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SUMMARY 

Swordfish, Xiphias gladius, is a target species in the South African pelagic longline fleet operating 

along the west and east coast of South Africa. A standardization of the CPUE of the South African 

swordfish directed longline fleet for the time series 2004-2019 was carried out with a Generalized 

Additive Mixed Model (GAMM) with a Tweedie distributed error. Explanatory variables of the final 

model included Year, Month, geographic position (Lat, Long) and a targeting factor (Fishing Tactic) 

with two levels, derived by clustering of PCA scores of the root-root transformed, normalized catch 

composition. Vessel was included as a random effect. Swordfish CPUE had a definitive seasonal trend, 

with catch rates higher in winter (July - October) than the rest of the year. Standardized CPUE peaked 

in 2008 (530kg/1000 hooks) and was lowest in 2014 (262kg/1000 hooks). The results indicate that the 

swordfish catch rates in the South African pelagic longline fishery have recently stabilized after an 

initial period of decline during 2004 to 2012. 
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INTRODUCTION 

Commercial fishing for large pelagic species in South Africa dates back to the 1960s (Welsh, 1968; 

Nepgen, 1970). Exploitation of large pelagic species in South Africa can be divided into four sectors, 

1) pelagic longline, 2) tuna pole-line 3) commercial linefishing (rod and reel) and 4) recreational line-

fishing. Pelagic longline vessels are the only vessels that target swordfish, with negligible bycatch 

being caught in other fisheries. Pelagic longline fishing by South African vessels began in the 1960s 

with the main target being southern bluefin tuna (Thunnus maccoyii) and albacore (Thunnus alalunga) 

(Welsh, 1968; Nepgen, 1970). This South African fishery ceased to exist after the mid 1960’s, as a 

result of a poor market for low quality southern bluefin and albacore (Welsh, 1968). However, foreign 

vessels, mainly from Japan and Chinese-Taipei, continued to fish in South African waters from the 

1970s until 2002 under a series of bilateral agreements. Interest in pelagic longline fishing re-emerged 

in 1995 when a joint venture with a Japanese vessel confirmed that tuna and swordfish could be prof-

itably exploited within South Africa’s waters. Thirty experimental longline permits were subsequently 

issued in 1997 to target tuna, though substantial catches of swordfish were made during that period 

(Penney and Griffiths, 1999). 

The commercial fishery was formalised in 2005 with the issuing of 10-year long term rights to sword-

fish- and tuna-directed vessels. The fishery is coastal and swordfish-oriented effort concentrates in the 

southwest Indian Ocean region (20°- 30°S, 30°- 40°E) and along the South African continental shelf in 

the southeast Atlantic (30°- 35°S, 15°- 18°E). As such, the fishery straddles two ocean basins, the 

Indian and Atlantic Ocean (Fig. 1). The jurisdictions of the Indian Ocean Tuna Commission (IOTC) 

and International Commission for the Conservation of Atlantic Tuna (ICCAT) are separated by a man-

agement boundary at 20°E. The South African caught swordfish originate from an Indian and an At-

lantic ocean stock, with a broad admixture zone between 17°E and 30°E, hence the artificial split at 

20°E in reporting stock indices requires further investigation. South Africa’s overall swordfish catches 

reached a peak in 2002 at 1 187 t. However, within the IOTC area of competence (Longitude > 20 

degrees), South Africa’s swordfish catches peaked in 2011 at 488 t, and steadily declined to only 57 t 

in 2017. 

Here, we present an update of the standardised catch-per-unit-effort (CPUE) time series for swordfish 

caught in the South African longline fishery. The methodology follows that first introduced by da Sil-

va et al. (2017), and uses a generalised additive mixed model (GAMM) applied to catch and effort 

data from the South African pelagic longline fleet operating during the period 2004 - 2019. The 

GAMM was fitted using a Tweedie distribution and included year, month, latitude, longitude, fishing 

tactic (targeting) as fixed factors and vessel as random effect. Targeting was determined by clustering 

PCA scores of the root-root transformed, normalized catch composition. 
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MATERIALS AND METHODS 

CATCH AND EFFORT DATA PREPARATION 

Catch and effort data for the period 2004-2019 were extracted from the South African longline log-

book database. Each record included the following information: (1) date, (2) unique vessel number, (3) 

catch position at a 1 x 1 degree latitude and longitude resolution and (4) mandatory catch reports in 

kilogram per set and (5) hooks per set. Data were subset to only include sets in which > 500 hooks 

were deployed, and only data from east of 29 degrees (Longitude > 29) was considered to exclude the 

area of admixture, where stock originating in the two ocean basins cannot be distinguished(West 

2016). The final dataset contained 4 724 sets and 6 485 449 hooks. 

MODEL FRAMEWORK 

Swordfish CPUE was standardized using Generalized Additive Mixed Models (GAMMs), which in-

cluded the covariates year, month, 1 x 1 degree latitude (Lat) and longitude (Long) coordinates and 

vessel as random effect. In an attempt to account for variation in fishing tactics, we considered an ad-

ditional factor for targeting derived from a cluster analysis of the catch composition (He et al., 1997; 

Carvalho et al., 2010; Winker et al., 2013). For the clustering analysis, all CPUE was modelled as 

catch in metric tons per species per vessel per day. All of the following analysis was conducted within 

the statistical environment R. The R package ‘cluster’ was used to perform the CLARA analysis, 

while all GAMMs were fitted using the ‘mgcv’ and ‘nlme’ libraries described in Wood (2006). 

Clustering of the catch composition data was conducted by applying a non-hierarchical clustering 

technique known as CLARA (Struyf et al., 1997) to the catch composition matrix. To obtain the input 

data matrix for CLARA, we transformed the 𝐶𝑃𝑈𝐸𝑖 ,𝑗 matrix of record i and species j into its Principal 

Components (PCs) using Principal Component Analysis (PCA). For this purpose, the data matrix 

comprising the 𝐶𝑃𝑈𝐸𝑖 ,𝑗 records for all reported species was extracted from the dataset. The CPUE 

records were normalized into relative proportions by weight to eliminate the influence of catch vol-

ume, fourth-root transformed and PCA-transformed. Subsequently, the identified cluster for each catch 

composition record was aligned with the original dataset and treated as categorical variable (FT) in the 

model (Winker et al., 2013). To select the number of meaningful clusters we followed the PCA-based 

approach outlined and simulation-tested in Winker et al. (2014). This approach is based on the selec-

tion of non-trivial PCs through non-graphical solutions for Catell’s Scree test in association with the 

Kaiser-Guttman rule (Eigenvalue > 1), called Optimal Coordinate test, which available in the R pack-

age ‘nFactors’ (Raiche et al., 2013). The optimal number of clusters considered is then taken as the 

number of retained PCs plus one (Winker et al., 2014). The results suggest that only the first PC is 
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non-trivial (Fig. 2) and correspondingly two clusters were selected as optimal for the CLARA cluster-

ing. 

The CPUE records were fitted by assuming Tweedie distribution (Tascheri et al., 2010; Winker et al., 

2014). The Tweedie distribution belongs to the family of exponential dispersion models and is charac-

terized by a two-parameter power mean-variance function of the form 𝑉𝑎𝑟(𝑌) = 𝜙𝜇𝑝, where 𝜙 is the 

dispersion parameter, 𝜇 is the mean and p is the power parameter (Dunn and Smyth, 2005). Here, we 

considered the case of 1 < p < 2, which represents the special case of a Poisson (𝑝 = 1) and gamma 

(𝑝 = 2) mixed distribution with an added mass at 0. This makes it possible to accommodate high fre-

quencies of zeros in combination with right-skewed continuous numbers in a natural way when model-

ling CPUE data (Winker et al., 2014; Ono et al., 2015). As it is not possible to estimate the optimal 

power parameter p internally within GAMMs, p was optimized by iteratively maximizing the profile 

log-likelihood of the GAMM for 1 < p < 2 (Fig. 3). This resulted in a power parameter p = 1.3 with an 

associated dispersion parameter of 𝜙 = 5 for the full GAMM. The full GAMM expressed swordfish 

CPUE as: 

𝐶𝑃𝑈𝐸 = 𝑒𝑥𝑝(𝛽0 + 𝑌𝑒𝑎𝑟 + 𝑠1(𝑀𝑜𝑛𝑡ℎ) + 𝑠2(𝐿𝑜𝑛𝑔, 𝐿𝑎𝑡) + 𝐹𝑇 + 𝛼𝑉) 

where 𝑠1() denotes cyclic cubic smoothing function for Month, 𝑠2() a thin plate smoothing function 

for the two-dimensional covariate of Lat and Long, FT is the vector of cluster numbers treated as cate-

gorical variable for ‘Fishing Tactic’, and 𝛼𝑣 is the random effect for Vessel v (Helser et al., 2004). The 

inclusion of individual vessels as random effects term provides an efficient way to combine CPUE 

recorded from various vessels (n = 17) into a single, continuous CPUE time series, despite discontinui-

ty of individual vessels over the time series (Helser et al., 2004). The main reason for treating vessel 

as a random effect was because of concerns that multiple CPUE records produced by the same vessel 

may violate the assumption of independence caused by variations in fishing power, skipper skills and 

behaviour, which can result in overestimated precision and significance levels of the predicted CPUE 

trends if not accounted for (Thorson and Minto, 2014). The significance of the random-effects struc-

ture of the GAMM was supported by both Akaike’s Information Criterion (AIC) and the more con-

servative Bayesian Information Criterion (BIC). Sequential F-tests were used to determine the 

covariates that contributed significantly (p < 0.001) to the deviance explained. 

Annual CPUE was standardized by fixing all covariates other than Year and Lat and Long to a vector 

of standardized values 𝑋0. The choices made were that Month was fixed to July (Month = 7), repre-

sentative of the high catch quarter and FT was fixed to the fishing tactic the produced highest average 

catch rates (FT = 1). The expected yearly mean 𝐶𝑃𝑈𝐸𝑦 and standard-error of the expected 

𝑙𝑜𝑔(𝐶𝑃𝑈𝐸𝑦) for the vector of standardized covariates 𝑋0 were then calculated as average across all 

Lat-Long combinations (here forth grid cells) a, such that: 
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where �̂�𝑦,𝑎 is the standardized, model-predicted 𝑙𝑜𝑔(𝐶𝑃𝑈𝐸𝑦,𝑎 ) for Year y and Lat and Long for grid 

cell a, �̂�𝑦,𝑎 is the estimated model standard error associated with 𝑙𝑜𝑔(𝐶𝑃𝑈𝐸𝑦,𝑎 ), A is the total number 

of grid cells and T denotes the matrix in which X is transposed. 

RESULTS AND DISCUSSION 

The analysis of deviance for the step-wise regression procedure showed that all of the covariates con-

sidered were highly significant (p < 0.001) and the inclusion of all considered fixed effects were sup-

ported by both the AIC and BIC (Table 1). Seasonality (Month) accounted for the majority of the 

deviance explained by the model (Table 1), followed by the inclusion of the effect of targeting other 

species (Fishing tactic), particularly tuna (Fig. 2). Swordfish CPUE was approximately halved when 

vessels were deemed not to be targeting this species (Fig. 6b). The inclusion of targeting, and the justi-

fiable use of the Tweedie distribution (Figs. 3 & 5) have improved the model fit, however, further 

analyses could be considered. The amendment of the catch return forms to include the target per catch 

day, sea surface temperature, bait type, hooks between floats and soak time could further improve the 

standardization of the CPUE data in this fishery. 

Determining the vessel specifications according to crew size and trip length are both deemed to be 

poor indicators of vessel type (Leslie et al., 2004; Smith and Glazer, 2007). It is challenging to obtain 

this vessel information (gross registered tonnage (GRT), length, use of live bait and sonar information) 

for the entire fleet, but a classification into vessel type was attempted in the past (Kerwath et al., 2012) 

based on maximum and average number of crew. However, there was no significant improvement in 

explanatory power by including vessel type as categorical variable or by using a subset of vessels from 

each class as indicator vessels. To include vessel as a random effect was deemed the most appropriate 

solution. There was notable variation among vessels (Fig. 4) and the inclusion of the random vessel 

effect produced the most parsimonious error structure. However, the random effect did not have a 

large effect on the confidence intervals. 

In accordance with the previous analyses (da Silva et al., 2017), swordfish CPUE from the South Afri-

can pelagic longline fishery displayed a definitive seasonal trend, with higher catch rates in austral 

winter (July - October) than the rest of the year (Fig. 6a). This may in part be due to the seasonal oper-
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ations of Joint-Venture vessels operating predominantly off the East coast of South Africa, which pre-

dominantly fish in the South African EEZ during the winter period. Standardized catch rates were 

relatively high in the first half of the time series (2004-2012) and normalized CPUE values were gen-

erally > 1 for this period (Fig. 7). Standardized CPUE peaked in 2008 at 530kg/1000 hooks. After 

2012, CPUE was relatively low and all normalized values remained < 1, with the exception of the final 

year, 2019. The lowest standardized CPUE estimate was observed in 2014 at 262kg/1000 hooks; ap-

proximately half of the highest observed catch rates. These results suggest that swordfish catch rates in 

the South African pelagic longline fishery have recently stabilized after an initial period of decline 

during 2004 to 2012. 
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TABLES 

Table 1. Results from the GAMM applied to swordfish (Xiphias gladius) indicating the deviance ex-

plained by parameters selected for the final model. 

 DF AIC BIC Deviance Deviance Explained % Deviance Explained P-Value 

Null Model 2 61785.14 61798.06 128108.30 0.000 0.00  

Year 17 61401.49 61511.32 119870.42 -8237.882 22.44 < 0.001 

Month 23 60550.23 60697.37 103761.79 -16108.630 43.88 < 0.001 

Latitude/Longitude 31 60314.91 60517.28 99330.96 -4430.826 12.07 < 0.001 

Fishing Tactic 32 59845.11 60053.55 91398.89 -7932.069 21.61 < 0.001 

     

Table 2. Nominal and standardised CPUE values (kg/1000 hooks), including standard error (SE) and 

confidence intervals (LCI, UCI) for swordfish (Xiphias gladius) for the period 2004 - 2019. 

Year Nominal CPUE CV LCI UCI 

2004 329 462 0.09 390 547 

2005 373 453 0.09 383 537 

2006 350 446 0.08 378 525 

2007 298 375 0.08 318 442 

2008 346 530 0.08 453 622 

2009 226 352 0.08 299 414 

2010 319 446 0.08 382 521 

2011 330 473 0.08 406 552 

2012 282 401 0.08 342 470 

2013 261 382 0.08 327 447 

2014 149 262 0.09 219 313 

2015 284 377 0.09 319 446 

2016 319 338 0.11 271 421 

2017 154 298 0.17 211 419 

2018 227 352 0.1 292 426 

2019 208 441 0.09 368 529 
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FIGURES 

 

Figure 1. Annual effort distribution for the South African longline fleet. Longline sets that did not 

encounter a swordfish are the smallest circles, and the circle diameter increases proportional to the 

weight of swordfish caught per set. The black line indicates the ICCAT/IOTC boundary.  
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Figure 2. A graphical representation of the two clusters that characterise the different fishing tactics 

projected over the first two Principal Components (PCs), where only PC1 was determined to be non-

trivial. FT 1: Cluster one (red) is predominantly swordfish catches. FT 2: Cluster two (green) is pre-

dominantly tuna (ALB, BETN, SBT) with a mixture shark (blue and shortfin mako) catches.
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Figure 3. Log-likelihood profile for over the grid of power parameters values (1 < p < 2) of the 

Tweedie distribution. The vertical dashed line denote the optimized p used in the final standardization 

GAMM.  
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 Figure 4. Random effects coeffients (dots) illustrating the deviation from the mean of zero across the 

17 vessels retained for the analysis. Dashed lines denote the 95% confidence interval of the mean.  
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Figure 5. CPUE frequency, and density, distributions for the South African swordfish directed long-

line fishery. The red shaded density denotes the expected density of the response for the Tweedie 

GAMM, and supports the use of the Tweedie distribution form in the GAMMs.  
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Figure 6. The influence of the fixed effects Month and Fishing Tactic on the CPUE of swordfish when 

modelled using the GAMM applied to the South African swordfish directed longline data.  
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Figure 7. Standardized swordfish CPUE for the South African pelagic longline fishery for the period 

2004 to 2019 (upper panel). The 95% confidence intervals for the nominal CPUE are denoted by grey 

shaded areas. A comparison of nominal and the various alternative standardized CPUE models (lower 

panel).  
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