variables such as, clusters that identified species composition based on 

locations, vertical temperature and vertical salinity, Chla, surface wind speed, and the nearest 

distance from SST fronts contributed to CUPE standardization models and improved the 

model fit. This exercise highlights the usefulness of finding finer spatial scale for subarea 

standardization and also verified the importance of factors that affected bigeye tuna 

distribution habitat but were rarely used in previous study. We suggest further work to explore 

the interaction of the more environmental variables with more spatial scales of fishery dataset 

in the CUPE standardization models. 

Acknowledgements 

The project was funded by Shanghai Sailing Program (17YF1407700), the Ministry of 

Agriculture of the People’s Republic of China under the Projects of Fishery Exploration in 



IOTC-2019-WPM10-15 

 

High Seas in 2005 and 2006 (Project No. Z05-30, Z06-43), the 

National Natural Science Foundation of China (Project No.41776142, 71601113). We thank 

the general manager, Jingmin Fang, vice general manager, Fuxiong Huang, the crews of the 

tuna longliners, and the others of Guangyuang Fishery Group Ltd of Guangdong province for 

their support of this project. The authors wish to thank Yong Zhang of College of Information 

Technology in Shanghai Ocean University for gathering and compiling the oceanographic data. 

We also wish to thank Bo Song in Shanghai Maritime University for explaining the model 

theories and helping coding. 

Reference 

Forrestal FC, Schirripa M, Goodyear CP, et al. Testing robustness of CPUE 

standardization and inclusion of environmental variables with simulated longline catch 

datasets[J]. Fisheries Research, 2019, 210:1-13. 

Bigelow KA , Boggs CH , Xi HE . Environmental effects on swordfish and blue shark 

catch rates in the US North Pacific longline fishery[J]. Fisheries Oceanography, 1999, 

8(3):178-198. 

Hoyle SD, Kim DN, Lee SI, et al. 2016. Collaborative study of tropical tuna CPUE from 

multiple Indian Ocean longline fleets in 2016. IOTC–2016–WPTT18–14. 

Hoyle SD, Okamoto H, Yeh Y-m, et al. 2015. IOTC–CPUEWS02 2015: Report of the 

2nd CPUE workshop on longline fisheries, 30 April – 2 May 2015. 126 p. 

Rose EL, 1995. Multivariate analysis of categorical data: Theory. Structural Equation 

Modeling: A Multidisciplinary Journal 2, 274-276. doi:10.1080/10705519509540014. 

Nakazawa M. fmsb: Functions for Medical Statistics Book with Some Demographic Data. 

R Package Version 0.3.4, 2012. Available online: http://CRAN.R-project.org/package=fmsb 

(accessed on 9 August 2012). 

Hoyle SD, Okamoto H. 2011. Analyses of Japanese longline operational catch and effort 

for bigeye and yellowfin tuna in the WCPO, WCPFC-SC7-SA-IP-01.  

Akaike, H. (1974) A new look at the statistical model identification. IEEE Transactions 

on Automatic Control, 19, 716-723. https://doi.org/10.1109/TAC.1974.1100705 

He X, Bigelow KA, Boggs CH. Cluster analysis of longline sets and fishing strategies 

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);


IOTC-2019-WPM10-15 

 

within the Hawaii-based fishery. Fisheries Research 1997, 31(1-2): 147-158 

Abascal FJ, Peatman T, Leroy B, et al. Spatiotemporal variability in bigeye vertical 

distribution in the Pacific Ocean[J]. Fisheries Research, 2018, 204:371-379. 

Tseng CT, Sun CL, Belkin IM, et al. Sea surface temperature fronts affect distribution of 

Pacific saury (Cololabis saira) in the Northwestern Pacific Ocean[J]. Deep Sea Research Part 

II: Topical Studies in Oceanography, 2014, 107:15-21. 

Anon. 2013. Report of the IOTC CPUE Workshop, San Sebastian, Spain, 21–22 October, 

2013. IOTC–2013–SC16–12[E], Indian Ocean Tuna Commission. 

Campbell, R. A. 2004. CPUE standardisation and the construction of indices of stock 

abundance in a spatially varying fishery using general linear models. Fisheries Research 

70:209-227. 

 


