

ADDENDUM TO INDONESIAS APPLICATION FOR COOPERATING NON-CONTRACTING PARTY STATUS

APPLICATIONS ATTACHMENT FOR

COOPERATING NON-CONTRACTING PARTY STATUS INDONESIA

(a) Data on its historical fisheries in the IOTC Area

Table 1. Production of Tuna and Tuna like at Indian Ocean (Area 57), 2001-2005

ton

Croup Species	Species	2001	2002	2002	2004	300E
Group Species	Species	2001	2002	2003	2004	2005
Tunas	Albacore				11 646	10 902
	Bigeye Tuna				24 132	18 497
	Frigate and bullet tunas				14 970	43 012
	Kawakawa / Eastern little tuna	90 325	93 023	95 080	48 866	30 311
	Skipjack Tuna	47 768	41 271	50 398	50 843	48 668
	Southern bluefin Tuna				665	1 831
	Longtail tuna				36 703	30 779
	Yellowfin Tuna	54 567	42 147	58 564	42 862	52 162
	Tunas nei					
	Sub Total	192 660	176 441	204 042	230 687	
						236 162
Bilfish	Billfish nei					
	Black Marlin				1 102	691
	Blue Marlin				1 512	1 389
	Indo Pacific Sailfish				1 422	1 060
	Short-billed spearfish					
	Striped Marlin				1	181
	Swordfish				2 653	2 496
	Sub Total	-	-	-	6 690	5 817
Seerfish	Indo-Pacific king mackerel	11 351	9 498	12 598	9 781	9 454
	Narrow-barred Spanish Mackerel	23 897	20 420	22 935	23 520	24 502
	Wahoo					
	Sub Total	35 248	29 918	35 533	33 301	33 956
Others	Sharks Various nei	32 620	26 176	31 049	27 256	20 599
	Sub Total	32 620	26 176	31 049	27 256	20 599

Group Species	Species	2001	2002	2003	2004	2005
	Grand Total	260 528	232 536	270 625	297 934	296 534

Table 2. Number of Central Licence Tuna Longline Vessells (chapture vessels) at Indian Ocean by size of boats, 2001-2005

					un	it				
		Year								
Kategori kapal	2001	2002	2003	2004	2005	rata-rata (%)				
Jumlah	1 197	1 183	1 288	1 228	1 388	4.02				
< 30 GT	19	12	13	15	27	16.72				
30 - 50 GT	163	110	142	127	160	3.00				
50 - 100 GT	454	419	449	449	505	2.98				
100 - 200 GT	536	636	669	622	681	6.58				
200 - 300 GT	2	1	1	2	1	0.00				
300 - 500 GT	12	1	6	4	6	106.25				
500 - 1000 GT	11	4	8	9	8	9.44				
<u>></u> 1000 GT	-	-	-	-	-	_				

Ket : \pm 90 % merupakan kapal kayu (wooden vessels

(b) Data reported pertaining to IOTC resolutions an recommendations

Table 3. List of Tuna Vessells Central authorized License by Indonesia Government Until 31 December 2006

No.	LoA	Wood	Fiber	Steel	Total (unit)
1	≥ 24	413	12	19	444
2	< 24	579	179	-	758
TOTAL		941	174	19	1202

c. Evidence of current fishing presence in the IOTC area

Table 4. Landing Estimation (Kg) Based On Enumeration

Year	Species	1	2	3	4	5	6	7	8	9	10	11	12
2002							39,393	276,503	350,873	252,862	363,541	175,864	44,707
2003		27,281	84,303	159,268	194,581	219,45 9	599,273	560,174	541,994	473,996	520,440	124,623	82,499
2004	ALB	252,498	120,418	267,257	332,785	332,71 5	396,113	245,434	476,590	486,847	235,376	157,410	164,828
2005		95,051	343,431	320,975	296,112	204,40 1	455,132	330,507	317,007	237,771	127,678	26,982	55,419
2006		84,381	108,909	164,430	407,208	94,227	142,339	138,196	233,620	313,647	107,953	94,465	10,133
2007		78,650	20,893										
Year	Species	1	2	3	4	5	6	7	8	9	10	11	12
2002							195,783	597,487	674,958	922,190	1,209,880	1,116,720	957,783
2003		1,078,563	1,027,987	1,017,163	1,493,773	1,090, 053	1,306,460	1,402,117	1,152,170	1,114,733	1,553,563	1,478,370	1,343,490
2004	BET	1,384,327	1,236,397	1,021,127	1,090,350	985,97 8	1,252,492	1,379,717	1,140,793	822,500	1,346,483	1,186,121	1,747,758
2005	DEI	1,612,050	1,306,013	1,433,300	1,134,831	1,034, 122	930,253	910,233	747,483	685,610	835,867	737,700	787,020
2006		794,313	575,617	715,553	626,920	775,28 7	575,323	634,750	515,883	523,027	802,070	1,016,620	832,233
2007		906,883	224,443										
Year	Species	1	2	3	4	5	6	7	8	9	10	11	12
2002							408,017	713,327	604,591	975,883	1,252,110	1,085,273	1,042,980
2003		1,495,061	1,323,254	1,688,799	2,516,170	2,024, 183	2,942,961	2,220,498	1,783,820	1,616,379	1,977,678	1,686,547	2,051,822
2004		2 276 522	1014411	1 706 207	2.455.075	1,774,	2 251 050	1 041 427	1 100 040	1 205 007	1 220 002	742.240	1 214 557
2004	YFT	2,276,533	1,814,411	1,796,397	2,155,975	312 1,628,	2,251,950	1,941,437	1,169,840	1,305,887	1,229,983	742,310	1,314,557
2005	-	1,655,176	1,648,320	1,550,116	1,489,794	1,626,	2,060,436	1,561,479	949,423	1,008,913	672,290	518,656	1,414,963
2006		1,137,780	811,243	1,029,001	1,399,978	1,120, 446	882,011	775,927	569,377	615,838	634,971	932,971	862,720
2007		1,257,070	327,827										
Year	Species	1	2	3	4	5	6	7	8	9	10	11	12
2002								583	5,333	62,097	183,380	53,830	116,063
2003		163,217	177,293	87,313	45,613	5,367	2,063	430	1,000	34,227	57,157	63,560	82,227
2004		124,833	114,660	95,590	6,607	5,397	15,637	1,030	4,537	16,637	98,027	87,290	193,443
2005	SBF	502,367	542,723	467,877	82,180	4,327	2,657	240	2,023	38,303	127,370	301,360	112,667
2006		137,090	88,637	36,327	23,440	957	1,450		2,310	28,697	163,550	83,263	226,237
2007		228,727											

Table 5 . Number of Vessels Unloading Per Month

						Мс	onth					
Year	1	2	3	4	5	6	7	8	9	10	11	12
2002						30	118	133	216	241	192	136
2003	212	193	233	217	235	270	253	232	213	229	237	206
2004	272	219	264	217	216	218	189	178	170	170	216	194
2005	234	229	221	222	190	217	182	137	129	162	99	154
2006	172	126	146	141	148	141	126	89	88	125	83	102
2007	99	47										

Source: Capture Fisheries Research Center

Table 6. Number of Vessels Unloading Per Year

Year	Number of vessels
2002	700
2003	1209
2004	1121
2005	964
2006	694
2007	137

d) Research programs conducted in the IOTC Area and results of the research

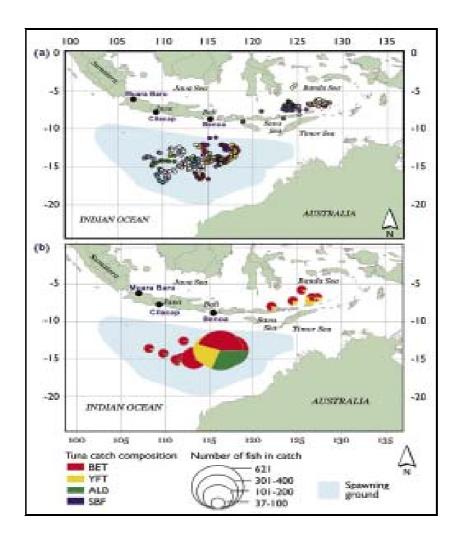
1. Preliminary Results of the Multilateral Catch Monitoring Programme on fresh-tuna longliners operating from ports in Indonesia

Indonesia, with catches of tuna and tuna-like species exceeding the 150,000 in year 2002, is among the most important fishing countries in the Indian Ocean. The rapid evolution (1980 – present) of its tuna longline fishery, became priority for Indonesia to strengthen the monitoring activities. This strengthening was achieved through the implementation of a Multilateral Catch Monitoring Program in June 2002, involving domestic and foreign institutions. In 2002 Indonesia introduced sampling method in its IOTC area (area 57) and the result of this estimation in 2004 was around 45,000 t. The result of this sampling method is considered much more precise than previous catches estimation. The quality of the size data and other key biological information now available for this fishery is, by far, the best existing in the Indian Ocean for a longline fishery.

It can be concluded that a great deal of progress has been achieved since the implementation of the Multilateral Catch Monitoring Program in Indonesia. The main areas of progress are summarized below:

- Improved vessel record: The information collected through enumerators, Port Authorities (Jakarta, Cilacap) and the Waski office in Benoa on vessel names, identification and vessel dimensions has improved the records of longline vessels operating in Indonesia, especially regarding the longliners whose GRT is below 30 (not in the DGCF record). The number of longliners operating in Indonesia is, consequently, better known.
- The information that the enumerators collect daily from fresh-tuna longliners in Jakarta, Benoa and Cilacap has greatly improved the records of longliner unloadings.
- Increased knowledge of the fishery: The regular visits of enumerators to the harbour and interviews to plants and vessels owners has greatly improved understanding on the operation of fresh-tuna longliners, areas exploited and seasonality. This information also led to changes in the sampling design in several occasions.
- More precise catch estimates: The new sampling involves both components of the catch i.e.
 export-reject and by-catch. The previous data collection system was obtained only estimates of
 the catches unloaded through processing plants i.e. the remaining catches disregarded in most
 cases. The new estimates are considered to be much more reliable.
- More precise information on the catches of individual species: In the past the species composition of the landings was only available from the RCCF/CSIRO monitoring in Benoa. The species breakdown from the Benoa sampling was, therefore, used to break the catches unloaded in other ports per species, on the assumption that all Indonesian longliners were exploiting the same areas, harvesting the same amounts per species. The results from the new monitoring have proved that the latter assumption was incorrect due to the different composition of the catch obtained per species in each port. The new data collected will, therefore, also help to revise the catches estimated before the implementation of the new sampling strategy.
- Size frequency data are now available for the major tuna and billfish species: The amount of size
 data collected in Indonesia during the last two years, with coverage rates ranging between 10%
 and 40% depending on the species, has allowed that catches-at-size be estimated for the first
 time for this fishery. The current levels of coverage are, by far, the best existing in the Indian
 Ocean for a longline fishery.
- Collection of biological data (length-length-weight) on major tuna and billfish species: The ongoing collection of biological data on key tuna and billfish species in Indonesia will allow size data from the Indonesian longline fleet to be converted from weight to length, and *vice versa*, in a more accurate manner.

The implementation of the Multilateral Catch Monitoring has not, however, come without difficulty. There have been and still are several issues that will require close attention and may lead to further changes in the sampling design, estimation procedure or estimated catches. The following problem areas have been identified:


- Imprecise information on effort: The amount of unloadings of by-catch fish collected through port interviews by enumerators is consistently, markedly lower than the amount of unloadings of export-reject. Although this information is thought to be unreliable due to the reasons explained in a previous section, the assumption that the same number of unloadings of export-reject applies also to by-catch needs to be verified. The estimated catches may change if the above assumption is proved inaccurate, resulting in lower estimates of by-catches unloaded.
- Incomplete information on vessel dimensions: The information available on vessel GRT and length overall (LOA) was used to compare the average catches unloaded by vessels of different sizes. The results obtained indicated that the amounts unloaded by longliners of different sizes vary significantly. This may lead to the incorporation of different vessel size classes to the existing strata once that the vessel record is complete. This change is, however, not likely to affect substantially the current catch estimates due to the high coverage rates attained.
- Different vessel operation: The above applies also to longliners acting as carrier vessels or only as fishing vessels, for which the average catches estimated per landing proved to be significantly different. It is, however, likely that the amount of information available on the type of vessel operation in each port would be insufficient or unreliable.

 In spite of the above problems, the current monitoring has proved to be successful in many areas. Indonesia is currently in a position to report catch and size frequency data according to the requirements of the IOTC. The close cooperation between the RCCF and the DGCF and its successful coordination of all program activities will also assure that the transfer of responsibilities from the IOTC/OFCF and CSIRO/ACIAR/DAFF to the Indonesian institutions occurs in a smooth way.

2. OBSERVER PROGRAM FOR INDONESIA'S TUNA LONGLINE FISHERY IN THE INDIAN OCEAN

Indonesia now has the largest fleet of commercial tuna longline vessels in the Eastern Indian Ocean, with an estimated 1000 - 1300 vessels operating from key ports in Java, Sumatera and Bali. Providing a more accurate number of current active vessels is difficult. A major fuel price rise (following a lowering of Indonesian Government subsidies) in early-October 2005 resulted in decreased vessel activity within many fishing companies. Marked changes in fishing behaviours have occurred since this price rise, with many vessels now fishing further from Indonesian shores in search of better catches and staying at sea for up to 3-5 months (compared to 1-2 months previously). Although the target species of Indonesia's longline fleet are primarily vellowfin (YFT) and bigeye (BET) tunas, the catch of many of these vessels includes southern bluefin tuna (SBF). The amount of SBF catch is relatively small compared to that of YFT and BET, but is significant as the majority are caught from the only known spawning area for this species, south of Java and Bali (Fig. 2 and 4). Long term declines in average size and age of SBF caught by this fishery, and also declines in catches of YFT and BET, are of serious concern. To better understand the reasons behind these trends, and to assist development of effective management strategies for fishery sustainability, obtaining catch and effort data was identified by all the collaborating organisations and stakeholders as an urgent priority.

To address the shortage of CPUE information, a trial scientific observer program for commercial longline vessels based at Port Benoa commenced in July 2005. This program is a collaboration between the Research Centre for Capture Fisheries, within Indonesia's Ministry of Marine Affairs and Fisheries (MMAF), and the Commonwealth Scientific and Industrial Research Organization (Australia), and is funded by the Australian Centre for International Agricultural Research. Six recruits were provided with observer training. This included fish, cetacean, turtle, and bird identification, data collection and reporting protocols, sea and climate conditions reporting, and guidelines for safety at sea. Data collection sheets and an observer database were developed, based on those of the Secretariat of the Pacific Community and Forum Fisheries Agency observer programs, but modified to suit the Indonesian situation and with Bahasa Indonesia as the working language.

Picture 1. Data from first 23 trips showing (a) set positions and (b) catch composition for the 4 target tuna species.

To date, Indonesian observers have each completed seven trips to sea (a total of 35 vessel trips). Data presented here are for the first 23 trips (data from more recent trips are still being processed). Average trip length was 27 days, on vessels ranging in size from 61 to 140 gross tonnes. The average number of sets/trip was 18, with averages of 1428 hooks/set , 15 hooks between floats, and 108 floats/set. Fishing operation areas included Eastern Indian Ocean between latitude 4°S and 17°S and longitude 107°E and 129°E, but also the Banda Sea. Averaged across all trips, catch composition was 34 % tuna (the 4 primary target species), and 66 % bycatch.

The trial observer program at Benoa will continue until the end of 2008. As they gain experience at sea, the observers are taking on more tasks. Hook-timers and temperature depth recorders are to be deployed on forthcoming trips, and biological sampling at sea for genetics research projects has commenced. Development is currently underway within MMAF to expand the program (which currently relies entirely on voluntary participation by fishing companies) to become a more formal fisheries observer program, including other ports and other vessel gear types. Also planned is an upgraded log-sheet for vessel skippers. In recognising the importance of sustainability of the tuna stocks and, in turn, sustainability of the tuna industry to Indonesia, the nation's tuna fishing industry associations and the Indonesian Tuna Commission have expressed strong support for these initiatives.

CONFIRMATION OF COMMITMENT IN RESPECT THE COMMISSION'S CONSERVATION AND MANAGEMENT MEASURES

(a) Statement of commitment

Indonesia would like to renewal the status of co-operating Non Contracting Party in IOTC and commitment in the implementation of conservation and management measures adopted by the Commission and to ensure that fishing vessels flying by Indonesian flag which are fishing in the IOTC Area, to the greatest extent possible, comply with the provisions of the Commission Conservation and Management Measures (MMAF letter dated 12 February 2007 as attached).

(b) Measures taken to ensure compliance by its vessels

Based on Law of The Republic of Indonesia number 31 of 2004 concerning Fisheries, , the Fisheries Management Zone of the Republic of Indonesia for capture fisheries includes among others Indonesian Exclusive Economic Zone. Furthermore it mentioned that fisheries management outside the Fisheries Management Zones known as management fisheries in the high seas, shall be carried out in compliance with the laws and regulations, prerequisites, and/or generally accepted international standards.

IOTC is a regional fisheries management organization responsible for the conservation and management of tuna in the Indian ocean, part of which is also fall within the Fisheries Management Zone of Republic of Indonesia for capture fisheries. In line with Article 10 of Fisheries Law no 31 year 2004 which mandated to the Government to participate actively in the membership of regional or international fisheries management organization, the Government of The Republic Indonesia through Presidential Regulation No 9 year 2007 agreed to the accession of the Convention establishing IOTC. Accession process of the IOTC has already done by Indonesian government, and hopefully Indonesia will have a full membership status by 2008.

To ensure sustainable use of the fisheries resources, the Government of the Republic of Indonesia through the Ministerial Decree of Marine affairs and Fisheries No 17 year 2006 improved a system of permit for capture fisheries within Indonesian fisheries Management Zone. Such system simplifying and replacing previous one (Ministerial Decree of Marine affairs and Fisheries No 10 year 2003) in order to coop with the requirement of the Law no 31 year 2006 concerning Fisheries. Based on such system, a part of the Indonesian Exclusive Economic Zone lying in the Indian ocean (a part of IOTC Area) fall within the Fisheries Management Zone of the Republic of Indonesia IX (WPP IX). Ministry of Marine affairs and fisheries (MMAF) established and maintain record of Indonesian Fishing Vessels operate within Indonesian fisheries Management Zone including WPP IX. Under such record, fishing vessels identification might be traced real time. In order to combat IUU Fishing, MMAF through Ministerial Decree of Marine affairs and Fisheries no 29 introduced Vessels Monitoring System (VMS). This Decree emphasizing that fishing vessels > 100 GT operated within Indonesian Fisheries Management Zones shall be installed with VMS transmitter.

In strengthening cooperation to combat IUU Fishing in the region, the Government of The Republic of Indonesia co sponsor with Australia hosted the 3 rd Senior Official Meeting and Ministerial Meeting on Promoting Responsible fisheries Practices in Bali, 3-5 May 2007.