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Abstract 

Bigeye tuna, Thunnus obesus (Lowe, 1839) is one of the main target species for Indonesian tuna 

longline fishery in the Eastern Indian Ocean. The tuna longline fishery has begun since 1978 and 

around 1980, bigeye tuna started as target when deep longline introduced. However, little is known 

about its abundance, especially in the north eastern area where is the core fishing ground for 

Indonesian tuna longline fishery. The objective of the study is to provide a preliminary assessment 

about the abundance indices of bigeye tuna from Indonesian tuna longline fishery. In this paper, 

four types of Generalized Linear Model (GLM) was used to standardize the catch per unit effort 

(CPUE) and to estimate the relative abundance indices, i.e. Zero-inflated Negative Binomial 

(ZINB), Negative Binomial (NB), Tweedie (TW) and Delta-lognormal (DEL). We used two types 

of data used in this study; the scientific observer data conducted by Research Institute for Tuna 

Fisheries (RITF) from 2006 to 2018 and national observer program conducted by Directorate 

General of Capture Fisheries (DGCF) from 2016-2017. On overall, the abundance of bigeye tuna 

was depleted quite substantially over the years (almost two-fold from the beginning of 

observation). ZINB failed to give plausible indices due to convergence problems when areas were 

included. NB, TW and DEL produced similar trends, especially NB and TW produced almost 

identical trends. DEL produced higher abundance indices between 2006-2012 and lower prediction 

afterwards compared to previous two models. NB produced the lowest AIC but TW has the lowest 

BIC values than others, however, it was suggested that abundance indices by NB is likely the most 

plausible.    

Keywords: bigeye tuna, CPUE standardization, Generalized Linear Models 

Introduction 

World tuna and tuna-like production in 2016 reached up to 7.5 million ton and around 23% 

(1.7 million tons) came from Indian Ocean . Indonesia contributes more than 207,010 ton in 2010, 

rise up 1.84% from previous year. Port of Benoa contributes more than 60% of tuna production in 

Indonesia (Setyadji et al., 2012).   Among tuna and tuna-like species, bigeye tuna (Thunnus obesus) 

is one of the most commercially important species in the Indian Ocean (Fonteneau et al., 2005; 

Lee et al., 2005; Nugraha et al., 2010; Polacheck, 2006).  They are widely distributed from tropical 

to subtropical waters among 3 major oceans, between 45oN and 40oS except the Mediterranean 
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Sea (Collette and Nauen, 1983). It also the principal target species of the large longliners from 

Japan, China, and Taiwan and smaller longliners based in several Indian Ocean Island countries, 

especially Indonesia (Nootmorn, 2004). 

The longline catch of bigeye tuna in the Indian Ocean has increased from approximately 

40,000 tons in the late–1980s and soared up to ~170,000 tons in the mid 2000’s before declining 

to less than half in the last 5 years (~90.000 tons) (IOTC-WPTT20, 2018). Indonesia is the largest 

contributor with average catch around 26.000 tons (27%) during 2013-2017, followed by Taiwan, 

Seychelles, EU (Spain) and Japan with each proportion 18%, 12%, 12% and 5%, respectively 

(IOTC-WPTT20, 2018). The nominal CPUE of bigeye tuna of Indonesian longline fishery from 

2005-2017 showed a declining trend over the years, and distribution of high CPUE occurred 

between 5-20 oS and 30-35 oS (Hartaty et al., 2018). Bigeye tuna became one of the main targets 

of Indonesian longline fisheries since the introduction of deep tuna longline in mid 1980’s 

(Sadiyah et al., 2011). The proportion of zero-catches in the scientific observer operational catch 

and effort data sets from 2005-2018 were considered low (~30%). An indication of targeting from 

the longline fishing gear. However, despite of its importance, no update on abundance indices of 

bigeye tuna has been made since the preliminary work from Sadiyah et al. (2012). 

The objective of this study was to bridge the research’s gap on abundance indices of bigeye 

tuna, especially in the eastern Indian Ocean. The result hopefully can be involved in stock 

assessment study in the near future.  

 

Materials and methods 

We used the Indonesian scientific observer data from commercial tuna longline vessels 

based in Benoa Fishing Port, Bali. The observer program started in 2005 through an Australia-

Indonesia collaboration (Project FIS/2002/074 of Australian Centre for International Agricultural 

Research), and since 2010 it has been conducted by the Research Institute for Tuna Fisheries (RITF 

Indonesia).  

The dataset includes information concerning the number of fishes caught by species, the 

total number of hooks, the number of Hooks Between Floats (HBF), start time of the set, soak 

time, and geographic position (latitude and longitude) where the longlines deployed into the water. 

The response variable in the models was nominal catch or CPUE depending on model. Year and 

quarter were used as a categorical (factor) explanatory variables.  
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CPUE Standardization 

We attempted four GLM models, 3 single structured and 1 two-structured models namely: 

Negative Binomial (NB), Zero-Inflated Negative Binomial (ZINB), Tweedie (TW), and Delta-

lognormal (DELTA) models. Poisson model was not used because of over-dispersion problems, 

where the variance of the dataset was higher than the mean. Response variable for DELTA were 

log(CPUE) for positive sub-model and proportion of positive catch for second sub-model. On the 

other hand, TW, NB and ZINB used number of catch as response variable with effort included in 

the models as an offset caught (in natural log format). The final models’ construction was listed as 

follow: 

1) Tweedie 

𝐶𝑎𝑡𝑐ℎ ~ 𝜇 + 𝑌𝑒𝑎𝑟 + 𝑄𝑢𝑎𝑟𝑡𝑒𝑟 + 𝐻𝐵𝐹 + 𝑆𝑡𝑎𝑟𝑡 𝑇𝑖𝑚𝑒 + 𝐴𝑟𝑒𝑎 𝑇𝑟𝑒𝑒 + 𝑜𝑓𝑓𝑠𝑒𝑡(log(𝐻𝑜𝑜𝑘𝑠)) + 𝜀 

2) Negative binomial 

𝐶𝑎𝑡𝑐ℎ ~ 𝜇 + 𝑌𝑒𝑎𝑟 + 𝑄𝑢𝑎𝑟𝑡𝑒𝑟 + 𝐻𝐵𝐹 + 𝑆𝑡𝑎𝑟𝑡 𝑆𝑒𝑡 + 𝐴𝑟𝑒𝑎 𝑇𝑟𝑒𝑒 + 𝑜𝑓𝑓𝑠𝑒𝑡(log(𝐻𝑜𝑜𝑘𝑠)) + 𝜀 

3) Zero-inflated Negative binomial 

𝐶𝑎𝑡𝑐ℎ ~ 𝜇 + 𝑌𝑒𝑎𝑟 + 𝑄𝑢𝑎𝑟𝑡𝑒𝑟 + 𝑀𝑜𝑜𝑛 + 𝐻𝐵𝐹 + 𝑆𝑡𝑎𝑟𝑡 𝑆𝑒𝑡 + 𝑆𝑜𝑎𝑘 𝑇𝑖𝑚𝑒 + 𝑜𝑓𝑓𝑠𝑒𝑡(log(𝐻𝑜𝑜𝑘𝑠)) + 𝜀 

4) Delta-lognormal 

Lognormal model for CPUE of positive catch: 

log(𝐶𝑃𝑈𝐸) = 𝜇 + 𝑌𝑒𝑎𝑟 + 𝑄𝑢𝑎𝑟𝑡𝑒𝑟 + 𝑆𝑡𝑎𝑟𝑡 𝑆𝑒𝑡 + 𝐴𝑟𝑒𝑎 𝑇𝑟𝑒𝑒 + 𝜀𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 

Delta model for presence and absence of catch:  

PA = 𝜇 + 𝑌𝑒𝑎𝑟 + 𝑄𝑢𝑎𝑟𝑡𝑒𝑟 + 𝐻𝐵𝐹 + 𝑀𝑜𝑜𝑛 + 𝑆𝑜𝑎𝑘 𝑇𝑖𝑚𝑒 + 𝑆𝑡𝑎𝑟𝑡 𝑆𝑒𝑡 + 𝐴𝑟𝑒𝑎 𝑇𝑟𝑒𝑒 + 𝜀𝑑𝑒𝑙 

 

Where: 

a. Year: analyzed between 2005 and 2016;   

b. A quarter of the year: 4 categories: 1 = January to March, 2 = April to June, 3 = July to 

September, 4 = October to December; 

c. Area: treated as a categorical variable, area stratification method was applied using GLM-tree 

approach proposed by Ichinokawa and Brodziak (2010); The algorithm showed that the area 

divided into 21 categories (Figure 1).   

d. Start time of the set: treated as a quantitative variable, the values were rounded to the nearest 

integer; 

e. Soak time: calculated as the time elapsed between the start of setting up the longline and the 
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start of hauling. Soak time in the model was treated as a continuous variable. Thus, the value 

was rounded to the nearest integer; 

f. The number of hooks between floats: treated as a quantitative variable instead of factor. 

g. Moon phase: Moon phase information is available as a daily index of moon fraction for all 

recorded sets and ranges between 0 and 1 (from new moon to full moon). The moon phase was 

calculated using lunar package (Lazaridis, 2014). To account for the effect of cyclic behavior, 

the moon phase was defined by the following function (Sadiyah et al., 2012): 

𝑀𝑜𝑜𝑛 = 𝑠𝑖𝑛(2𝜋 𝑥 𝑚𝑜𝑜𝑛 𝑝ℎ𝑎𝑠𝑒) + 𝑐𝑜𝑠(2𝜋 𝑥 𝑚𝑜𝑜𝑛 𝑝ℎ𝑎𝑠𝑒) 

 

We applied a forward approach to select the explanatory variables and the order included in 

the full model. The first step was to fit simple models with one variable at a time. The variable 

included in the model with the lowest residual deviance was selected as a start. As the second step, 

the model with the selected variable then received other variables one at a time, and the model 

with the lowest residual deviance was again selected. The same procedure will be extended until 

the residual deviance did not decrease as new variables added to the previously selected model. 

Finally, all main effects and first-order interactions were analyzed and a backward procedure  

 

 

 

Figure 1.   Area stratification used in the analysis based on glm.tree package (Ichinokawa and 

Brodziak, 2010)  
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The qualities of the fittings were assessed by comparing the observed frequency 

distributions of the number of fishes caught to the predicted frequency distribution, as calculated 

using the selected models. Based on Akaike Information Criterion (AIC) (Akaike, 1974) and 

Bayesian Information Criterion (BIC) (Schwarz, 1978), Log Likelihood, and R2 (Lüdecke et al., 

2019) the best  model was selected. All the statistical analyses were carried out using R software 

version 3.5.3 (R Core Team, 2019), particularly the package pscl (Jackman, 2017), emmeans 

(Lenth, 2018), MASS (Venables and Ripley, 2002), Hmisc (Harrell Jr. et al., 2018), and statmod 

(Giner and Smyth, 2016). 

 

Result and discussion  

Descriptive Catch Statistic  

 Scientific observers and national observers recorded catch and operational data at sea 

following Indonesian tuna longline commercial vessels from 2006-2018 and 2016-2017, 

respectively. The combined dataset contained 112 trips, 2984 sets, 3,703 days-at-sea, and more 

than 3.9 million hooks deployed, respectively (Table 1).  

Table 1.   Summary of observed fishing effort from Indonesian tuna longline fishery during 2005–

2016. Results are pooled and presented by year of observation. Operational parameters 

are means and standard deviations (in parenthesis). 

 

Year Trips Sets Days at Sea Total Hooks Hooks per Set Hooks per Float 

2006 13 401 401 577,243  1,439.51  (214.9)   11.2  (3.9)  

2007 13 265 258 406,135  1,532.58  (326.5)   14.0  (4.4)  

2008 15 370 404 483,662  1,307.19  (385.9)   13.0  (4.5)  

2009 13 283 288 323,042  1,141.49  (234.7)   12.1  (4.9)  

2010 6 165 152 220,394  1,335.72  (457.5)   13.6  (5.2)  

2011 3 105 111 110,384  1,051.28  (173.9)   12.0     - 

2012 8 198 192 290,265  1,465.98  (559.1)   14.1  (2.3)  

2013 7 225 198 252,919  1,124.08  (210.4)   12.7  (2.1)  

2014 5 167 265 193,740  1,160.12  (176.9)   15.0  (2.0)  

2015 5 148 241 172,463  1,165.29  (145.2)   14.1  (3.2)  

2016 8 244 383 324,068  1,314.89  (146.4)   15.2  (6.4)  

2017 10 218 489 279,204 1,214.04 (395.3) 17.2 (4.8) 

2018 6 195 321 262,856 1,349.98 (242.9) 14.8 (4.5) 

 

 High catch rate mainly distributed in eastern Indian Ocean between 0o-35o S and 75o-130o E, 

in the area in between south of Indonesian and Australian waters except for below 30o S. (Figure 

2).  
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Figure 1.  Catch-rate distribution of bigeye tuna from Indonesian longline fleet 2006-2018 

Trend of nominal CPUE 

 In general, the catch rates of bigeye tuna during 2006-2013 were relatively stable (0.21+0.01 

in average), rose substantially to around 0.29+0.02 and then dropped to merely just 0.11+0.01 in 

2018. The lowest catch rate recorded was in 2016 (0.11+0.02), as the highest was in 2014 

(0.29+0.02). On the other hand, the proportion of zero catch for bigeye tuna was varied annually 

between a minimum of 22% in 2012 and a maximum of 43% in 2018 with average proportion 

around 30% per year (Figure 3). 

 

Figure 3.   Nominal CPUE series (N/100 hooks) (left panel) and proportion of zero bigeye tuna 

catches from 2005 to 2018 (right panel). The error bars refer to the standard errors 

 

CPUE standardization 

 Based on model selection, all effects were remained and statistically significant, except for 

moon phase.  If we rely on AIC, simple negative binomial models (NB) was resulted as the best 
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fit model, on the other hand, if we choose best fitting model based on the lowest BIC then tweedie 

(TW) should be chosen. However, the highest R2 was produced by zero-inflated negative binomial 

model (ZINB). Delta-lognormal model produced a consistent value of R2 between positive sub-

model and proportion of positive catch sub-model (0.20-0.22), even though it should asked 

whether two structured model can be compared with single structured model (Table 2). Therefore, 

we decided to choose the simplest model (NB) as the best fit for describing the abundance of 

bigeye tuna.  

Table 2.   Summary of indicators as calculated using four model structures: Tweedie (TW), 

Negative Binomial (NB), Zero-inflated with Negative Binomial (ZINB), Delta-

lognormal (DELTA). The terms in the column at left indicate: number of parameters 

(k), Akaike (AIC) and Bayesian (BIC) Information Criteria, log likelihood (logLik) and 

R2. 

Indicators TW NB ZINB 
DELTA 

Lognormal Delta 

k 38 38 40 37 38 

AIC 11877.06 11579.37 12014.95 4468.81 3105.99 

BIC 11801.06 11813.28 12254.86 4677.47 3333.90 

logLik -5899.53 -5750.68 -5966.48 -2196.40 -1515.00 

R2 0.52 0.39 0.53 0.22 0.20 

 

 

All variables were considered as statistically significant to the model, however, Year and 

AreaTree were the most influential ones in determining the catch rate of bigeye tuna. By contrast, 

moon phase and soak time were excluded from the model (Table 3). In terms of model validation, 

NB model seemed adequate for this particular situation with a low quantity of zeros (<30%), as 

the residual analysis, including the residuals distribution along the fitted values, the QQ plots and 

the residuals histograms, did not identified any major problems in the models (Figure 4). 

Tabel 3.   Deviance table of the parameters used for BET CPUE standardization for selected model 

(NB). Each parameter indicated the degrees of freedom (Df), the deviance (Dev), the 

residual degrees of freedom (Resid Df), the residual deviance (Resid. Dev), the F test 

statistic and the significance (p-value). 

Parameters Df Deviance Resid. Df Resid. Dev Pr(>Chi)  
NULL   2973.0 4284.2   
Year 12 179.8 2961.0 4104.4 0.0000 *** 

Quarter 3 59.7 2958.0 4044.8 0.0000 *** 

HBF 1 63.3 2957.0 3981.4 0.0000 *** 

Start_Set 1 34.2 2956.0 3947.3 0.0000 *** 

AreaTree 20 719.7 2936.0 3227.6 0.0000 *** 
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Figure 4.   Residual analysis for the final NB model used for the bigeye CPUE standardization in 

the Indian Ocean. Left to right panel: the residuals along the fitted values on the log 

scale, the QQPlot and the histogram of the distribution of the residuals. 

 

Estimations of standardized catch rates from four models are shown in Figure 5. On overall, 

the abundance of bigeye tuna was decreased quite substantially over the years (almost two-fold 

from the beginning of observation). Zero-inflated Negative Binomial (ZINB) failed to give 

plausible indices due to converge issue when area was included. Negative Binomial (NB), Tweedie 

(TW) and Delta-lognormal (DEL) give similar trend lines, however, between NB and TW 

projected somewhat identical indices. On the other hand, DEL gave higher estimation between 

2006-2012 and lower prediction afterwards compared to previous two models. Hence, a NB model 

was chosen for CPUE standardization since it has the lowest AIC values among models (Figure 

6).  
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Figure 5.   Standardize catch per unit effort (CPUE) of bigeye tuna calculated using various 

models. Values were scaled by dividing them by their means. 

 

 
Figure 6.   Final graph for standardized catch per unit effort (CPUE) of bigeye tuna calculated 

using NB model with 95% confidence interval (greyed area). Values were scaled by 

dividing their means. 
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