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Abstract
Standardizations of Japanese longline CPUE for bigeye and yellowfin tuna in multiple Indian Ocean regions
were conducted using generalized linear models (GLM) with log normal and delta-lognormal errors. The
models incorporated fishing power based on vessel ID where available, and used cluster analysis to account
for targeting. The variables year-quarter, vessel ID, latlong5 (five degree latitude-longitude block), cluster
and number of hooks were used in the standardization. Dominant species differed depending on clusters. The
effects of each covariate differed depending on species and region. The CPUE trends were similar to those
estimated using ‘traditional’ method, though with some differences due to the inclusion of vessel effects and

cluster variables.

1. Introduction

Until 2016, national scientists have mainly standardized Japanese longline CPUE for bigeye and yellowfin
tuna in the Indian Ocean using generalized linear models (GLM), with log normal errors and either
operational or aggregated catch and effort data (e.g. Matsumoto et al., 2016a, b). The standardizations have
incorporated the effects of fishing season, area, fishing gear (number of hooks between floats and gear
material) and an environmental factor (sea surface temperature). These may be termed ‘simple’ and

‘traditional’ methods.

In 2016, IOTC joint CPUE analysis (CPUE workshop) was conducted and ‘joint CPUEs’ were created for
bigeye and yellowfin tuna, based on Japanese, Taiwanese and Korean longline operational data (Hoyle et al.,
2016). These models account for fishing power based on vessel ID where available, and use cluster analysis
to incorporate targeting. Joint CPUEs were considered to be more representative of status of the stocks and
so were used for base models of stock assessment. At that time fleet-specific CPUE indices were prepared
for Japanese longline using the same methods, but were not presented, so it was not possible to compare the
joint and Japanese-only longline CPUE indices. In 2017 the joint CPUE analysis workshop was held and
CPUE indices for each fleet as well as joint CPUE were created (Hoyle et al., 2017). Japanese longline CPUE
for bigeye and yellowfin tuna created at that workshop was reported by Matsumoto et al. (2017). They
reported that the trend of both CPUEs was mostly similar to those by traditional method, but there are some
differences especially in the early period. Also in 2018 and 2019 the joint CPUE analysis workshop was again
held and CPUE indices for each fleet as well as joint CPUE were created (e.g. Matsumoto et al., 2018). At

those workshops it was aimed to create and consider CPUE for yellowfin, bigeye and/or albacore. This
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document reports the standardization of bigeye and yellowfin tuna Japanese longline CPUE conducted at this

year’s joint CPUE analysis, using the same methods as that for joint CPUE.

2. Materials and methods

Data

Operational level (set by set) Japanese longline logbook data were used. The data were available for 1952-
2018 (data for 2018 were preliminary), with the fields year, month and day of operation, location to 1° of
latitude and longitude, vessel call sign, no. of hooks between floats (HBF), number of hooks per set, date of
the start of the fishing cruise, logbook identifier, and catch in number of each species. Vessel call signs were
available from 1979 onward and were used for the vessel identifier. The operations with hooks per set above
5000 and less than 200 were removed. Sets after 1975 with HBF missing or > 25 were removed. Sets before

1975 with missing HBF were allocated HBF of 5, according to standard practice with Japanese longline data.

Each set was allocated to bigeye and yellowfin regions (Fig. 1, Fig. 2). These regions are the same as those

in the past studies.

Cluster analysis

We clustered the data using the approach applied by Hoyle et al. (2015). We removed all sets with no catch
of any of the species, and then aggregated by vessel-month. Set level data contains variability in species
composition due to the randomness of chance encounters between fishing gear and schools of fish. This
variability leads to some misallocation of sets using different fishing strategies. Aggregating the data tends
to reduce the variability, and therefore reduce misallocation of sets. For these analyses we aggregated the
data by vessel-month, assuming that individual vessels tend to follow a consistent fishing strategy through
time. One trade-off with aggregation in this way is that vessels may change their fishing strategy within a
month, which will result in misallocation of sets. For the purposes of this paper we refer to aggregation by
vessel-month as trip-level aggregation, although the time scale is (for distant water vessels) in most cases
shorter than a fishing trip. In the data prior to 1979 vessel id was not available, but we were able to cluster
them by vessel-month because the logbook id, available for the first time in the current data set, could be

used to identify sets on the same vessel-trip.

We calculated proportional species composition by dividing the catch in numbers of each species by catch in
numbers of all species in the vessel-month. Thus the species composition values of each vessel-month
summed to 1, ensuring that large catches and small catches were given equivalent weight. The data were
transformed by centering and scaling, so as to reduce the dominance of species with higher average catches.
Centering was performed by subtracting the column (species) mean from each column, and scaling was

performed by dividing the centered columns by their standard deviations.

We clustered the data using the hierarchical Ward hclust method, implemented with function hclust in R,
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option ‘Ward.D’, after generating a Euclidean dissimilarity structure with function ‘dist’. This approach
differs from the standard Ward D method which can be implemented by either taking the square of the
dissimilarity matrix or using method ‘ward.D2’ (Murtagh & Legendre 2014). However in practice the method

gives similar patterns of clusters to other methods, more reliably than ward.D2 (Hoyle et al 2015).

Selecting the number of groups

We used several subjective approaches to select the appropriate number of clusters. In most cases the
approaches suggested the same or similar numbers of groups. First, we applied hclust to transformed trip-
level data and examined the hierarchical trees, subjectively estimating the number of distinct branches.
Second, we ran kmeans analyses on untransformed trip-level data with number of groups k ranging from 2
to 25, and plotted the deviance against k. The optimal group number was the lowest value of k after which
the rate of decline of deviance became slower and smoother. Third, following Winker et al (2014) we applied
the nScree() function from the R nFactors package (Raiche & Magis 2010), which uses various approaches
(Scree test, Kaiser rule, parallel analysis, optimal coordinates, acceleration factor) to estimate the number of
components to retain in an exploratory PCA. Where there was uncertainty about the number of clusters, we

selected the option with more clusters.

We plotted the hclust clusters to explore the relationships between them and the species composition and
other variables, such as HBF, number of hooks, year, and set location. Plots included boxplots of a) proportion
of each species in the catch, by cluster; b) the distributions of variables by cluster; and ¢) maps of the spatial

distribution of clusters, one map for each cluster.

In some analyses clusters that caught very few of the species of interest were omitted, because they provide
little relevant information and may cause analysis problems due to large numbers of zeroes, and memory
problems due to large sample sizes. Cluster selection was based on review and discussion of the plots of
covariates and species compositions by cluster. Also, in some analyses only clusters in which target species
was dominant were selected to see the difference from the results in which all or almost all the clusters were

used. Analyses were run both with and without these clusters.

For standardization of each region, data were selected for vessels that had fished for at least N1 quarters in
that region. The standard level of N1 was 8 quarters in the equatorial regions and 2 quarters in the southern
regions. Subsequently, vessels, 5° cells, and year-quarters were included if they had at least 100 sets. For
analyses of the 1952-1979 period this criterion was reduced to 50 sets, to increase the size of the dataset. For
datasets with more than 60,000 sets the number of sets in each stratum (5° square * year-quarter) was limited
by randomly selecting 60 sets without replacement from strata with more than this number of sets. Testing
suggested that this approach did not cause bias, and the effects on trends of random variation were reduced
to very low levels at 30 sets per stratum (Hoyle & Okamoto 2011), suggesting that 60 sets was more than

adequate.
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CPUE standardization, and fleet efficiency analyses
CPUE standardization methods generally followed the approaches used by Hoyle et al. (2015). The

operational data were standardized using generalized linear models in R.

GLM (generalized linear models) that assumed a lognormal and delta lognormal distribution was conducted,
and in this report mostly the methods and results for delta lognormal distributions are shown with partly for
lognormal distribution. In this approach the response variable log (CPUE+k) was used, and a Normal
distribution assumed. The constant k, added to allow for modelling sets with zero catches of the species of
interest, was 10% of the mean CPUE for all sets. CPUE was defined at the set level as catch in number

divided by hooks set. The following models were used:

Lognormal
In(CPUEs+k)~ yrqtr+vessid+latlong5+clustertf(hooks)+e

Delta lognormal
(CPUE=0)~ yrqtr+vessid+latlong5+f(hooks)+ g(HBF)+cluster+e

log(CPUE)~ yrqtr+vessid+latlong5+f(hooks) + g(HBF)+ cluster+e, for nonzero sets

where yrqtr: year and quarter; vessid: effect of vessel ID; latlong5: effect of five degree latitude and
longitude; cluster: effect of cluster; f(hooks): function of number of hooks modelled with a cubic spline;

Z(HBF): function of the number of hooks between floats modelled with a cubic spline; €: error term.

Data periods

Vessel identity information was only available from 1979, so could not be applied uniformly across all years.
The discontinuity in 1979 could be addressed in several different ways. We therefore analyzed the data in
several ways so as to provide the assessment scientists with appropriate data. For each of the approaches

above, four analyses were carried out as shown below.

Analysis Years Vessel effects
1 1952-1979 No
2 1979-end Yes
3 1952- end No
4 1952- end Yes

It is possible to standardize the time series with vessel effects by assigning an identical dummy value to all
vessels without vessel identity information. This was done for analysis 3). However, using a dummy value
introduces several problems. First, not all vessels begin to report their callsign at once in 1979, and those that
do are self-selected and not randomly selected from the vessel population. Therefore it cannot be assumed
that fishing power remains constant after 1979 for the dummy vessel id, so the transition in 1979 may
introduce a discontinuity into the time series. The discontinuity can be limited in scope by restricting the

overlap between dummy and real vessel IDs to one year — 1979 — and removing sets with missing vessel IDs
4
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after this time. Secondly, residuals may be more variable before 1979, without a true vessel ID in the model,

which can introduce bias into the standardization.

One approach for addressing the discontinuity in analysis 3) is to adjust the time period 1952-1978 so that
the relative averages in 1978 and 1979 are the same as they are in analysis 4), without vessel effects. However
we considered that a better approach may be to estimate two time series 1952-1979 without vessel effects,
and a second time series 1979-end with vessel effects (omitting all sets without vessel IDs). These are
analyses 1) and 2) above. Subsequently the analyst can use them as desired, for example concatenating them

after adjusting the averages so that the estimates for 1979 are the same.

The effects of covariates were examined using influence plots, using the R package influ (Bentley et al. 2011).

Indices of abundance

Indices of abundance were obtained by applying the R function predict.glm to model objects. Binomial time
effects were obtained by generating time effects from the glm and adjusting them so that their mean was the
proportion of positive sets across the whole dataset. The main aim with this approach is to obtain a CPUE
that varies appropriately, since variability for a binomial is greater when the mean is at 0.5 than at 0.02 or
0.98, and the multiplicative effect of the variability is greater when the mean is lower. The outcomes were

normalised and reported as relative CPUE with mean of 1.

Uncertainty estimates were provided by applying the R function predict.glm with type = “terms” and
se.fit=TRUE, and taking the standard error of the year-quarter effect. For the delta lognormal models we used
only the uncertainty in the positive component. Uncertainty estimates from standardizing commercial
logbook data are in general biased low and often ignored by assessment scientists, since they assume
independence and ignore autocorrelation associated with (for example) consecutive sets by the same vessels
in the same areas. There may be a very large mismatch between the observation error in CPUE indices and
the process error in the indices that is estimated in the assessment. This is particularly true for distant water

longline CPUE, where very large sample sizes generate small observation errors.

Residual distributions and Q-Q plots were produced for all but the binomial analyses. For the lognormal
positive analyses that included cluster in the model, median residuals were plotted by cluster. For all
lognormal positive analyses, residuals by year-quarter were plotted by flag; median residuals by year-quarter

were plotted by flag; and median residuals by 5° cell were mapped onto a contour plot for each flag.

We compared the indices with joint logline CPUE by Japanese, Taiwanese, Korean and Seychelles longline
created at this year’s CPUE collaborative analysis (Hoyle et al., 2019). The indices from 1979 onward with
vessel effect were used. For each comparison, each dataset was normalized by dividing through by its mean,

and the datasets plotted on the same axes.
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3. Results and discussion

Cluster analysis

The aim of the cluster analysis was first to identify separate fishing strategies in the data for each species,
regional structure, fleet, and region, and so to better understand the fishing practices; and second to assign

each unit of fishing effort to a particular fishing strategy, so that the clusters could be used in standardization.

Species compositions were plotted by cluster for each region and fleet, as were the relative distributions of
covariates (Fig. 3- Fig. 8). Dominant species differed depending on clusters. Clusters with low levels of the

target species were excluded from standardization datasets.

Fig. 9 and Fig. 10-Fig. 11 show the effect of each covariate for bigeye and yellowfin regions, respectively
(from 1979 onward with vessel ID). For bigeye tuna, the vessel effect usually increased with time, but the
trend differed depending on area. As for yellowfin tuna, vessel effect increased with time in several regions.

At region 4 for regY 2, large difference of the effect was observed among the clusters.

Fig. 12 and Fig. 13-Fig. 14 show influence plot showing time series effect of each covariate for bigeye and
yellowfin, respectively, with vessel effects. Historical difference of the effect of location (‘latlong’) was
observed. Cluster effect was usually larger in the early period, indicating that targeting changed during these

periods.

Fig. 15 and Fig. 16-Fig. 17 show the trend of standardized CPUE for bigeye and yellowfin, respectively,
without and with vessel effects. The trend differs between species and among regions, but CPUE usually

shows decreasing trend with part of them increasing in the recent years.

Fig. 18 shows comparison of bigeye and yellowfin CPUE with joint logline CPUE. The trend of both CPUEs
was mostly similar with small scale difference in several areas and period. In yellowfin tuna region 2,
Japanese longline CPUE in recent years is not available due to the effect of piracy activities, but is was

supplemented by the data of other fleets.

Fig. 19 and Fig. 20 show distribution of standardized residuals and QQ plots for bigeye and yellowfin,

respectively.
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Fig. 2. Maps of the regional structures used to estimate yellowfin CPUE indices, regY (top) and regY?2
(bottom). North of 10N was not used for the analyses.
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Fig. 3. Beanplots for bigeye region showing species composition by cluster. The horizontal bars indicate the

medians.
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Fig. 3. Beanplots for bigeye region showing species composition by cluster. The horizontal bars indicate

the medians. (continued)
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Fig. 4. Beanplots for bigeye region showing number of sets versus covariate by cluster. The horizontal bars

indicate the medians.
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Fig. 5. Beanplots for yellowfin region regY2 showing species composition by cluster. The horizontal bars

indicate the medians. (continued)
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Fig. 6. Beanplots for yellowfin region regY (only R2) showing species composition by cluster. The horizontal

bars indicate the medians.
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Fig. 7. Beanplots for yellowfin region regY2 showing number of sets versus covariate by cluster. The

horizontal bars indicate the medians. (continued)
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Fig. 9. Effect of each covariate for bigeye region (from 1979 onward with vessel ID). (continued)
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2019).
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Fig. 19. Standardized residuals of CPUE standardization for bigeye. (continued)
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Fig. 20. Standardized residuals of CPUE standardization for yellowfin regY?2. (continued)



