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1. Introduction 

Assessing the status of the stocks of neritic tuna species in the Indian Ocean is challenging due to the 

paucity of data. There is lack of reliable information on stock structure, abundance and biological 

parameters. Stock assessments have been conducted for lawakawa (Euthynnus affinis) from 2013 to 

2015 using data-limited methods (Zhou and Sharma, 2013; Zhou and Sharma, 2014; Martin and Sharma, 

2015). This paper provides an update to these assessments based on the most recent catch information 

report to the IOTC, using two methods to assess the status of E. affinis: (i) an updated Catch-MSY 

method (Kimura and Tagart 1982; Walters et. al. 2006; Martell and Froese 2012; Froese et al. 2016) 

and (ii) a Bayesian biomass dynamic model, BSM (Froese et al. 2016), which utilised the recently 

available CPUE indices of the kawakawa developed from the Iranian gillnet fishery.  

2. Basic Biology 

The Eastern little tuna or kawakawa, Euthynnus affinis (Cantor 1849), is a medium-sized epipelagic, 

migratory neritic tuna is widely distributed across the Indo-West Pacific region in open waters close to 

the shore. It has a maximum fork length of 100 cm (Froese & Pauly 2015) and generally forms 

multispecies schools by size with other scombrid species comprising 100 – 5,000 individuals or more 

(Collette & Nauen 1983). It is a highly opportunistic predator feeding indiscriminately on small fishes, 

including clupeoids and atherinids as well as squids, crustaceans, molluscs and zooplankton (Collette 

2001; Gupta et al. 2014). The species supports substantial commercial and artisanal fisheries in many 

countries bordering the Indian Ocean, including Indonesia, India, Iran, Pakistan and Sri Lanka (Pierre 

et al. 2014). Most research has been focussed in these areas where there are important fisheries for the 

species, with the most common methods used to estimate growth being through length-frequency 

studies. Studies on the growth of E. affinis indicate that it is a fast growing species, attaining a fork 

length of 30-49 cm in the first year (IOTC-2015-WPTN05-DATA12).  

3. Catch, CPUE and Fishery trends 

 

Nominal catch data were extracted from the IOTC Secretariat database for the period 1950-2018, given 

that records for 2019 were still incomplete at the time of writing. Gillnet fleets are responsible for the 

majority of reported catches of kawakawa, followed by purse seine gear and lines, with the majority of 

catches taken by coastal country fleets (Figure 1). Error! Reference source not found. shows the 

increase in total catches since 1950, at an increasing rate in recent years, currently reaching 

approximately 160,000 t across the entire Indian Ocean region (Error! Reference source not found.). 

Some revisions have been made to the nominal catch series since the assessment that took place in 2015, 

including the revisions of Pakistani gillnet catches (IOTC–WPDCS15 2019), which appears to have a 

minor effect on the kawakawa catch series since 1990 (Figure 3). 

Fu et al. (2019) developed standardised CPUE indices for several neritic tuna species including 

kawakawa tuna from the Iranian coastal gillnet fishery using the catch effort data collected from the 

port-sampling program. That analysis represented an effort to estimate a relative abundance index for 

neritic tuna stocks for potential use in stock assessments. The quarterly indices (2008–2017) for the 

kawakawa showed some discontinuity in both 2010 and 2012 (Figure 4), indicating potential 

catchability changes. Thus, only the indices from 2012 to 2017 (annualised by taking the average of the 

quarterly indices) are included in the Bayesian Schaefer production model (see Section 4.2).  
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Figure 1: Average catches in the Indian Ocean over the period 2012-2018, by country. The red line 

indicates the (cumulative) proportion of catches of kawakawa by country. 

 

 

 

Figure 2: Annual catches of kawakawa by gear, 1950 – 2018 (IOTC database). 
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Figure 3: Revisions to IOTC nominal catch data for kawakawa (datasets used for the 2015 and 2020 assessments). 

 

Figure 4: Standardised CPUE indices (year-quarter) for kawakawa 2008–2017 from the GLM lognormal model. See 

Fu et al. (2019) for details.  
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Table 1. Catch data for kawakawa in the Indian Ocean, 1950-2018 (source IOTC Database) 

Year Catch (t) Year Catch (t) 

1950 5 569 1985 46 105 

1951 3 248 1986 46 524 

1952 3 280 1987 47 479 

1953 3 237 1988 53 183 

1954 4 489 1989 52 304 

1955 5 375 1990 54 077 

1956 5 858 1991 57 788 

1957 5 393 1992 66 162 

1958 5 070 1993 61 589 

1959 5 271 1994 69 463 

1960 6 973 1995 72 867 

1961 8 681 1996 75 483 

1962 5 990 1997 82 087 

1963 8 264 1998 80 130 

1964 10 152 1999 82 807 

1965 8 775 2000 87 967 

1966 8 821 2001 84 395 

1967  9 876 2002 87 745 

1968 10 491 2003 88 769 

1969 10 450 2004 98 990 

1970 10 789 2005 106 399 

1971 11 861 2006 111 173 

1972 13 763 2007 115 261 

1973 13 815 2008 125 187 

1974 18 556 2009 128 774 

1975 20 004 2010 122 675 

1976 28 953 2011 145 699 

1977 24 880 2012 151 449 

1978 26 286 2013 159 264 

1979 34 149 2014 150 248 

1980 34 435 2015 148 251 

1981 33 034 2016 151 443 

1982 38 629 2017 150 522 

1983 35 095 2018 164 133 

1984 39 368   
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4. Methods   

4.1. C-MSY method 

The C-MSY method of Froese et al. (2016) was applied to estimate reference points from catch, 

resilience and qualitative stock status information for the kawakawa. The C-MSY method represents a 

further development of the Catch-MSY method of Martell and Froese (2012), with a number of 

improvements to reduce potential bias. Like the Catch-MSY method, The C-MSY relies on only a catch 

time series dataset, which was available from 1950 – 2018, prior ranges of r and K, and possible ranges 

of stock sizes in the first and final years of the time series.  

The Graham-Shaefer surplus production model (Shaefer 1954) is used (equation 1), but it is combined 

with a simple recruitment model to account for the reduced recruitment at severely depleted stock sizes 

(equation 2), where Bt is the biomass in time step t, r is the population growth rate, B0 is the virgin 

biomass equal to carrying capacity, K, and Ct is the known catch at time t. Annual biomass quantities 

can then be calculated for every year based on a given set of r and K parameters.  
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There are no known prior distributions of the parameters r and K, so a uniform distribution was used 

from which values were randomly drawn. A reasonably wide prior range was set for r based on the 

known level of resilience of the stock as proposed by Martell and Froese (2012) where stocks with a 

very low resiliency are allocated an r value from 0.05 – 0.5, medium resiliency 0.2 – 1 and high 

resiliency 0.6 – 1.5. Based on the FishBase classification, Thunnus tonggol has a high level of resilience 

and a range of 0.6 – 1.5 was used (Froese and Pauly 2015).  The prior range of K was determined as 
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Where lowk and highk  are the lower and upper lower bound of the range of k, max(C) is the maximum 

catch in the time series, and lowr  and highr  are lower and upper bound of the range of r values.  

 

The ranges for starting and final depletion levels were assumed to be based on one of possible three 

biomass ranges: 0.01–0.4 (low), 0.2–0.6 (medium), and high (0.4–0.8), using a set of rules based on the 

trend of the catch series (see Froese et al. (2016) for details).  The prior range for the depletion level 

can also be assumed optionally for an intermediate year, but this option was not explored in this report. 

The medium range (0.2 – 0.6) assumption was adopted for the final depletion level in the model. The 

prior ranges used for key parameters are specified in Table 2.  

C-MSY estimates biomass, exploitation rate, MSY and related fisheries reference points from catch 

data and resilience of the species.  Probable ranges for r and k are filtered with a Monte Carlo approach 

to detect ‘viable’ r-k pairs. The model worked sequentially through the range of initial biomass 

depletion level and random pairs of r and K were drawn based on the uniform distribution for the 
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specified ranges.  Equation 1 or 2 is used to calculate the predicted biomass in subsequent years, each 

r-k pair at each given starting biomass level is considered variable if the stock has never collapsed or 

exceeded carrying capacity and that the final biomass estimate which falls within the assumed depletion 

range. All r-k combinations for each starting biomass which were considered feasible were retained for 

further analysis. The search for viable r-k pairs is terminated once more than 1000 pairs are found. 

The most probable r-k pair were determined using the method described by Ferose et.al (2016).  All 

viable r-values are assigned to 25–100 bins of equal width in log space. The 75th percentile of the mid-

values of occupied bins is taken as the most probable estimate of r. Approximate 95% confidence limits 

of the most probable r are obtained as 51.25th and 98.75th percentiles of the mid-values of occupied 

bins, respectively. The most probable value of k is determined from a linear regression fitted to log(k) 

as a function of log(r), for r-k pairs where r is larger than median of mid-values of occupied bins. MSY 

are obtained as geometric mean of the MSY values calculated for each of the r-k pairs where r is larger 

than the median. Viable biomass trajectories were restricted to those associated with an r-k pair that fell 

within the confidence limits of the C-MSY estimates of r and k. 

Table 2: Prior ranges used for the kawakawa in the C-MSY analysis reference model 

Species Initial B/K Final B/K r K (1000 t) 

Reference model  0.5–0.9 0.2–0.6 0.6–1.5 104 – 1036 

 

4.2. Bayesian Schaefer production model (BSM) 

C-MSY imposed strong assumptions on the stock abundance trend. Although the estimate of MSY is 

generally robust, estimates of other management quantities are very sensitive to the assumed level of 

stock depletion. Thus, we explored the use of a Schaefer production model (BSM) which utilised the 

newly available standardised CPUE indices. The BSM was implemented as a Bayesian state-space 

estimation model that was fitted to catch and CPUE. The model estimates the catchability scalar which 

relates the abundance index and estimated biomass trajectory and is calculated as a set of most likely 

values relative to the values of other parameters. The model allowed for both observation and process 

errors (see Froese et al. 2016 for details): a lognormal likelihood with a CV of 0.1 was assumed for the 

CPUE indices. A process error with a prior mean of 0.05 was assumed for the production function.  The 

prior range for r and K was translated into lognormal priors for the Bayesian estimation, with the mean 

and standard deviation derived from the range values specified in Table 2. The prior range for the initial 

and final depletion can be applied optionally and are implemented as a penalty on the objective function 

rather than hard constraints. The initial model made no assumption on the depletion level. However, 

the initial model (M3) indicated serious conflicts with the input abundance indices Therefore two 

additional models were conducted which penalise the final depletion outside the range of (1) 0.2–0.6 

(M1), and (2) 0.4–0.8 (M2), respectively. A fourth model was also explored which assumed a process 

error of 0.1 (M4). 
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5. Results 

5.1. C-MSY method  

 

Figure 5 shows the results of the model from the CMSY analysis. Panel A shows the time series of 

catches in black and the three-years moving average in blue with indication of highest and lowest catch. 

The use of a moving average is to reduce the influence of extreme catches. 

 

Panel B shows the explored r-k values in log space and the r-k pairs found to be compatible with the 

catches and the prior information. Panel C shows the most probable r-k pair and its approximate 95% 

confidence limits. The probable r values did not span through the full prior range, instead ranging from 

0.96–1.48 (mean of 1.19) while probable K values ranged from 347 000 – 686 000 (mean of 488 000). 

Given that r and K are confounded, a higher K generally gives a lower r value.  CMSY searches for the 

most probable r in the upper region of the triangle, which serves to reduce the bias caused by the 

triangular shape of the cloud of viable r-k pairs (Ferose et al. 2016).  

 

Panel D shows the estimated biomass trajectory with 95% confidence intervals (Vertical lines indicate 

the prior ranges of initial and final biomass). The method is highly robust to the initial level of biomass 

assumed (mainly due to the very low catches for the early part of series), while the final depletion range 

has a determinative effect on the final stock status. The biomass trajectory closely mirrors the catch 

curve with a rapid decline since the late 2000s.  

 

Panel E shows in the corresponding harvest rate from CMSY. Panel F shows the Schaefer equilibrium 

curve of catch/MSY relative to B/k.  However, we caution that the fishery was unlikely to be in an 

equilibrium state in any given year.  

  

Figure 6 shows the estimated management quantities. The upper left panel shows catches relative to the 

estimate of MSY (with indication of 95% confidence limits). The upper right panel shows the total 

biomass relative to Bmsy, and the lower left graph shows exploitation rate F relative to Fmsy. The 

lower-right panel shows the development of relative stock size (B/Bmsy) over relative exploitation 

(F/Fmsy). 

 

The IOTC target and limit reference points for kawakawa have not yet been defined, so the values 

applicable for other IOTC species are used. Management quantities (estimated means and 95% 

confidence ranges) are provided in Table 3, which shows an average MSY of about 145 000 t. The 

KOBE plot indicates that based on the C-MSY model results, kawakawa mackerel is currently 

overfished (B2018/BMSY=0.97) but is not subject to overfishing (F2018/FMSY = 1.16). The catches 

over the last five years are higher than the estimated MSY. 
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Figure 5. Results of CMSY reference model for kawakawa. 

 

Figure 6. Graphical output of the CMSY reference model of kawakawa for management purposes. 



IOTC–2020–WPNT10–xx 

 Page 10 of 19 

 

 

Table 3. Key management quantities from the Catch MSY assessment for Indian Ocean kawakawa tuna. Geometric means (and plausible ranges across all feasible 

model runs). n.a. = not available. Previous assessment results are provided for comparison. 

Management Quantity 2015  2020  

Most recent catch estimate (year) 170,181 t (2013) 164,133 t (2018) 

Mean catch – most recent 5 years2 155,468 t (2009 – 2013) 152 919 t (2014 – 2018) 

MSY (95% CI)  137,614 (108,233–185,804) 145 000 (114 000 – 185 000) 

Data period used in assessment 1950–2013 1950 – 2018 

FMSY (95% CI) 0.41 (0.29–0.63) 0.60 (0.48 - 0.74) 

BMSY (95% CI) 268,790 (146,419–328,901) 244 000 (173 000 – 343 000) 

Fcurrent/FMSY (95% CI) 1.19 (0.78–2.17) 1.16 (0.95 – 2.59) 

Bcurrent /BMSY (95% CI) 0.99 (0.60–1.40) 0.97 (0.44 – 1.19) 

Bcurrent /B0 (95% CI) 0.50 (0.30–0.70) 0.49 (0.22 – 0.60) 

 
2 Data at time of assessment 
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5.2. Bayesian Schaefer production model (BSM) 

 

The estimated posterior distributions of r-k for the BSM models 1 – 4 are shown in Figure 7, and the 

estimated biomass trend overlaid with CPUE indices (scaled by estimated coachability) for these 

models are shown in Figure 8.  For Model M3, which made no assumption on the final depletion level,  

estimated r-k pairs are located in the tip region of the viable r-k triangle from the CMSY analysis, 

(Figure 7–M3). The results are very similar to Model M1, which constrained the final depletion to be 

in the medium range of 0.2–0.6 through a penalty function (Figure 7–M1).  This suggested the medium 

depletion range appears to be more coherent with the assumed stock productivity. However, neither 

model is able to fit the CPUE indices, with the predicted biomass trend being in opposite direction of 

the indices (Figure 8– M1, M3), suggesting the CPUE is in conflict with model assumptions and/or 

catch history. For both models, estimated stock status are very close to be in the centre of the Kobe 

quadrant (Figure 9– M1, M3). Both M1 and M3 estimated the stock is not overfished (B2018/BMSY 

=1.06), but is subject to overfishing (F2018/FMSY =1.09) (Table 4). The conclusion of model M1 is 

slightly more optimistic than the CMSY analysis which suggested the stock is also overfished. 

Additional model configurations were investigated to account for the recent CPUE trend, which 

declined to 2015 but increased in the last two years. Model M2, which assumed a high final depletion 

level (0.4 – 0.8) appears to more in line with the CPUE  (Figure 8 – M2), and the model achieved this 

by shifting the r-k pairs more towards the higher k and lower r values range (Figure 7–M2). 

Consequently, Model M2 estimated that the stock is in the green KOBE quadrant (Figure 9 – M2), with 

B2018 estimated to be about 1.25 BMSY and F2018 to be 0.89 FMSY.   

Alternatively, Model M4 also fitted the CPUE indices well by assuming a higher process error (twice 

the value assumed in other models) (Figure 9 – M4). As such, the model attributed the increase of recent 

abundance to other sources of variations of the population which have not been incorporated by the 

production function (e.g. recruitment variability, etc.). Model M4 estimated the stock is not overfished 

(B2018/BMSY=1.07) but is subject to overfishing (F2018/FMSY=1.02) (Table 4, Figure 8 – M4). 
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M4 

 
 

Figure 7: Results of BDM models 1–4 for kawakawa: posterior estimates of r and K (black dots) and the 

95% CI (the red cross), overlaid with the viable r-k pairs as well as the probable range from the CMSY 

analysis (grey dots and the blue cross); right – median and 95% CI of the posterior estimates of biomass, 

overlaid with the standardised CPUE indices 2008–2017 with observation errors (red). 
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Figure 8: Results of BDM models 1–4 for kawakawa: median and 95% CI of the posterior estimates of 

biomass, overlaid with the standardised CPUE indices 2008–2017 with observation errors (red).  
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Figure 9: Kobe plots for the BDM models M1 – M4.  
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Table 4: Management quantities from the Bayesian Schaefer production model (BSM) – models 1–4 for Indian Ocean kawakawa, means and 95% confidence 

interval. 

 

Management Quantity                     Model 1                    Model 2                    Model 3                    Model 4 

MSY (95% CI)  143 000 t (130 010 – 157 000) 148 000 t (125 000–175 000)  143 000t (128 000–158 000) 136 000 t (118 010 – 157 000) 

Data period  1950 – 2018 1950 – 2018 1950 – 2018 1950 – 2018 

FMSY (95% CI) 0.65 (0.51 – 0.84)  0.43 (0.31–0.59)  0.64 (0.50–0.84) 0.59 (0.44 – 0.80) 

BMSY (95% CI) 219 000 t (179 000– 268 000) 346 000 t (277 000–432 000)  221 000t (181 000–270 000) 230 000 t (185 000– 287 000) 

Fcurrent/FMSY (95% CI) 1.09 (0.90 – 1.46) 0.89 (0.75–1.17) 1.09 (0.88–1.5) 1.12 (0.91 – 1.55) 

Bcurrent /BMSY (95% CI) 1.06 (0.79 – 1.27)  1.25 (0.95–1.48)   1.06(0.77–1.31) 1.07 (0.78 – 1.32) 

Bcurrent /B0 (95% CI) 0.53 (0.39 – 0.64)  0.62 (0.47–0.74) 0.53 (0.38–0.66) 0.54 (0.39 – 0.66) 
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6. Discussion 

In this report we have explored two data-limited methods in assessing the status of Indian Ocean 

kawakawa: C-MSY and Bayesian Schaefer production model (BSM), both of which are based on an 

aggregated biomass dynamic model. The C-MSY requires only the catch series as model input and uses 

simulations to locate feasible historical biomass that support the catch history. The BSM has 

incorporated time series of relative abundance indices, and estimated model parameters and 

management quantities in a Bayesian framework. Estimates from the C-MSY model suggested that 

currently the stock of kawakawa mackerel in the Indian Ocean is overfished (B2018 < BMSY) and is 

subject to overfishing (F2018 > FMSY). However, it has been demonstrated in many occasions that the 

estimates of management quantities of the CMSY analysis are sensitive to assumption of the final stock 

depletion. 

On the other hand, the BDM model utilised the standardised CPUE indices to provide information on 

abundance trend, and as such, the model is less reliant on some of the subjective assumptions. However, 

for kawakawa, there appears to be some inconsistency between the CPUE indices, and the catch history, 

and productivity assumptions of the species. In order to reconcile the increasing CPUE trend with the 

recent high catches, higher levels of stock productivity need to be assumed to allow the stock to sustain 

the large catches. Such assumptions tend to lead to more optimistic estimates of current stock status 

(e.g. Model M3 estimated the stock to be in green Kobe quadrant when assuming a high final depletion). 

Alternatively, the increasing CPUE can be attributed to other (unknow) random variations in the 

population (e.g. process error) but there is a risk of overparameterizing the model (such that it has little 

predictive power).  It remains a question whether the CPUE indices derived from the Iranian coastal 

gillnet fleets can index the abundance trend of kawakawa in the Indian Ocean (the CPUE has various 

caveats even as a local index for the Iranian coastal waters, see Fu et al. (2019)). Nevertheless, the 

availability of the standardised CPUE as a potential abundance index and its incorporation in the 

assessment represents a marked improvement in the development of more robust methods to assess 

IOTC neritic tuna species in the context of data deficiency. Future assessments could consider develop 

more realistic population models, including age structured models that could utilise more biological and 

fishery data beyond simple catch series.  
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