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Abstract 

We updated the Japanese observer data until 2019 and standardized nominal catch-per-unit-effort 

(CPUE) of blue shark caught by Japanese tuna longline fisheries in the Indian Ocean from 1992 to 

2019. We used generalized linear model (GLM) with negative binomial error distribution to 

standardize the nominal CPUEs. The most parsimonious model was selected by Akaike Information 

Criterion (AIC) as the best model for the estimation of annual CPUEs. The goodness-of-fits were 

diagnosed by residual plots. The 95% confidence intervals were estimated from the bootstrapping 

method. The annual CPUEs had a similar trend to those shown in the previous analysis except in 2000. 

The annual CPUE increased in 1990s and reached to the peak in 2000, and then gradually decreased 

with a large fluctuation until 2013. Since 2014, the annual CPUE showed an increasing trend. We 

suggest that the estimated annual CPUE should be utilized as one of the candidates of primary 

abundance indices in the next stock assessment of blue shark in the Indian Ocean scheduled in 2021 

because the Japanese observer data covers a wide range of the main distribution area (temperate water) 

of blue shark in the Indian Ocean and a longer time period compared to the other fleets’ CPUE data. 
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Introduction 

Blue shark, Prionace glauca, is the most abundant pelagic shark species and widely distributed in 

the tropical and warm-temperate oceans worldwide (Compagno, 2001; Nakano and Stevens, 

2008). It is one of the common bycatch shark species for Japanese tuna longline fishery in the 

Indian Ocean. Japanese tuna longline fishery in the Indian Ocean is largely divided into two types 

of operations targeting southern bluefin tuna (Thunnus maccoyii) and those targeting other tuna 

species (Semba et al., 2015). Although the area and season of the operation of Japanese tuna 

longline fleet targeting T. maccoyii is limited, its operation area in the Indian Ocean is generally 
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overlapped with the distribution area of blue shark including the main distribution area (temperate 

water). 

 

In the previous analysis, annual CPUEs of blue shark in the Indian Ocean were estimated using 

zero-inflated negative binomial model (ZINB) with observer data collected from Japanese 

commercial tuna longline fishery (Semba et al., 2016). They added newly available data; 1) 

observer data with deep set and set operated in the tropical water: 2) the observer data collected 

outside the traditional CCSBT observer program in the Indian Ocean. However, the estimated 

annual CPUE trends were almost the same as those in 2015 (Semba et al., 2015) because the 

added data mainly consisted of set from tropical area where the abundance of blue shark was 

relatively small.  

 

We update standardized CPUE for blue shark caught by Japanese tuna longline fisheries in the 

Indian Ocean from 1992 to 2019 using the generalized linear model with Japanese observer data. We 

also examine the appropriateness of the estimated CPUEs for the stock assessment of blue shark 

scheduled in 2021.  

 

Material and Method 

1) Data sources 

The Japanese observer data in the Indian Ocean covering the CCSBT area, the IOTC area including 

data collected by Indonesian observer, and the ICCAT area. The observer data collected in the 

jurisdiction of IOTC was extracted based on the map for fisheries statistical areas defined by FAO.  

 

We updated Japanese observer data from 1992 to 2019 (Table 1). We particularly added the newly 

available observer data in the period between 2016 and 2019. In addition, we added a large amount of 

observer data collected at the CCSBT area through experimental fishing program in the period between 

1998 and 2000 that were not used in the previous analysis. Then, we removed erroneous dataset that 

had no information about the operation locations (i.e., latitude and longitude), observed number of 

hooks, and number of hooks between floats (HBF). Similarly, the datasets with extremely small and 

large number of HBF (less than 4 and more than 40) were also removed from the analysis. The IOTC 

observer data finally reduced from 15,601 to 15,416 datasets.   

 

2) CPUE standardization  

Since the updated observer data for blue shark indicated 25 % zero catch ratio with overdispersion 

(27.95 of dispersion: variance/mean ratio) on average in the period between 1992 and 2019, we 

determined to use ZINB and negative binomial model (NB) to standardize the nominal CPUE. 
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However, we finally used only NB due to the convergence issue of ZINB. We used the same covariates 

(year, area, and season) as used in the previous analysis. We also added HBF to remove the targeting 

effect for tropical tunas in the subtropical/tropical area. The HBF was simply classified into shallower 

sets (HBF < 12) and deeper sets (HBF ≥ 12). The area definition was changed from east/west 

separation at 90 °E to 65.5 °E (see Fig. 1) because Kai (2019) found more reasonable longitudinal line 

for area separation using the GLM tree (Ichinokawa and Brodziak, 2010) with logbook data for 

pelagic sharks in the Indian Ocean. The definition of season was the same as that used in the previous 

analysis. Season was separated into 1) April-July and 2) August-December.  

 

3) Model structure 

The negative binomial model with a log-link function is as follows: 

 

     ��~ ����	
 (�� , �),      

log  (��) = �� + ������ + ���� + ������ + ��ℎ!" + #
����$�	%
 + offset(log(ℎ%%�*)),   (1) 

 

where �� is negative binomial distributed with mean �� and parameter k, � represents coefficients, 

“year” represents year-effect (signifying each year from 1992 to 2019), “qt” represents season-effect 

(signifying season 1 and 2), “area” represents area-effect (signifying area 1 and 2), “hbf” represents 

gear-effect (signifying shallow set and deep set, Fig. A1), “Interaction” represents interaction terms, 

and “ℎ%%�*” represents a fishing effort (observed number of hooks) given as an offset term. For the 

full model including all covariates and three interaction terms (i.e., year:area, gear:season, and 

area:gear), model selection was conducted by Akaike Information Criterion (AIC). We removed each 

explanatory variable and the interaction terms one by one from the full model and compared the AICs 

to select the best model. The other interaction terms were not included in the model due to the 

convergence issue (i.e., year:gear, and year:season) or insignificant effect on the result (area:season). 

The least-square mean of standardized CPUE by year was calculated, and then the annual CPUE was 

scaled by the mean CPUE in the period between 1992 and 2019.   

 

4)  Model diagnostics 

We evaluated the fitting of the model to the data using the Pearson residuals, QQ-plot and type-II 

analysis. The residuals were calculated using a randomized quantile (Dunn and Smyth, 1996) to 

produce continuous normal residuals.   

 

To evaluate the uncertainties in the estimates of annual CPUE, we estimated the 95 % confidence 

intervals (95% CI) using a bootstrapping method (i.e., randomly resampling of the set-by-set data from 

the datasets in the same year) with 1,000 iterations for the selected model.  
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Results 

The most parsimonious model (Model 8, Eq. 1) was selected as the best model based on the model 

selection by AIC (Table 2). The fittings of the best model to the data were not bad (Figs. 2 and 3). 

Interaction terms of the selected model were confirmed to be significant from type-II analysis, while 

the single factor of area was not significant (Table 3). 

 

The estimated CPUE was weighted by the relative size of two-areas (i.e., number of 1 x 1 degrees of 

grid) because the selected model included the interaction term of year and area.  

 

Overall, complicated models with interaction terms (e.g., Models 6, 7, and 8) tended to decrease the 

magnitude of annual fluctuations (Fig. 4). The factors of gear and interaction term between year and 

area had a large impact on the trends in the estimated CPUEs (Table 3).  

 

The estimated annual CPUEs showed a similar trend to those shown in the previous analysis except 

the value in 2000 (Fig. 5) due to the increase of datasets in 2000 (Table 1). The annual CPUEs sharply 

increased in the end of 1990s and reached to the peak in 2000, and then gradually decreased with large 

fluctuations until 2013 (Fig. 5). Thereafter, the annual CPUEs showed an increasing trend. The 95 % 

CIs for the best model were narrow and the coefficient of variation (CV) for the best model was small 

over the period of this analysis (the mean value of CV from 1992 to 2019 was 0.07) (Table 4 and Fig. 

5).  

 

Discussions 

This paper presented standardized annual CPUEs of blue shark in the Indian Ocean estimated from 

negative binomial model with Japanese observer data collected between 1992 and 2019. We updated 

the Japanese observer data for recent four years until 2019 and added a large volume of datasets 

throughout the whole periods. Additionally, we changed the model structure and error distribution of 

GLM from ZINB to NB. Moreover, we changed the area definition and added a factor of gear 

configuration (i.e., HBF) to the model as a catchability coefficient. Although we updated the data and 

model with major several changes, the annual CPUE estimated from Japanese observer data showed 

a similar trend to that estimated in the previous analysis (Semba et al., 2016). These results suggested 

that the estimated annual CPUE in this study is robust to the uncertainties in the model structure as 

well as quantity of the data. Current estimates are based on observer data which includes both retained 

sharks and released sharks, and thus it is considered to be appropriate to estimate the trend of 

population abundance. The advantage of using the Japanese observer data in the Indian Ocean is, 

compared to CPUEs of the other fleets, that the main operation area covered by the data collected at 
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the CCSBT area overlapping a wide range of main distribution area (temperate water) of blue shark 

and a long time period from 1992 to 2019. Additionally, in the previous IOTC stock assessment of 

blue shark in 2017 (IOTC, 2017), the CPUE estimated from the Japanese observer data was used. 

These facts suggest that the estimated Japanese observer CPUE should be utilized as one of the 

candidates of primary abundance indices in the next stock assessment of blue shark in the Indian Ocean 

scheduled in 2021.  

 

Although the ZINB was not applied to standardize the nominal CPUE of blue shark in this study, there 

was no large impact of this process on the annual trends in the estimated CPUE (Fig. 5). Minami and 

Lennert-Cody (2007) revealed that the ZINB can provide a better fit to the data than NB, and NB 

may overestimate model coefficients when fitted to data with many zero-valued observations. 

However, the zero-catch ratio used in their study was more than 50%. Probably, the 25 % zero catch 

ratio in this study may not be regarded as an excess zero-valued data. Therefore, it is not unreasonable 

to use the NB for the data with 25% zero catch ratio.  

 

The annual change in number of HBF showed a clear decadal shift of depth (Fig. A1). Specifically, 

the numbers of HBF were lower than 12 until 2009, and then the number of HBF remarkably increased 

due to the addition of observer data collected in the tropical waters. Although we attempted to include 

the interaction term of year and gear into the model to reduce the effect, the model was removed from 

the analysis due to the convergence issue.  

 

The sharp decline of fishing effort since 2006 may contribute to the recent increasing trends in the 

CPUE since 2012. Overall, the estimated CPUE indicated a stable trend from 1993 to 2019 except in 

1999 and 2000. The annual CPUE indicated a large spike in 1999 and the standardized CPUE in 1999 

sharply increased approximately 2.4 times compared to that in 1998 (Table 4). Yokoi et al. (2017) 

revealed that the estimated median population growth rate (r) of blue shark was 0.384 with a range of 

minimum and maximum values of 0.195-0.533 from global data. The estimated value suggests that 

the blue shark population may increase 1.47 times in a year without exploitation and density dependent. 

Therefore, the sharp increase of CPUE in 1999 is unrealistic in this context. In future work, we need 

to investigate the reasons for the spike and improve the standardization method.  
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Table 1. Summary of data used in the analyses for previous study (Semba et al. 2016) and this study 

(after filtering).  

 

 

  

Catch

number of

blue shark

Observed

number of

hook

Nominal

CPUE (per

1000 hooks)

Catch

number of

blue shark

Observed

number of

hook

Nominal

CPUE (per

1000 hooks)

1992 2549 1,310,404 1.945 2549 1,533,623 1.662

1993 1323 656,373 2.016 1323 735,486 1.799

1994 1981 986,045 2.009 1981 1,028,879 1.925

1995 2892 1,252,228 2.309 2892 1,312,029 2.204

1996 4222 1,007,713 4.190 4222 1,152,149 3.664

1997 2552 1,289,690 1.979 2552 1,452,998 1.756

1998 2724 731,948 3.722 6309 2,124,331 2.970

1999 3682 533,777 6.898 14132 2,110,940 6.695

2000 1655 395,313 4.187 2818 520,479 5.414

2001 3777 1,090,940 3.462 3777 1,234,660 3.059

2002 2043 623,211 3.278 2043 652,265 3.132

2003 3423 794,412 4.309 3423 799,931 4.279

2004 2922 1,221,501 2.392 2922 1,480,667 1.973

2005 4845 1,724,604 2.809 4845 1,884,161 2.571

2006 4797 2,004,561 2.393 4797 2,457,329 1.952

2007 2898 1,122,223 2.582 2898 1,205,363 2.404

2008 958 295,009 3.247 958 302,186 3.170

2009 1916 433,950 4.415 1916 449,355 4.264

2010 743 589,901 1.260 935 996,457 0.938

2011 1363 513,921 2.652 2724 1,216,732 2.239

2012 1738 537,239 3.235 2291 1,122,627 2.041

2013 1010 875,151 1.154 1010 1,001,325 1.009

2014 3174 1,707,821 1.859 3121 2,001,977 1.559

2015 3915 1,075,236 3.641 4123 1,501,702 2.746

2016 1438 1,244,666 1.155

2017 1978 1,657,007 1.194

2018 4292 1,382,296 3.105

2019 4442 1,589,815 2.794

Semba et al.(2016) This study

Year
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Table 2. Summary of model selection information for blue shark from multiple models. ΔAIC 

denotes the reduction in AIC from the best-fitting model. Model 8 (shade) was selected as the best 

model. 

 

 

Table 3. Type-II analysis of deviance table for model components produced by the negative binomial 

model (Best model). LR Chisq denotes Likelihood Ratio Chi-Square statistics, DF is degree of 

freedom, and Pr is significant probability for each factor. 

 

 

  

Model Structure of NB ΔAIC Deviance Degree of

freedom

1 log(hook) 4080 83,018 2

2 year + log(hook) 2361 81,244 29

3 year + area + log(hook) 2298 81,179 30

4 year + area + season + log(hook) 2133 81,013 31

5 year + area + season + gear + log(hook) 688 79,565 32

6 year + area + season + gear + year:area + log(hook) 111 78,935 59

7 year + area + season + gear + year:area + area:gear + log(hook) 24 78,845 60

8 year + area + season + gear + year:area + area:gear + season:gear + log(hook) 0 78,820 61

Factor LR Chisq Df Pr (>Chisq)

Year 1449 27 < 0.001

Area 0.02 1 0.885

Season 20.50 1 < 0.001

Gear 1683 1 < 0.001

Year:Area 716 27 < 0.001

Area:Gear 85 1 < 0.001

Season:Gear 26 1 < 0.001
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Table 4. Summary of outputs. 

 

 

  

Year Scaled

nominal

CPUE

Standardized

CPUE

Scaled

standardized

CPUE

Coefficient

of variations

(CV)

Lower value

(scaled

CPUE) of

95% CI

Upper value

(scaled

CPUE) of

96% CI

1992 0.632 0.929 0.520 0.077 0.448 0.601

1993 0.684 0.990 0.554 0.083 0.471 0.650

1994 0.732 1.120 0.627 0.075 0.539 0.721

1995 0.838 1.255 0.703 0.065 0.621 0.793

1996 1.393 2.238 1.253 0.059 1.113 1.402

1997 0.668 1.044 0.585 0.072 0.505 0.672

1998 1.129 1.573 0.880 0.052 0.794 0.971

1999 2.544 3.758 2.103 0.086 1.759 2.465

2000 2.058 3.999 2.238 0.124 1.752 2.807

2001 1.163 2.128 1.191 0.071 1.030 1.367

2002 1.190 2.361 1.322 0.089 1.102 1.550

2003 1.626 2.690 1.506 0.055 1.347 1.670

2004 0.750 1.334 0.747 0.069 0.651 0.849

2005 0.977 1.665 0.932 0.055 0.830 1.033

2006 0.742 1.170 0.655 0.063 0.580 0.736

2007 0.914 1.638 0.917 0.084 0.778 1.077

2008 1.205 1.516 0.849 0.080 0.728 0.986

2009 1.620 2.711 1.518 0.073 1.316 1.736

2010 0.357 0.967 0.541 0.073 0.470 0.620

2011 0.851 1.209 0.677 0.064 0.597 0.763

2012 0.776 1.504 0.842 0.056 0.751 0.936

2013 0.383 0.838 0.469 0.084 0.400 0.552

2014 0.592 1.185 0.664 0.048 0.604 0.727

2015 1.043 1.858 1.040 0.059 0.920 1.167

2016 0.439 1.924 1.077 0.063 0.948 1.209

2017 0.454 2.290 1.282 0.057 1.142 1.431

2018 1.180 2.064 1.155 0.078 0.997 1.347

2019 1.062 2.060 1.153 0.049 1.048 1.271
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Fig.1 Spatial distribution of logarithmic nominal CPUE (catch number per 1,000 hooks) of blue shark 

from the Japanese observer data and experimental fishing program recorded in Japanese tuna longline 

fishery operated in the Indian Ocean from 1992 to 2019. The red vertical line denotes the delineation 

of the area separation used in the analysis. 

 

 

Fig. 2 Diagnostic plots of goodness-of-fit for the negative binomial model (best model). 
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Fig. 3 Residual plots of the negative binomial model (best model) for each explanatory variable. 

 

 

Fig.4 Comparisons of standardized CPUEs (scaled by a mean value) of blue shark among the 

different model structures. 
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Fig.5 Standardized CPUEs (best model: scaled) of blue shark and its 95% confidence intervals (ranges 

of light blue) estimated from 1,000 bootstrapping.  

 

Appendix 

 

Fig. A1 Annual change in number of hooks between floats. Horizontal dotted line denotes the 

distinction of shallow and deep set. 


