

REVIEW OF THE STATISTICAL DATA AVAILABLE FOR BYCATCH SPECIES

PREPARED BY: IOTC SECRETARIAT¹, AUGUST 2020

Contents

Purpose	3
Background	3
Overview of data reporting requirements	3
Sharks	3
Seabirds, marine turtles, marine mammals	3
Status of reporting	6
Bycatch at the ecosystem level	7
Summary of fisheries data available for sharks	8
Data available on the total nominal catches of sharks in the Indian Ocean	8
Main reported gear types associated with shark bycatch for IOTC fisheries	9
Main species of sharks caught in IOTC fisheries	10
Catch rates of IOTC fleets	14
Spatial information on sharks' catches	16
Length frequency data	22
ROS data on sharks	24
Summary of fisheries data available for seabirds	33
Main species and fisheries concerned	33
Longline vessels fishing in southern waters	34
Status of data on seabirds' bycatch	35
Summary of fisheries data available for marine turtles	38
Main species and fisheries concerned	38
Status of data on marine turtles' bycatch	38
Summary of fisheries data available for marine mammals	42
Status of data on marine mammals' bycatch	42
Main issues identified concerning data on bycatch (non-IOTC) species available to the IOTC	45
General issues	45
Sharks	45
Unreported catches	45
Errors in reported catches	45
Poor resolution of data	45
Catch-and-Effort data from gillnet fisheries	45

¹ <u>IOTC-Secretariat@fao.org</u>

IOTC-2020-WPEB16-07_Rev3

Catch-and-Effort data from longline fisheries	45
Catch-and-Effort data from coastal fisheries	46
Discard levels from surface and longline fisheries	46
Size frequency data	46
Biological data	46
Other bycatch species groups	46
Incidental catches of seabirds	46
Incidental catches of marine turtles	46
Appendix I - Overview of minimum data reporting requirements	48
All bycatch	48
Sharks	48
Seabirds	49
Marine turtles	49
Marine mammals	49
Mobulids	50
Appendix II - Shark species that are known to occur in fisheries directed at IOTC species or sharks	52
Appendix III - Datasets available for bycatch by fleet	55
Appendix IV - Availability of catch data for sharks by gear	56
Appendix V - Estimation of catches at size for IOTC shark species	57

Purpose

To provide participants at the 16th Session of the IOTC Working Party on Ecosystems and Bycatch (WPEB16) with a review of the status of the information available on non-targeted, associated and dependent species of IOTC fisheries, termed 'Bycatch'. Bycatch has been defined by the IOTC Scientific Committee as:

"All species, other than the 16 species listed in Annex B of the IOTC Agreement, caught or interacted with by fisheries for tuna and tuna-like species in the IOTC area of competence. A bycatch species includes those non-IOTC species which are (a) retained (byproduct), (b) incidentally taken in a fishery and returned to the sea (discarded); or (c) incidentally affected by interacting with fishing equipment in the fishery, but not taken."

This paper covers data on sharks², seabirds, marine turtles, marine mammals and other bycatch in the IOTC Secretariat databases as of 16 July 2020.

This document summarises the current information received for species or species groups other than the 16 IOTC species listed in the IOTC Agreement, in accordance with relevant Resolutions adopted by the Commission. The document describes the progress achieved in relation to the collection and verification of data, identifies problem areas and proposes actions that could be undertaken to improve them.

Background

Overview of data reporting requirements

A summary of the type of datasets that need to be provided for sharks and other bycatch species including the time periods concerned, fleets and species and the level of requirement for reporting (mandatory or recommended) are provided in Table 1 and Table 2.

Sharks

The same standards as those existing for IOTC species apply to the most commonly caught species of sharks and rays, as defined by the Commission in 2015, including:

- **Nominal catches** which are highly aggregated statistics for each species estimated per fleet, gear and year for a large area. If these data are not reported the Secretariat attempts to estimate the total catch although this is not possible in many cases. A range of sources is used for this purpose (including: partial catch and effort data; data in the FAO FishStat database; catches estimated by the IOTC from data collected through port sampling; data published through web pages or other means).
- Catch-and-effort data which refer to the fine-scale data usually from logbooks, and reported per fleet, year, gear, type of school, month, grid and species. Information on the use of fish aggregating devices (FADs) and supply vessels is also collected.
- **Length frequency data** which refer to individual body lengths of IOTC species and sharks per fleet, year, gear, type of school, month and 5 degrees square areas.
- **Observer data** which refer to fine-scale data as collected by scientific observers onboard vessels authorised to operate in the IOTC area, and reported at the end of each observer trip.

Seabirds, marine turtles, marine mammals

For these and all other species: the following standards apply:

- **Total bycatch** which are highly aggregated statistics for all species combined or, where available, by species, estimated per fleet, gear and year for the whole IOTC area.
- Catch-and-effort and observer data: as for sharks.

A summary of the Resolutions relevant to each taxonomic group are provided in detail in Appendix I.

² Following standard international practice, the term shark is accepted to include both sharks and rays.

Table 1. Timeline of reporting requirements indicating the years for which each type of dataset should be reported³

Timeline of reporting requirements

	<	2006	2007	2008	2009	2010	2011	2012	2013	2014	>	Deadlines
<	Historic data on sharks according to IOTC reporting	requirements										Jun (Dec) 30th 2006
Mandatory		Nominal cat	ch data for	main shark s _l	pecies							Jun (Dec) 30th of year following that for which data are due
Voluntary		Nominal cat	ch data for	other shark s	pecies							Jun (Dec) 30th of year following that for which data are due
Mandatory				Catch-and	d-effort data	for main shar	k species					Jun (Dec) 30th of year following that for which data are due
Voluntary	all CPCs			Catch-and	d-effort data	for other sha	rk species					Jun (Dec) 30th of year following that for which data are due
Mandatory				Size frequ	uency data fo	r main shark	species					Jun (Dec) 30th of year following that for which data are due
Voluntary				Size frequ	uency data fo	or other shark	species					Jun (Dec) 30th of year following that for which data are due
Mandatory	all CPCs					Total inci	dental catche	s of marine tu	tles			Jun (Dec) 30th of year following that for which data are due
Mandatory	all CPCs with vessels >=24m in the IOTC Record of	Authorised Ve	essels			Scientific	observer dat	a from vesse	s >=24m			No later than 150 days after the end of each observer trip
Mandatory	all CPCs with LL fleets in the IOTC area						Total incid	dental catches	of seabirds	from LL		Jun (Dec) 30th of year following that for which data are due
Mandatory	all CPCs with PS, LL and GN fleets in the IOTC area								Total incid	dental catche	s of marine mammals	as above; first report due 2014
Mandatory	all CPCs with vessels <24m in the IOTC Record of A	uthorised Ve	ssels						Scientific	observer dat	a from vessels <24r	No later than 150 days after the end of each observer trip

³ "Main" shark species mentioned here are those which the Commission identified as mandatory for reporting in Resolutions 08/04, 13/03 and 15/01

Table 2. List of bycatch species of concern to the IOTC and reporting requirements by type of fishery for Purse seine (PS), Longline (LL), Gillnet (GN), Baitboat (BB), Hand line (HL) and Trolling (TR).

Common nome	Colombilio mana	Species	Re	eporting I	requirer				
Common name	Scientific name	code	PS	ш	GN	ВВ	HL	TR	
Blue shark	Prionace glauca	BSH		08	13				
Mako sharks	Isurus spp.	MAK		08	13				
Porbeagle	Lamna nasus	POR		08	13				
Hammerhead sharks	Sphyrnidae	SPN		13	13				
Whale shark	Rhincodon typus	RHN	13		13				
Thresher sharks	Alopias spp.	THR	13	13	13				
Oceanic whitetip shark	Carcharhinus longimanus	ocs	13	13	13				
Crocodile shark	Pseudocarcharias kamoharai	PSK		е	е				
Silky shark	Carcharhinus falciformis	FAL	15	15					
Tiger shark	Galeocerdo cuvier	TIG		е	е				
Great white Shark	Carcharodon carcharias	WSH		е					
Pelagic stingray	Pteroplatytrygon violacea	PSL		е	е				
Mantas and devil rays	Manta spp. (Mobulidae)	MAN	19	19	19				
Other sharks nei		SKH	е	08	13	13	13	13	
Other rays nei		SRX	е	е	е	13	13	13	
Other marine fish nei		MZZ	е	08	13	13	13	13	
Marine turtles nei		TTX	13	13	13	13	13	13	
Seabirds nei				13	13				
Marine mammals nei			13	13	13				

Reporting requirements:

08: As from 2008 catch shall be recorded in logbooks and reported to the IOTC (08/04)

13: As from 2013 catch shall be recorded in logbooks and reported to the IOTC (13/03)

15: As from 2015 catch shall be recorded in logbooks and reported to the IOTC (15/01)

19: As from 2019 catch shall be recorded in logbooks and reported to the IOTC (19/03)

e: As from 2013 recording and reporting of catches to the IOTC is encouraged (13/03)

Status of reporting

The most common bycatch species with mandatory reporting requirements (indicated by the date they came into force) and other species for which reporting is encouraged (shown as 'e') are listed in **Table 2**. **Table 2** summarises those bycatch species identified by the Commission, through the adoption of IOTC Resolution 15/01 *On the recording of catch and effort data by fishing vessels in the IOTC area of competence* by type of fishery.

A list of shark species known to occur in Indian Ocean fisheries directed at IOTC species or pelagic sharks is provided in **Appendix II**. Species of seabirds and marine turtles are presented in **Table 5** and **Table 7**, respectively. **Appendix III** provides a summary of the datasets that have been provided by CPCs for industrial fleets according to the requirements in **Table 1**. This table includes all parties having reported some of the specified data, regardless of how complete the datasets provided might be.

The data sets include:

- Historical data on sharks reported according to IOTC requirements
- Nominal catch data for 'main' shark species
- Nominal catch data for all other shark species (including those reported in aggregate)
- Catch and effort data for 'main' shark species
- Catch and effort data for all other shark species (including those reported in aggregate)
- Size frequency data for 'main' shark species
- Size frequency data for all other shark species
- Estimates of total incidental catches of seabirds from longline and gillnet fisheries
- Estimates of total incidental catches of marine turtles
- Estimates of total incidental catches of marine mammals

The availability of shark nominal catch data over the period 1950–2018 for those shark species identified by the Commission (**Table 2**), by species, gear type, and year, is presented in **Appendix IV**. The collection and reporting of catches of sharks caught in association with species managed by the IOTC (tuna and tuna-like species) has been very inconsistent over time and so the information on the bycatch of sharks gathered in the IOTC database is thought to be highly incomplete.

Bycatch at the ecosystem level

Reported total nominal catches of all species caught by Indian Ocean fisheries have been increasing over time, with a particularly dramatic increase in the amount of tuna catches reported since the '80s (**Fig. 1**). Reported catches of sharks have ranged from approximately 20% in the '60s and '70s to approximately 3% of total catch in recent years (**Fig. 2**).

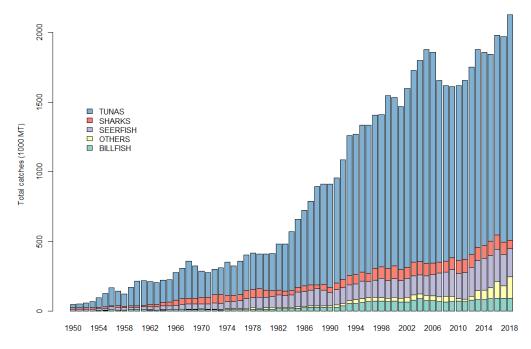


Fig. 1. Indian Ocean reported nominal catch trends of major species groups

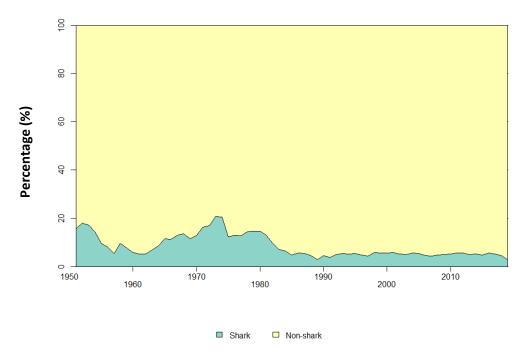


Fig. 2. Percentage of reported shark catches to total Indian Ocean catch

Summary of fisheries data available for sharks

Data available on the total nominal catches of sharks in the Indian Ocean

The nominal catch data for all shark species by fleet are presented in **Fig. 3**. Very few fleets reported catches of sharks in the '50s, but the number of fleets reporting has increased over time. Total reported shark catches have also increased over time with a particularly dramatic increase in reported catches in the '90s, reaching a peak of approximately 90,000 MT in 1999. Since then, nominal catches have fluctuated and are currently at around 60,000 MT (in 2018). Shark catches reduced significantly when compared with 2017 mostly due to a complete disappearance of reported catches of aggregated shark species by India (not replaced by detailed catches by species) as well as marked decreases in reported shark catches from other CPCs (Mozambique and Indonesia) which in some cases are thought to represent reporting issues rather than real reduction in catch levels.

Furthermore, the revisions to Pakistani gillnet catches from 1987 onwards endorsed by the SC in December 2019, introduce an average yearly decrease of around 17,000 MT in total catches during the concerned period when compared to previously available data.

The nominal catch data should be considered with caution given the historically low reporting rates. In addition to the low level of reporting, catches that have been reported are thought to represent only those species that are retained onboard without taking into account discards. In many cases the reported catches refer to dressed weights while no information is provided on the type of processing undertaken, creating more uncertainty in the estimates of catches in live weight equivalents. Nevertheless, reporting rates in recent years have improved substantially (**Appendix IV**) following the adoption of new measures by the Commission on sharks and other bycatch, which call for IOTC CPCs to collect and report more detailed statistics on bycatch species to the IOTC Secretariat.

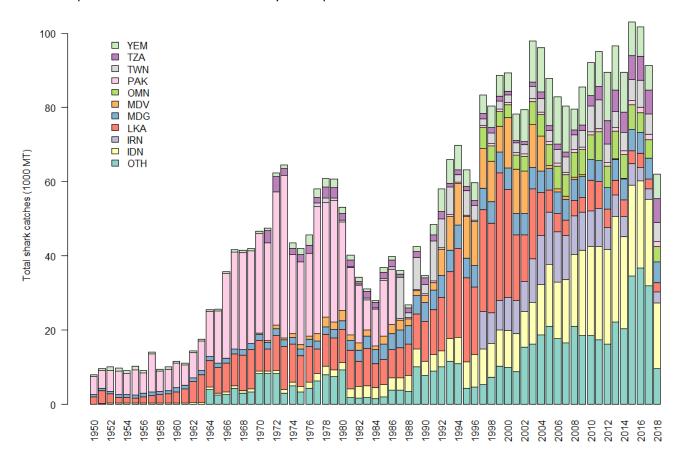


Fig. 3 Total reported nominal catches of sharks by CPC / fishing entity from 1950–2018 for Yemen (YEM), Tanzania (TZA), Taiwan, China (TWN), Pakistan (PAK), Oman (OMN), Maldives (MDV), Madagascar (MDG), Sri Lanka (LKA), I.R.Iran (IRN), Indonesia (IDN) and all others combined (OTH)

Main reported gear types associated with shark bycatch for IOTC fisheries

Fig. 4 shows the distribution of catches across gear type: gillnets are historically associated with the highest nominal catches of sharks and are currently responsible for over 40% of reported catches. This is followed by the longline fleets which contributed substantially to shark catches from the '90s, and handline and troll line fisheries which have increased in more recent years. A revision of gillnet catches by Pakistan from 1987-2018 has impacted the average shark catches of the CPC to the point where these are close to negligible whereas they previously reported the second highest average yearly catches of all CPCs: other CPCs including Oman, Indonesia and Mozambique have also reported marked decreases in generalised shark catches, with these revised data still to be further verified with the CPCs to ensure their validity. Of the gillnet fisheries, the majority comprises standard, unclassified gillnets, followed by gillnets, handlines and troll lines and gillnet/longline combinations. **Fig. 5** shows the main gear types used by fleets since 2000.

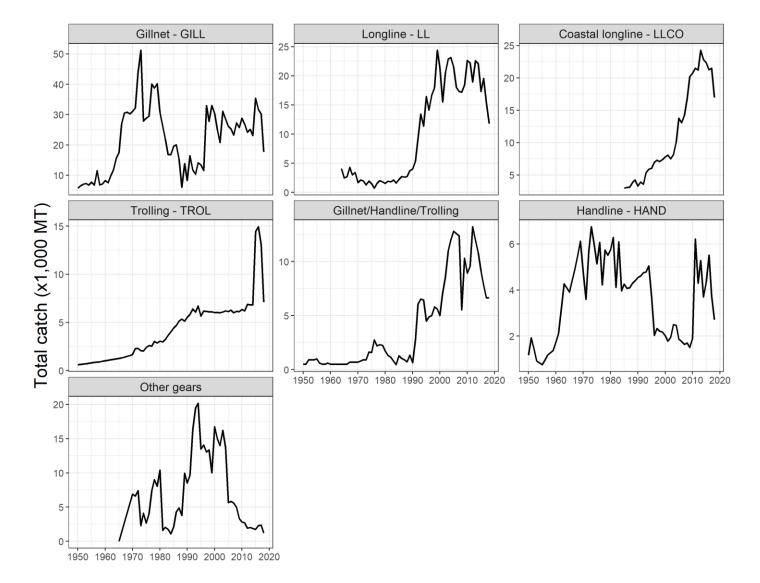


Fig. 4 Nominal catches of sharks reported by gear type (1950–2018) for bait boats / pole and line (BB), gillnets (GILL), handlines (HAND), lines (LINE), longlines (LL), purse seinse (PS), small purse seines / ring nets (PSS), troll lines (TROLL) and all other gear types combined (OTHER)

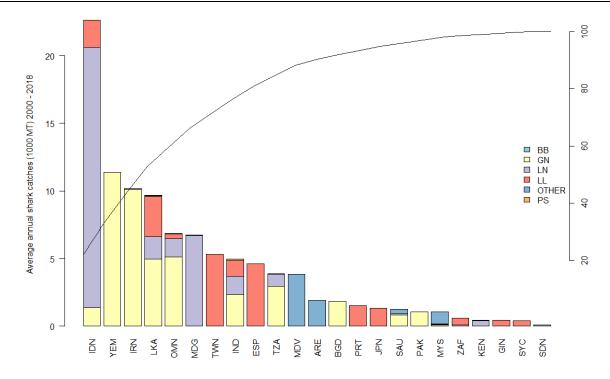


Fig. 5 Average annual level of sharks caught and retained by CPC and gear type groups in recent years (2000-2018). The black line represents the cumulative percentage of total catch in the same period

Main species of sharks caught in IOTC fisheries

A list of all species of sharks that are known to occur in Indian Ocean fisheries directed at IOTC species (IOTC fisheries) or pelagic sharks is provided in **Appendix II**. In addition to an increase in reporting of shark catches over time, the resolution of the data provided has been improving with an increased proportion of reported shark catches identified to species/genus (**Fig. 6**).

In 2018 there was a large reduction in the percentage of shark catch data reported as aggregated compared with the previous year: this is predominantly accounted for by the reduction in shark catches reported by India which were previously reported largely as aggregated rather than by species. Oman reported stable levels of shark catches but improved their reporting by species which also contributes to the decrease in the proportion of aggregated shark catch data. Of the shark catches reported by species, blue shark forms the greatest proportion, comprising around 60% of total catches, with silky, milk, thresher, hammerhead, mako, oceanic whitetip sharks and manta rays forming a smaller percentage (Fig. 7).

The increase in reporting by species is apparent in the species-specific catch series (**Fig. 8**) with steadily increasing trends in reporting since the '70s seen for blue, thresher, hammerhead and make sharks, all levelling off in recent years. The oceanic whitetip shark nominal catch series is dominated by the Sri Lankan longline-gillnet fisheries for which catches peaked just prior to 2000. The reported catches of silky shark show a similar trend with a peak just prior to 2000 followed by a steady decline, again based almost exclusively on data from the Sri Lankan longline-gillnet combination fisheries. **Fig. 9** highlights how the catch series of each species is dominated by very few fleets which are reporting by species and may therefore not be fully reflective of the ocean-wide trend.

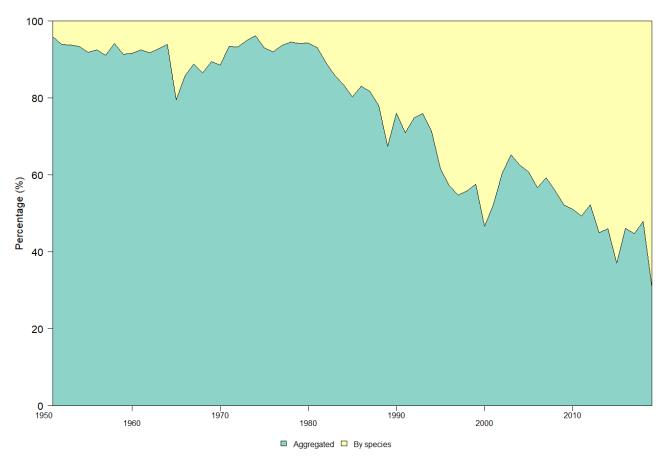


Fig. 6. Yearly percentage of shark catches reported as aggregated or by species

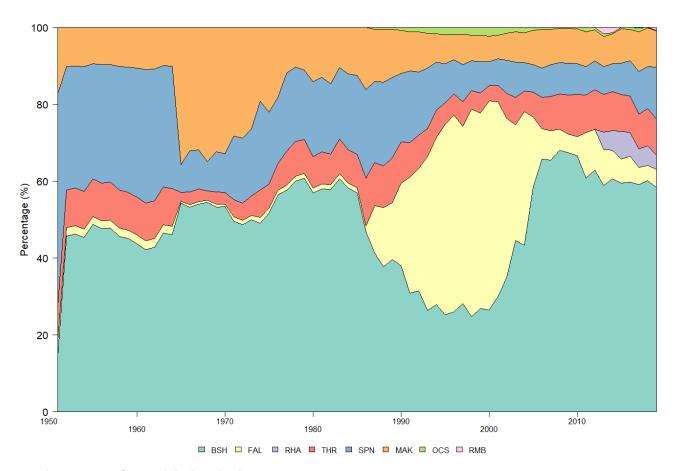


Fig. 7. Yearly percentage of nominal shark catches by species

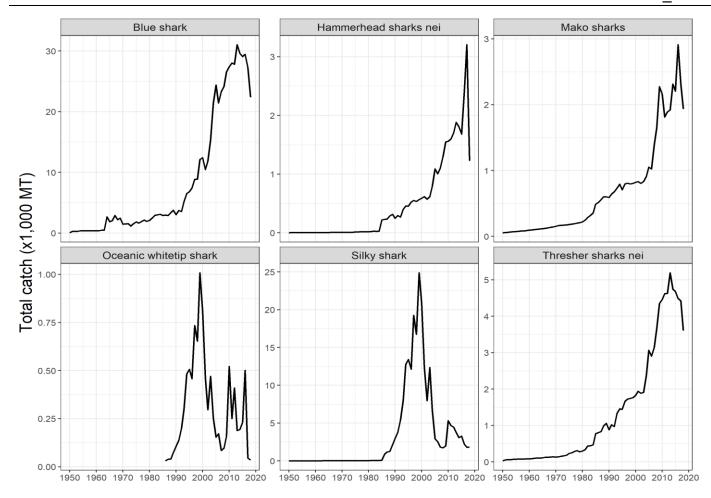


Fig. 8. Total nominal catches by species for all fleets (1950-2018)

Fig. 9 . CPCs' contribution (%) by major shark species for blue (BSH), silky (FAL), thresher (THR), hammerhead (SPN), make (MAK) and oceanic-whitetip (OCS) sharks.

Trends in species catches by gear types are summarised in **Table 3**. Longline fleets reported predominantly blue shark catches, followed by make and silky sharks, while catches of handline gears are also dominated by blue shark, followed by thresher sharks. Purse seine catches are dominated by silky shark while troll lines reported relatively high catches of hammerhead sharks. Reporting by species is very uncommon for gillnet fleets, where the majority of shark catches are reported as aggregates.

Nevertheless, the level of species-specific reporting is improving, particularly by the gillnet fleet of I.R. Iran (**Fig. 10**). This figure highlights the relatively high catches of the Indonesia line fisheries (including troll lines, hook and line, hand line and coastal longlines⁴) and the gillnet fisheries of Yemen and I.R. Iran.

Table 3. Proportion of species-specific shark catches by gear type from 2005–2018 for baitboats / pole-and-line (BB), gillnets (GILL), handlines (HAND), lines (LINE), longlines (LL), purse seines (PS), small purse-seines and ringnets (PSS) and troll lines (TROL)

	ВВ	GILL	HAND	LINE	ш	PS	PSS	TROL
ОТН	100%	85%	14%	97%	20%	26%	87%	69%
BSH	0%	4%	58%	0%	63%	0%	2%	0%
FAL	0%	4%	0%	2%	5%	74%	7%	1%
RHA	0%	3%	0%	0%	0%	0%	0%	0%
THR	0%	0%	17%	0%	0%	0%	0%	3%
SPN	0%	1%	7%	1%	0%	0%	3%	20%
MAK	0%	1%	3%	0%	11%	0%	0%	6%

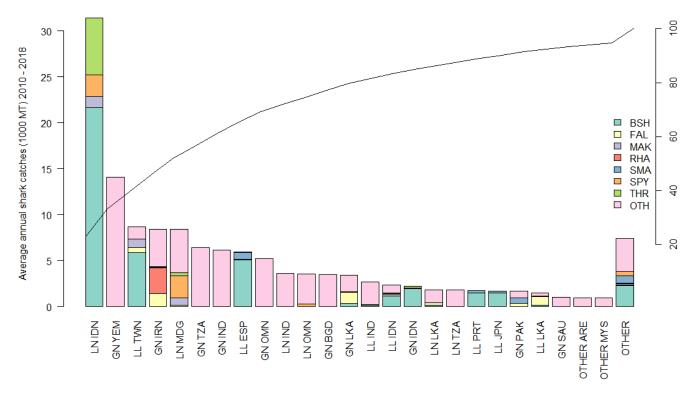


Fig. 10. Annual average level of sharks caught and retained reported by CPC and species for 2010–2018 and CPC's cumulative contribution (%) of total shark catch in the same period

⁴ These are longlines which are operated by smaller vessels (<15m) and generally deployed within the EEZ.

Catch rates of IOTC fleets

While industrial longliners and drifting gillnetters harvest important amounts of pelagic sharks, industrial purse seiners, pole-and-liners and most coastal fisheries are unlikely to harvest important quantities of pelagic sharks.

- **Pole and line fisheries:** shark catches reported for the pole and line fisheries of Maldives and India are very low: the extent of shark catches taken by these fisheries, if any, is not thought to be significant.
- **Gillnet fisheries:** the species of sharks caught are thought to vary significantly depending on the area of operation of the gillnets:
 - Gillnets operated in areas with low concentrations of pelagic sharks: the gillnet fisheries of most coastal
 countries operate these gears in coastal waters, where the abundance of pelagic sharks is thought to be
 low.
 - Gillnets operated in areas with high concentrations of pelagic sharks: Gillnets operated in Sri Lanka, Indonesia and Yemen (waters around Socotra), in spite of being set in coastal areas, are likely to catch significant amounts of pelagic sharks.
 - **Gillnets operated on the high seas:** vessels from Taiwan, China were using drifting gillnets (driftnets) from 1982 to 1992, when the use of this gear was banned worldwide. The catches of pelagic sharks were very high during this period. Driftnet vessels from I.R. Iran and Pakistan have been fishing on the high seas since, but with lower catch rates. This was initially in waters of the Arabian Sea but covering a larger area in recent years as they expanded their range to include the tropical waters of the western Indian Ocean and Mozambique Channel. The quantity of sharks caught by these fleets is thought to be relatively high, representing between 25–50% of the total combined catches of sharks and other species.
- Gillnet/longline fishery of Sri Lanka: between 1,200 and 3,200 vessels (12 m average length) operating gillnets and longlines in combination have been harvesting important levels of pelagic sharks since the mid-'80s. The longlines are believed to be responsible for most of the catches of sharks. Catches of sharks comprised ~45% of the total combined catch for all species in 1995 and declined to <2% in the late '00s. The fleet has been shifting towards predominantly longline gear in recent years but most catches are still reported as aggregates of the combination gear.
- **Fisheries using handlines:** the majority of fisheries using hand lines and trolling in the Indian Ocean operate these gears in coastal waters, so although the total proportion of sharks caught has been high historically, the amount of pelagic sharks caught are thought to be low. The proportion of other species of sharks might change depending on the area fished and time of the day.
- Deep-freezing tuna longliners and fresh-tuna longliners: catches of sharks are thought to represent between 20–40% of the total combined catch for all species. However, the catches of sharks recorded in the IOTC database only make up a small proportion of the total catches of all species by longline fleets. These catch series' for sharks are, therefore, thought to be very incomplete. Nevertheless, levels of reporting have improved in recent years, following the implementation of catch monitoring schemes in different ports of landing of fresh-tuna longliners⁵, and the recording of catches of main species of sharks in logbooks and observer programmes. The catches estimated, however, are unlikely to represent the total catches of sharks for these fisheries due to the paucity of information on levels of discards of sharks, which are thought high in some areas and for some species.
- Freezing (fresh) swordfish longliners: catches of sharks are thought to represent between 40–60% of the total combined catch for all species. The amount of sharks caught by longliners targeting swordfish in the IOTC area of competence has been increasing since the mid '90s. The catches of sharks recorded for these fleets are thought to be more realistic than those recorded for other longline fisheries. The high catches are thought to be due to:
 - **Gear configuration and time fished**: vessels targeting swordfish use surface longlines and set the lines at dusk or during the night. Many pelagic sharks are thought to be abundant at these depths and most active during dusk or night hours.

⁵ The IOTC-OFCF (Overseas Fisheries Cooperation Foundation of Japan) Project implemented programmes in cooperation with local institutions in Thailand and Indonesia.

- Area fished: fleets targeting swordfish have been deploying most of the fishing effort in the Southwest Indian Ocean, in the vicinity of South Africa, southern Madagascar, Reunion and Mauritius. High amounts of sharks are thought to occur in these areas.
- Changes in the relative amounts of swordfish and sharks in the catches: Some vessels are known to alternate between targeting swordfish and sharks (particularly blue sharks) depending on the season, or when catch rates of swordfish are poor.
- **Industrial tuna purse seiners:** catches of sharks are thought to represent less than 0.5% of the total combined catch for all species⁶. Limited nominal catch data have been reported for the purse seine fleets.
- **Trolling fisheries:** the majority of fisheries trolling in the Indian Ocean operate in coastal waters so the amounts of pelagic sharks caught are thought to be low. The proportion of the total catch of tuna and tuna-like species that other species of shark make up might change depending on the area fished and the time of day.

Fig. 11 shows the catch rates of sharks as a proportion of total catches as reported in the IOTC database. This suggests that some of the reported catch rates for the longline fleet are lower than expected and highlights the patchiness of the data leading to highly variable catch rates over time.

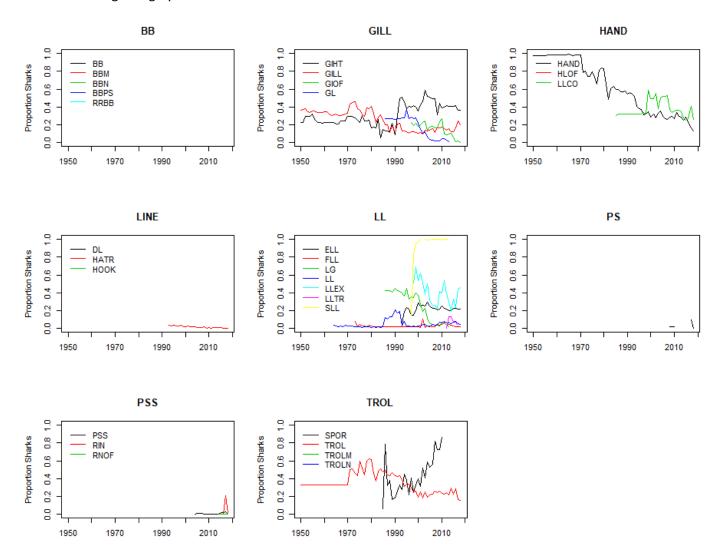
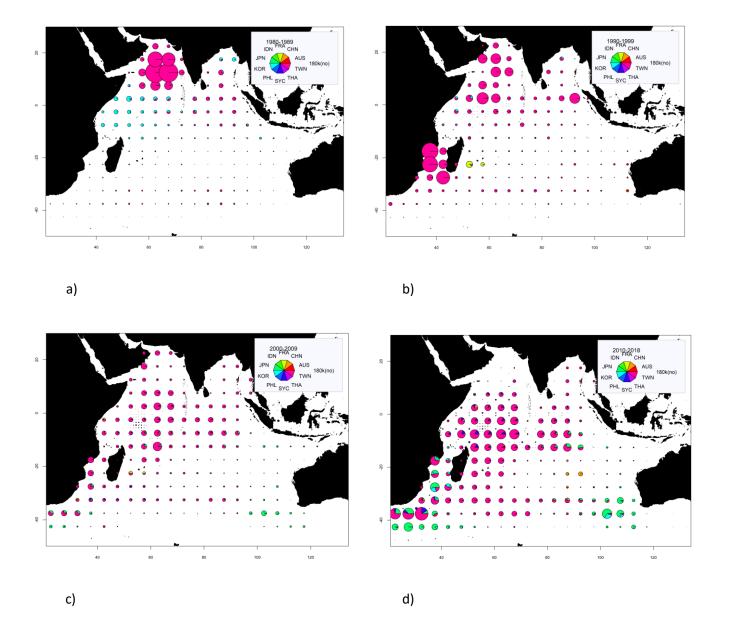


Fig. 11. Proportion of reported shark catch as a fraction of total reported catch by gear type over time


⁶ Ruiz, J. et al. (2018) 'Bycatch of the european and associated flag purse-seine tuna fishery in the Indian ocean for the period 2008-2017', IOTC-2018-WPEB14-15, p. 15)

Spatial information on sharks' catches

Fig. 12 presents the spatial catches of sharks by fleet as these were reported over time. The main reporting fleets are Taiwan, China, Japan, Rep. of Korea, Seychelles, China, EU, France and Australia. More limited time-area catches of sharks are also available from some other fleets (**Appendix III**).

Fig. 13 shows the distribution of catches by gear over time. In the '80s, the Taiwanese gillnet fleet was the most important fleet for shark catches, operating predominantly in the northwestern Indian Ocean. In the '80s and '90s the deep-freezing longline catches increased, particularly in the southwestern region, while in more recent years the fresh longline component has also become important in central areas.

Fig. 14 shows shark catches that have been reported by species. This highlights the increase in reporting by species over time. Records are dominated by blue shark catches, followed by silky sharks in the northwest and makos in the southwest Indian Ocean. Time-area catches of sharks by species are only available from 2009 for Japan, while these fleets have been operating in the Indian Ocean since the '50s. Reported catches for Japan are also considered to be incomplete, as they only include species which have been listed as mandatory for reporting. Spatially disaggregated catches of sharks are available for Taiwan, China since 1977 aggregated by species, however, no species-specific information has been reported prior to 2007. Catches by the Seychelles fleets are available from 2001 and from the Republic of Korea from 2012.

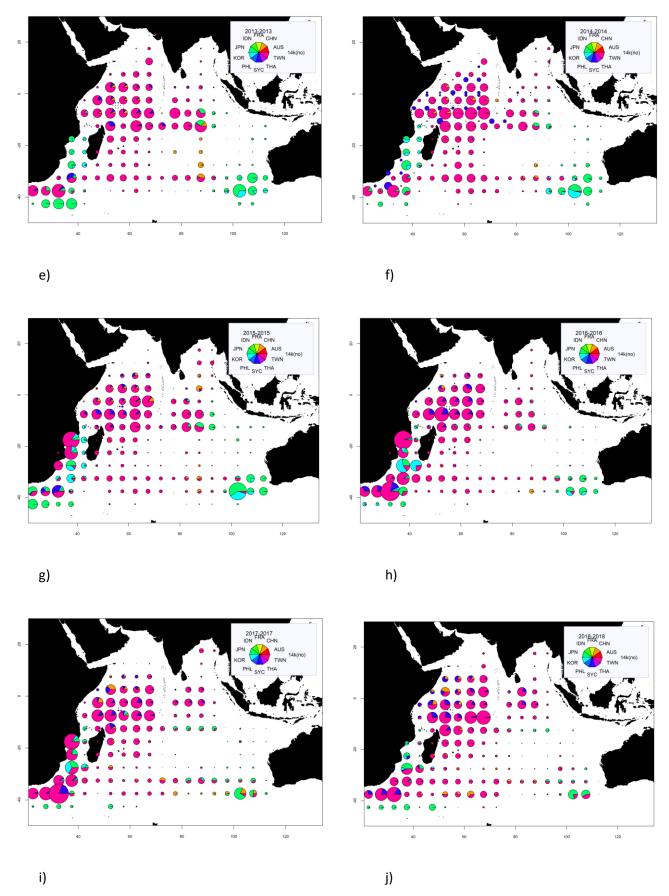
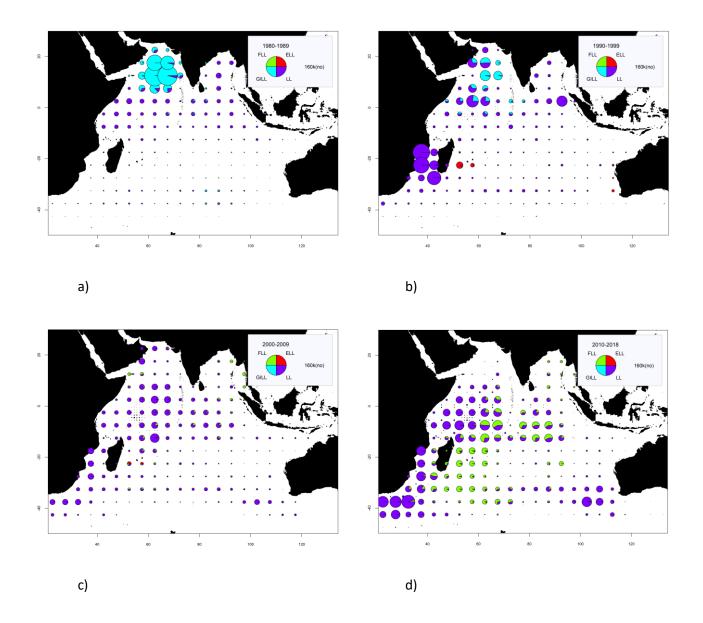



Fig. 12. Time-area catches (total numbers) of sharks caught by fleet by decade (a-d) and year 2013-2018 (e-j) for all reporting gears

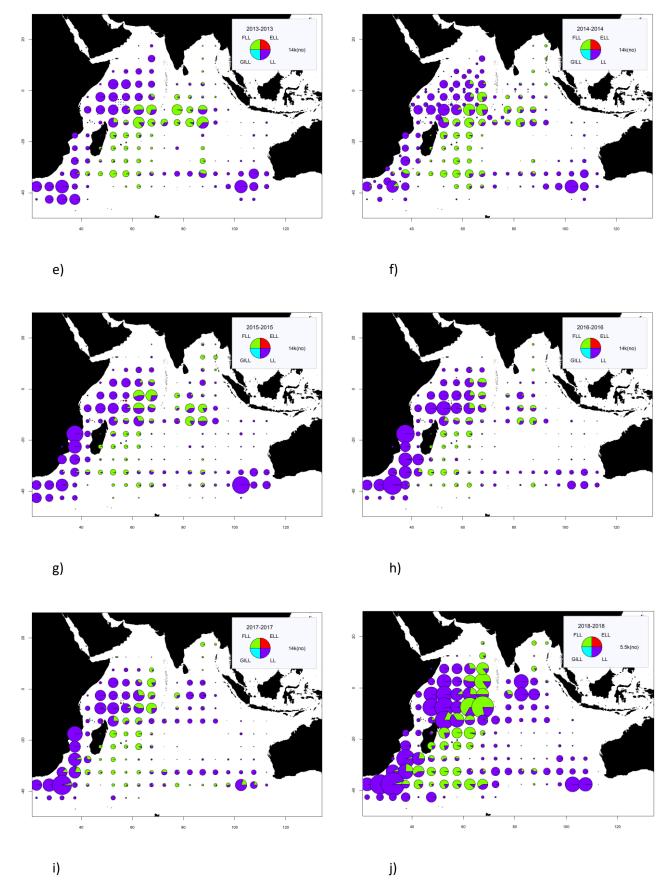
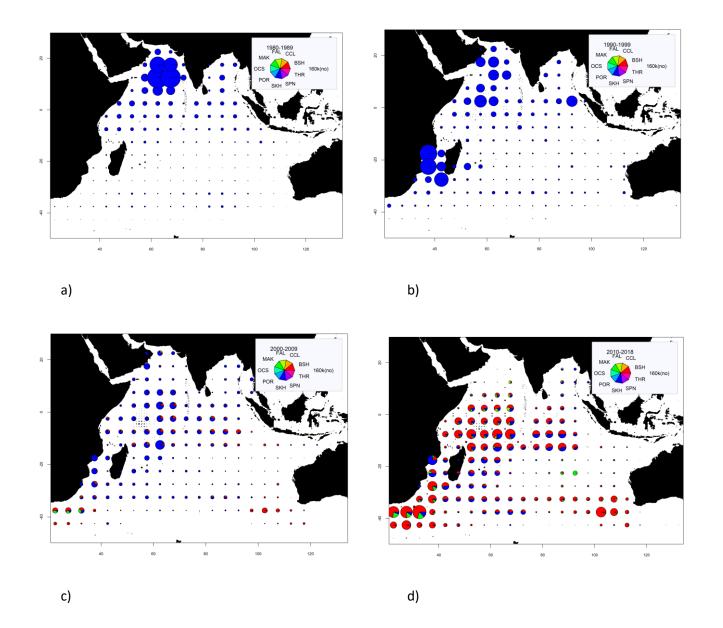



Fig. 13. Time-area catches (total numbers) of sharks by gear type by decade (a-d) and year 2013-2018 (e-j) for fresh longlines (FLL), longlines targeting swordfish (ELL), deep-freezing longlines (LL) and drifting gillnets (GILL)

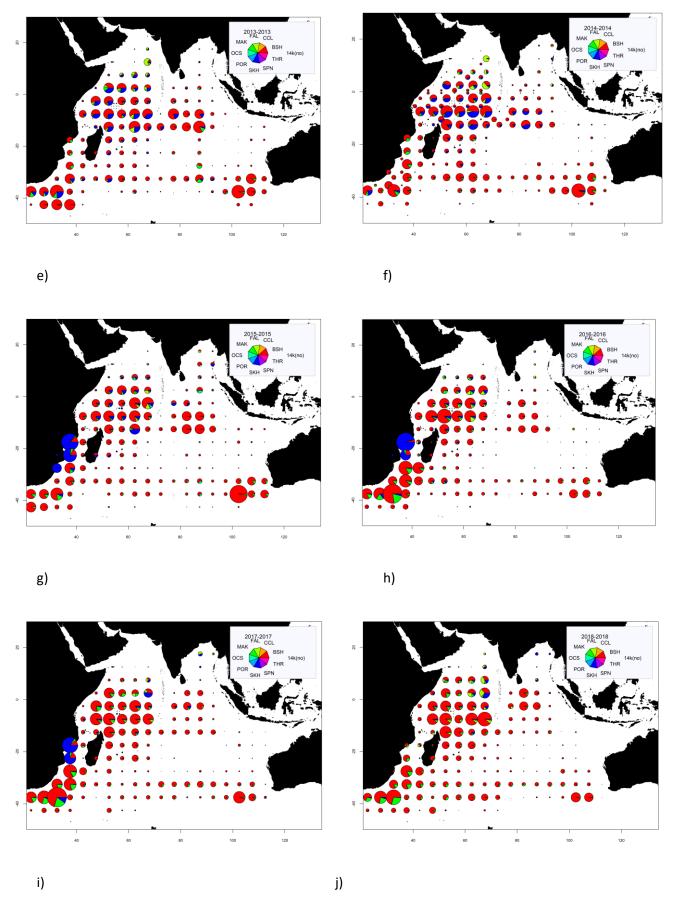


Fig. 14. Time-area catches (total numbers) of sharks by species by decade (a-d) and year 2013-2018 (e-j).

Length frequency data

Due to the different types of length measurement reported, a number of conversions were performed to standardise the length-frequency information. Given the increasing amount of data reported and the need for standardisation, a set of species-specific conversion factors and proxies that have been agreed by the Working Party on Ecosystems and Bycatch could help improve the estimates. Conversion factors currently used are provided in **Appendix IV**. Size frequency data are reported using different length classes ranging from 1cm to 10cm intervals: in addition to this, there appears to be rounding taking place when the smaller size intervals are used, creating abnormal peaks in the distributions. The graphs shown below have been aggregated to 5cm intervals in order to smooth this effect.

Fig. 15 shows the aggregated fork length frequency distribution for the fleets reporting size information on shortfin make sharks for all areas between 2005 and 2018. The data reported for vessels flagged for: China, Taiwan, China EU, Spain, EU, Great Britain, EU, Portugal, EU, Reunion, India, Japan, Korea, Sri Lanka, Mozambique, Mauritius and South Africa include data reported for fleets with observers onboard. The results highlight the difference in size of the individuals caught by different fleets with China on average catching larger shortfin make sharks than the other fleets.

Fig. 16 shows the aggregated length frequency distributions of shortfin make sharks from the purse seine fleets of Seychelles and EU, Spain and the longline fleets of Japan and EU, France as collected by scientific observers and reported as part of the ROS data submissions: the limited data available still permits to highlight the difference in size of individuals caught by the two longline fleets.

Fig. 17 shows the length distributions for the other shark species with reported size frequency data aggregated across all fleets and all years given the more limited amount of data available for these species.

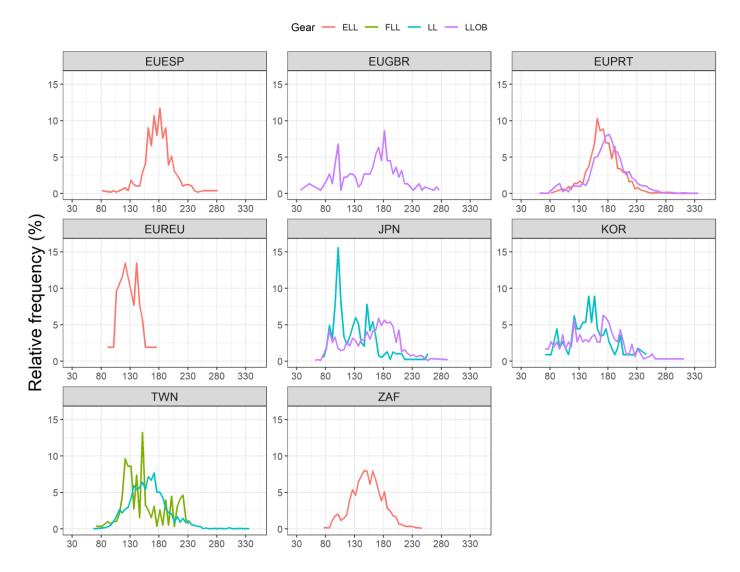
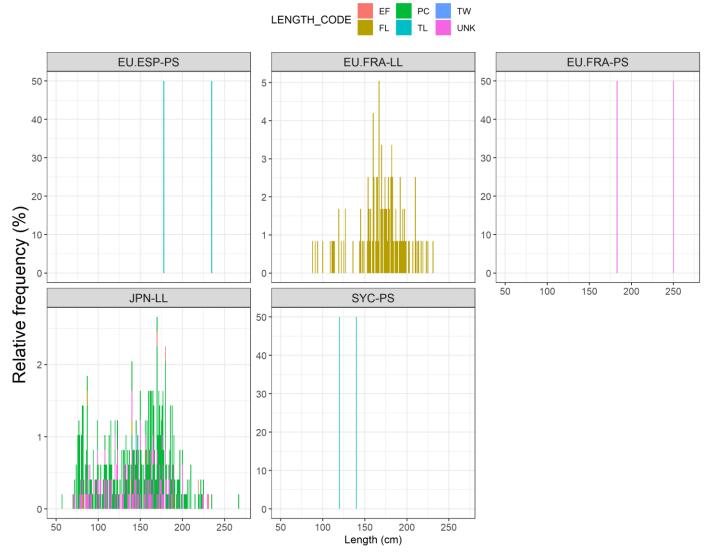



Fig. 15. Fork length frequency distributions (%) of shortfin make shark derived from the samples reported for the fleets of China (CHN LL, LLOB), EU, Spain (EUESP ELL), EU, Portugal (EUPRT ELL, LLOB), EU, Great Britain (EUGBR LL), EU, France (Reunion) (EUREU ELL, ELLOB, HAND), Japan (JPN LL, LLOB), Korea (KOR LL, LLOB), Mozambique (MOZ ELL, HAND), Mauritius (MUS ELL), Taiwan, China (TWN-CHN FLL, LL)) and South Africa (ZAF ELL) between 2005 and 2018 in 5 cm length classes. Note: there were very few data provided by Sri Lanka and India so these were not included

Fig. 16. Length frequency distributions (%) of shortfin make sharks derived from the samples reported by onboard scientific observers (ROS data) for the purse seine fleets of EU,Spain (EU.ESP) and Seychelles (SYC) and the longline fleets of Japan (JPN) and EU,France (EU.FRA) between 2005 and 2019 in 5 cm length classes.

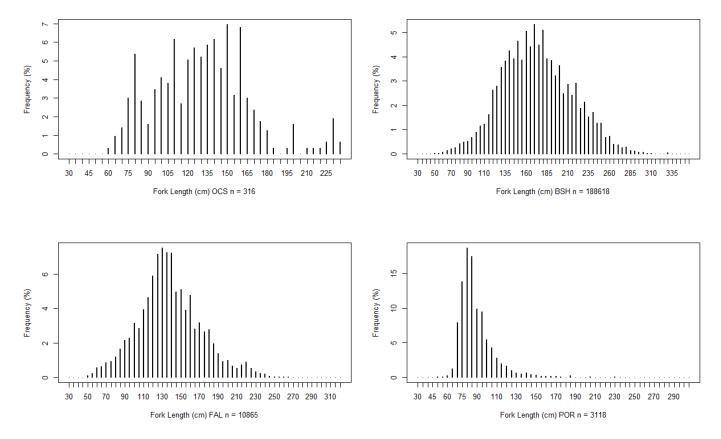


Fig. 17. Fork length frequency distributions (%) for oceanic whitetip shark (OCS), blue shark (BSH), shortfin make shark (SMA) and perbeagle shark (POR) between 2005 and 2018

ROS data on sharks

To date, the ROS regional database contains information for 1,492 trips (845 from purse seine vessels and 647 from longline vessels of various types) from 8 fleets, covering the years from 2005 to 2019 included: the major challenge – at this stage – consisted in the extraction of relevant data from non-standard electronic formats, as well as in the harmonization of all received information, with the middle-to-long term goal of ensuring all CPCs will submit future ROS data in a standardized electronic format (either proprietary to the ROS or fully compatible, such as ST09 / SWIOFP / ObServe).

Notwithstanding this time-consuming task and the recent revision of ROS data standards and requirements that called for a non-trivial redesign of all ROS electronic tools developed so far, the processed ROS data can already provide some interesting insights on the status of interactions of IOTC fisheries with sharks and other bycatch species: a complete overview of the ROS and its current status is provided in document IOTC-2020-WPEB16-08 ("Update on the implementation of the IOTC Regional Observer Scheme"). The following paragraphs in this document provide a qualitative summary related to the information on sharks' and other bycatch species as available within the ROS Regional Database as of August 2020.

All interactions by non-IOTC species categories 2005 - 2019

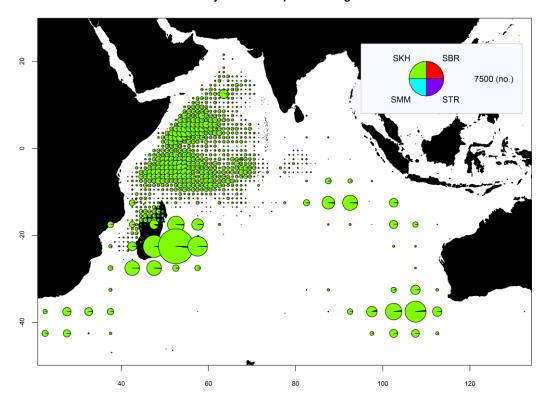


Fig. 18. All observed interactions with non-IOTC species by category (ROS data, 2005 – 2019, all gears and fleets) for sharks (SKH), seabirds (SBR), sea turtles (STR) and marine mammals (SMM)

Sharks interactions by species 2005 - 2019

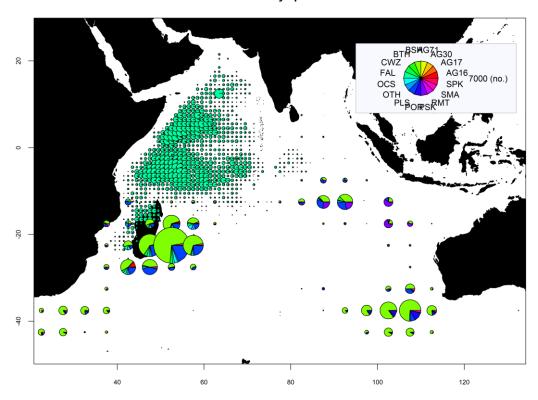


Fig. 19. All observed interactions with sharks by species (ROS data, 2005 – 2019, all gears and fleets) for blue (BSH), bigeye thresher (BTH), silky (FAL), oceanic whitetip (OCS), porbeagle (POR), crocodile (PSK), shortfin make sharks (SMA), carcharhinus sharks nei (CWZ), pelagic stingray (PLS), hammerhead sharks nei (AG16), make sharks (AG17), mantas, devil days nei (AG30), devil rays nei (AG71) and all other shark species combined (OTH)

Sharks interactions by fate 2005 - 2019

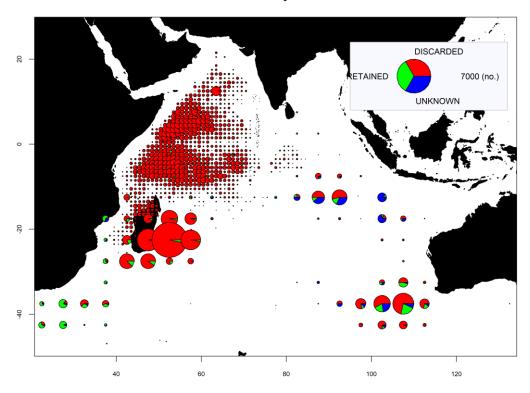


Fig. 20. All observed interactions with sharks by fate (ROS data, 2005 – 2019, all gears and fleets)

Discarded sharks by condition 2005 - 2019

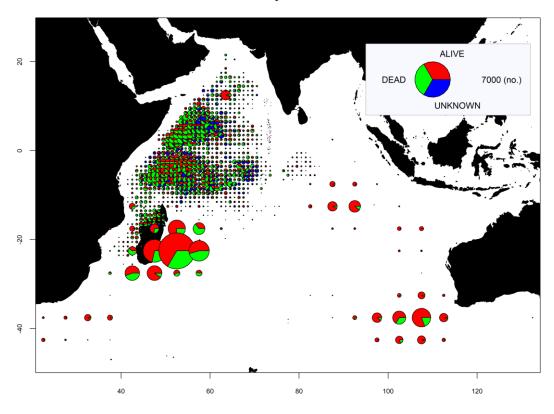


Fig. 21. All observed shark discards by condition at release (ROS data, 2005 – 2019, all gears and fleets)

SMA interactions by fate 2005 - 2019

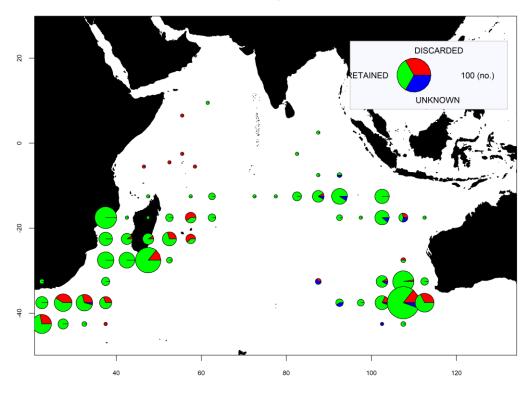


Fig. 22. All observed interactions with SMA by fate (ROS data, 2005 – 2019, all gears and fleets)

Discarded SMA by condition 2005 - 2019

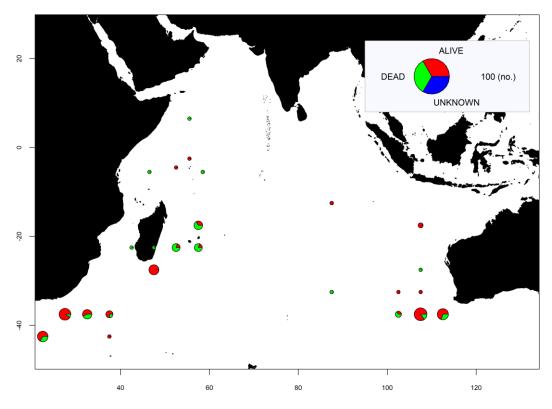


Fig. 23. All observed SMA discards by condition at release (ROS data, 2005 – 2019, all gears and fleets)

Fig. 18 shows that the majority of interaction with non-IOTC species reported by observers is related to sharks (SKH), with the plots in **Fig. 19** indicating Silky shark (FAL), Blue shark (BSH) and Pelagic stingray (PLS) as the most commonly interacted species.

Table 4 provides a breakdown (by shark species) of the recorded interactions currently incorporated within the IOTC ROS Regional Database: rows with a light grey background correspond to all species grouped under the 'OTH' species code in **Fig. 19.**

Table 4a. Observed interactions with shark species (ROS data, 2005 – 2019, all gears and fleets)

Code	Species	Interactions	Code	Species	Interactions
FAL	Silky shark	49494	RMB	Giant Mantas	53
BSH	Blue shark	21695	SPZ	Smooth hammerhead	36
PLS	Pelagic stingray	6069	ALV	Thresher Shark	28
ocs	Oceanic whitetip shark	1577	AG15	Dogfishes nei	22
PSK	Crocodile shark	1467	AG30	Mantas, devil rays nei	18
POR	Porbeagle	815	BLR	Blacktip reef shark	16
SMA	Shortfin mako	680	RMM	Devil Ray	16
CWZ	Carcharhinus sharks nei	540	RHN	Whale shark	9
CCE	Bull Shark	418	ISB	Cookie cutter shark	5
AG17	Mako sharks	396	ALS	Silvertip shark	3
AG16	Hammerhead sharks nei	308	RMA	Reef manta rays	3
RSK	Requiem Shark	268	AG18	Rays, stingrays, mantas nei	2
втн	Bigeye thresher	238	BRO	Copper shark	2
SSQ	Velvet dogfish	230	AML	Grey Reef Shark	2
AG22	Sharks various nei	172	CCQ	Spot-tail shark	2
RMJ	Spinetail mobula	105	ССР	Sandbar shark	2
TIG	Tiger shark	103	CCL	Blacktip shark	2
PTH	Pelagic thresher shark	96	OSF	Zebra shark	1
AG71	Devil rays nei	86	TRK	Houndsharks,smoothhounds nei	1
AG23	Thresher sharks nei	82	RMT	Chilean devilray	1
SPL	Scalloped hammerhead	72	SPK	Great Hammerhead shark	1

Another (expected) pattern emerging from these observations is the preponderance of silky shark (and oceanic whitetip sharks) interactions with purse-seine fisheries in the tropical region, whereas interactions with blue sharks and pelagic stingrays are more common with longline fisheries operating in regions closer to the temperate areas.

The majority of interactions with sharks' species resulted in releasing / discarding the interacted individuals (see **Fig. 20**): for what concerns the status at release, another clear pattern emerges from the observations at our current availability, with the majority of the sharks released alive by the longline fleets as opposed to the number of sharks released dead after interactions with the purse seine fleets.

Table 4b. Fate and condition at for all sharks' species interactions by gear (ROS data, 2005-2019, all fleets)

Gear	Fate	Condition	Interactions	Gear	Fate	Condition	Interactions
LL	DISCARDED	ALIVE	19072	PS	DISCARDED	DEAD	23050
LL	DISCARDED	DEAD	7719	PS	DISCARDED	ALIVE	17437
LL	RETAINED	ALIVE	3555	PS	DISCARDED	UNKNOWN	9569
LL	UNKNOWN	ALIVE	2379	PS	RETAINED	UNKNOWN	547
LL	RETAINED	UNKNOWN	575				
LL	RETAINED	DEAD	543				
LL	UNKNOWN	UNKNOWN	472				
LL	UNKNOWN	DEAD	256				
LL	DISCARDED	UNKNOWN	33				

Fig. 22 and **Fig. 23** show the status of interactions with Shortfin make sharks as observed for all fisheries, with the vast majority of records reported for the longline fisheries and resulting mostly in retention of both dead and alive individuals. A proper breakdown is provided in **Table 4c**.

Table 4c. Fate and condition for shortfin make sharks interactions by gear (ROS data, 2005-2019, all fleets)

Gear	Fate	Condition	Interactions	Gear	Fate	Condition	Interactions
LL	RETAINED	ALIVE	373	PS	DISCARDED	DEAD	3
LL	RETAINED	DEAD	178	PS	DISCARDED	ALIVE	2
LL	DISCARDED	ALIVE	60	PS	RETAINED	UNKNOWN	1
LL	DISCARDED	DEAD	31	PS	DISCARDED	UNKNOWN	0
LL	UNKNOWN	ALIVE	16				
LL	RETAINED	UNKNOWN	11				
LL	UNKNOWN	UNKNOWN	3				
LL	UNKNOWN	DEAD	2				
LL	DISCARDED	UNKNOWN	0				

Fig. 24-Fig. 27 show the status of interactions with oceanic whitetip sharks and thresher sharks as observed for all fisheries. These two shark species are subject to retention bans under Resolutions 13/06 and 12/09 respectively and as such, the majority of interactions have resulted in the shark being discarded. A proper breakdown is provided in Table 4d and e respectively.

OCS interactions by fate 2005 - 2019

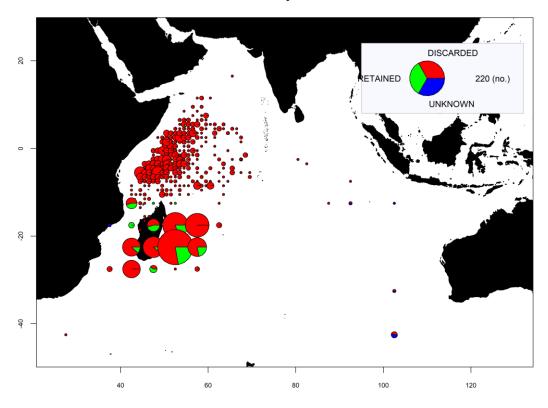


Fig. 24. All observed interactions with OCS by fate (ROS data, 2005 – 2019, all gears and fleets)

Discarded OCS by condition 2005 - 2019

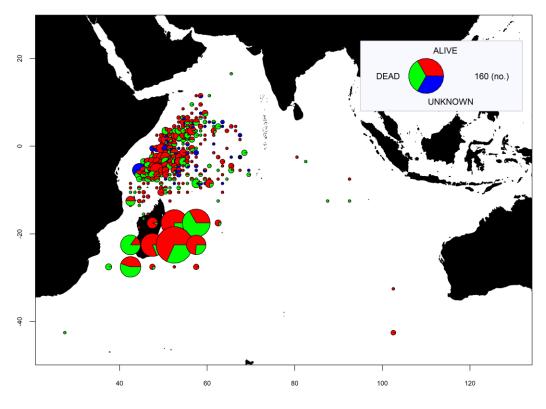


Fig. 25. All observed OCS discards by condition at release (ROS data, 2005 – 2019, all gears and fleets)

Table 4d. Fate and condition for oceanic whitetip shark interactions by gear (ROS data, 2005-2018, all fleets)

Gear	Fate	Condition	Interactions	Gear	Fate	Condition	Interactions
LL	DISCARDED	ALIVE	387	PS	DISCARDED	ALIVE	434
LL	DISCARDED	DEAD	267	PS	DISCARDED	DEAD	242
LL	RETAINED	UNKNOWN	92	PS	DISCARDED	UNKNOWN	93
LL	RETAINED	DEAD	26	PS	RETAINED	UNKNOWN	2
LL	RETAINED	ALIVE	22				
LL	UNKNOWN	ALIVE	7				
LL	DISCARDED	UNKNOWN	3				
LL	UNKNOWN	DEAD	2				
LL	UNKNOWN	UNKNOWN	0				

THR interactions by fate 2005 - 2019

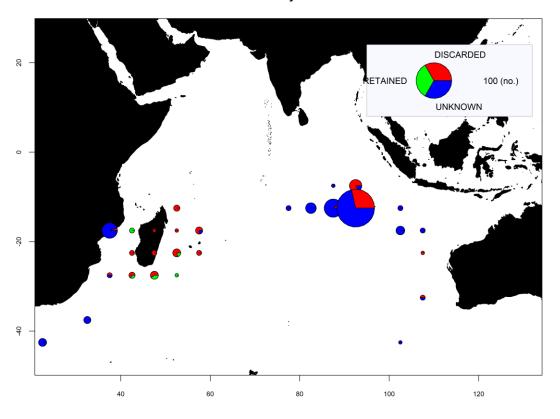


Fig. 26. All observed interactions with thresher shark spp. by fate (ROS data, 2005 – 2019, all gears and fleets)

Discarded THR by condition 2005 - 2019

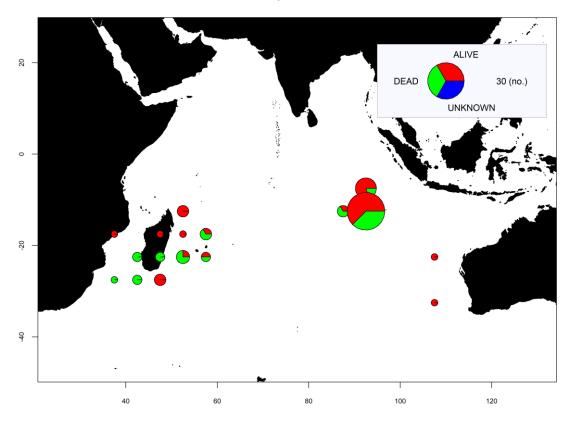


Fig. 27. All observed thresher shark spp. discards by condition at release (ROS data, 2005 – 2019, all gears and fleets)

Table 4e. Fate and condition for thresher shark interactions by gear (ROS data, 2005-2018, all fleets)

Gear	Fate	Condition	Interactions	Gear	Fate	Condition	Interactions
LL	UNKNOWN	ALIVE	154	PS	DISCARDED	UNKNOWN	3
LL	DISCARDED	ALIVE	121	PS	DISCARDED	ALIVE	2
LL	DISCARDED	DEAD	72	PS	DISCARDED	DEAD	1
LL	RETAINED	DEAD	25	PS	RETAINED	UNKNOWN	0
LL	UNKNOWN	DEAD	21				
LL	UNKNOWN	UNKNOWN	25				
LL	RETAINED	ALIVE	17				
LL	DISCARDED	UNKNOWN	2				
LL	RETAINED	UNKNOWN	1				

Summary of fisheries data available for seabirds

Main species and fisheries concerned

The main species of seabirds likely to be caught as bycatch in IOTC fisheries are presented in **Table 5** 7 .

 Table 5. Main species of seabirds likely to be incidentally caught on longline operations

Common Name	Status*	Scientific Name
Amsterdam albatross	Critically Endangered	Diomedea amsterdamensis
Antipodean albatross	Vulnerable	Diomedea antipodensis
Black-browed albatross	Endangered	Thalassarche melanophrys
Buller's albatross	Near Threaten	Thalassarche bulleri
Campbell albatross	Vulnerable	Thalassarche impavida
Chatham albatross	Vulnerable	Thalassarche eremite
Grey-headed albatross	Vulnerable	Thalassarche chrysostoma
Light-mantled albatross	Near Threatened	Phoebetria palpebrata
Northern royal albatross	Endangered	Diomedea sanfordi
Southern royal albatross	Vulnerable	Diomedea epomophora
Salvin's albatross	Vulnerable	Thalassarche salvini
Shy albatross	Near Threatened	Thalassarche cauta
White-capped albatross	Near Threatened	Thalassarche steadi
Sooty albatross	Endangered	Phoebetria fusca
Tristan albatross	Critically Endangered	Diomedea dabbenena
Wandering albatross	Vulnerable	Diomedea exulans
Atlantic yellow-nosed albatross	Endangered	Thalassarche chlororhynchos
Indian yellow-nosed albatross	Endangered	Thalassarche carteri
Northern giant petrel	Least Concern	Macronectes halli
Southern giant petrel	Least Concern	Macronectes giganteus
White-chinned petrel	Vulnerable	Procellaria aequinoctialis
Westland petrel	Vulnerable	Procellaria westlandica
Short-tailed shearwater	Least Concern	Puffinus tenuirostris
Sooty shearwater	Near Threatened	Puffinus griseus

^{*}Source IUCN 2006, BirdLife International 2004b.

⁷ As in IOTC–2007–WPEB–22, Appendix 2, page 24. Paper submitted on behalf of the Agreement for the Conservation of Albatrosses and Petrels (ACAP)

Longline vessels fishing in southern waters

The interaction between seabirds and IOTC fisheries is likely to be significant only in Southern waters (south of 25° degrees South), an area where most of the effort is exerted by longliners. Incidental catches are, for this reason, likely to be of importance only for longline fleets having vessels operating in these areas. The main fleets reporting longline fishing effort since 1955 in this area are those of Japan and Taiwan, China, accounting for 13% and 62% of total effort in the area in 2017 (**Fig. 28.** Reported longline effort for fleets operating south of 25° south between 1955 and 2018 for Thailand (THA), EU,UK (EUGBR), Malaysia (MYS), EU,Portugal (EU,PRT), EU,France / Rénuion (EUREU), Mauritius (MUS), South Africa (ZAF), Seychelles (SYC), China (CHN), Australia (AUS), EU,Spain (EUESP), Rep. of Korea (KOR), Taiwan,China (TWN) and Japan (JPN)). This summarises total reported effort, however, this is incomplete for some reporting fleets, i.e. for Malaysia, South Africa, Seychelles, Rep. of Korea and Taiwan,China the effort is likely to be higher. It is also important to note that these are only the countries that are reporting some information on effort, while it is expected that a number of other longline fleets also fish in this area based on the presence of temperate species in their catch data. These include Indonesia, Madagascar, Tanzania, Philippines, Mozambique and Belize. The effort from some of these CPCs is also likely to be substantial, given the catch quantities of temperate species (e.g. Indonesia National Report Fig.; 3b IOTC-2016-SC19-NR01).

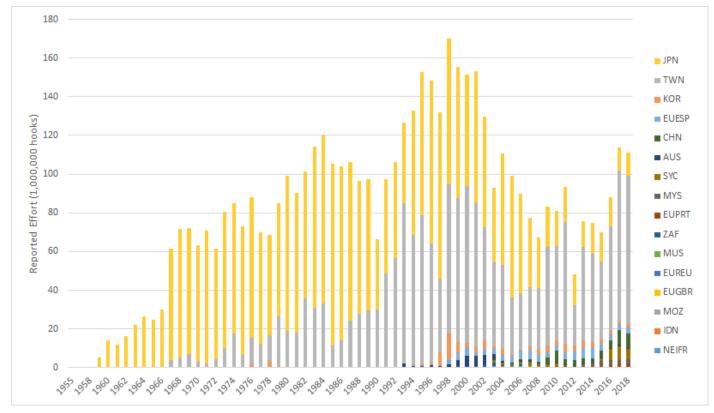


Fig. 28. Reported longline effort for fleets operating south of 25° south between 1955 and 2018 for Thailand (THA), EU,UK (EUGBR), Malaysia (MYS), EU,Portugal (EU,PRT), EU,France / Rénuion (EUREU), Mauritius (MUS), South Africa (ZAF), Seychelles (SYC), China (CHN), Australia (AUS), EU,Spain (EUESP), Rep. of Korea (KOR), Taiwan,China (TWN) and Japan (JPN)JPN)

Status of data on seabirds' bycatch

The reported data available on seabirds caught in the IOTC area of competence are generally fairly limited. In 2016 six CPCs (Australia, EU-Portugal, EU-Spain, EU-France, Japan, Rep. of Korea, Taiwan, China and South Africa) of the 15 CPCs which report effort or are likely to exert longline fishing effort south of 25°S to IOTC submitted data in response to a call for data submission on seabirds which was reported to the SC.⁸

The information provided highlighted some general trends in seabird bycatch rates across the Indian Ocean with higher catch rates at higher latitudes, even within the area south of 25°S and higher catch rates in the coastal areas in the eastern and western parts of the southern Indian Ocean. Because the reporting of effort has been low (some CPCs fishing south of 25°S in the Indian Ocean did not report any effort while for others it was incomplete), and the observer coverage is relatively low (though improving) for many fleets, data submitted through the data-call is unlikely to be able to provide reliable estimates of total bycatch of seabirds from the longline fishery south of 25°S latitude in the Indian Ocean and so extrapolations of the information to total Indian Ocean captures were not undertaken. Bycatch mortality, where reported, was high but there is a lack of information on post release mortality/survival as well as total effort which means that the total fishery induced mortality on the seabird populations cannot be estimated.

All information related to seabirds' interactions – as extracted from the data currently incorporated in the ROS Regional Database – is summarized in **Fig. 29-Fig. 31**.

MAHDIX DIP DIM PEC TOWN 50 (no.) PFG TOH PHEPHUPRO

Seabirds interactions by species 2005 - 2019

Fig. 29. Seabirds interactions by species (ROS data, all gears and fleets, 2005-2019) for grey-headed albatross (DIC), black-browed albatross (DIM), Southern royal albatross (DIP), wandering albatross (DIX), Northern giant petrel (MAH), Southern giant petrel (MAI), flesh-footed shearwater (PFC), sooty shearwater (PFG), light-mantled albatross (PHE), sooty albatross (PHU), white-chinned petrel (PRO), Indian yellow-nosed albatross (TQH) and Campbell albatross (TWQ)

⁸ IOTC-2016-SC19-INF02

Seabirds interactions by fate 2005 - 2019

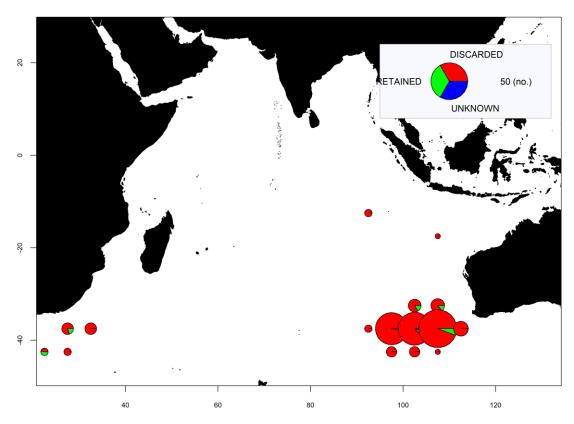


Fig. 30. Seabirds interactions by fate (ROS data, all gears and fleets, 2005-2019)

Discarded seabirds by condition 2005 - 2019

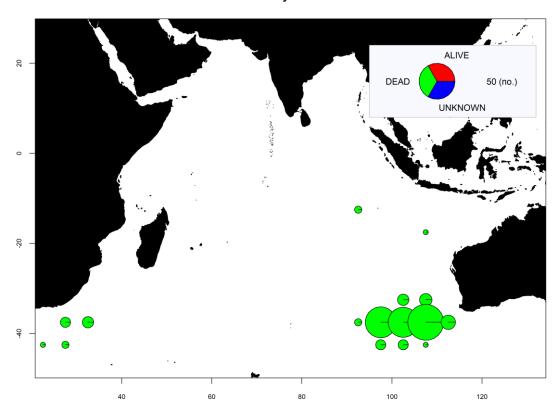


Fig. 31. Seabirds interactions by condition at release (ROS data, all gears and fleets, 2005-2019)

Table 6a. Fate and condition for all seabirds interactions by gears (ROS data, 2005-2019, all fleets and gears)

Gear	Fate	Condition	Interactions
LL	DISCARDED	DEAD	167
LL	RETAINED	UNKNOWN	9
LL	UNKNOWN	DEAD	2
LL	RETAINED	DEAD	2

Table 6b. Fate and condition for seabirds interactions by species (ROS data, 2005-2019, all fleets and gears)

Species	Fate	Condition	Interactions
DIC	DISCARDED	DEAD	14
DIC	RETAINED	DEAD	1
DIM	DISCARDED	DEAD	6
DIM	RETAINED	UNKNOWN	1
DIP	DISCARDED	DEAD	2
DIX	DISCARDED	DEAD	8
DIX	RETAINED	DEAD	1
MAH	DISCARDED	DEAD	5
MAH	UNKNOWN	DEAD	1
MAI	DISCARDED	DEAD	3

Species	Fate	Condition	Interactions
PFC	DISCARDED	DEAD	17
PFG	DISCARDED	DEAD	1
PHE	DISCARDED	DEAD	15
PHU	DISCARDED	DEAD	13
PHU	RETAINED	UNKNOWN	2
PRO	DISCARDED	DEAD	10
TQH	DISCARDED	DEAD	69
TQH	RETAINED	UNKNOWN	6
TQH	UNKNOWN	DEAD	1
TQW	DISCARDED	DEAD	4

Summary of fisheries data available for marine turtles

Main species and fisheries concerned

The main species of marine turtles likely to be caught as bycatch by IOTC fisheries are listed in Table 7.

Table 7 Main species of Indian Ocean marine turtles⁹.

Common name	Scientific name
Loggerhead turtle	Caretta caretta
Olive ridley turtle	Lepidochelys olivacea
Green turtle	Chelonia mydas
Hawksbill turtle	Eretmochelys imbricata
Leatherback turtle	Dermochelys coriacea
Flatback turtle	Natator depressus

The interaction between marine turtles and IOTC fisheries is likely to be significant only in tropical areas, involving both industrial and artisanal fisheries, notably for:

- Industrial purse seine fisheries, in particular on sets using fish aggregating devices (EU, Seychelles, I.R. Iran, Thailand, Japan)
- Gillnet fisheries operating in coastal waters or on the high seas (Sri Lanka, I.R. Iran, Pakistan, Indonesia)
- Industrial longline fisheries operating in tropical areas (China, Taiwan, China, Japan, Indonesia, Seychelles, India, Oman, Malaysia and the Philippines)

Status of data on marine turtles' bycatch

The reported data available on marine turtles caught in the IOTC area of competence are poor quality, sparse and not standardised, as highlighted in paper IOTC-2015-WPEB11-07.

All information related to marine turtles' interactions – as extracted from the data currently incorporated in the ROS Regional Database – is summarized in **Fig. 32-.Fig. 34**.

⁹ Memorandum of Understanding on the Conservation and Management of Marine Turtles and their Habitats of the Indian Ocean and South-East Asia

Marine turtles interactions by species 2005 - 2019

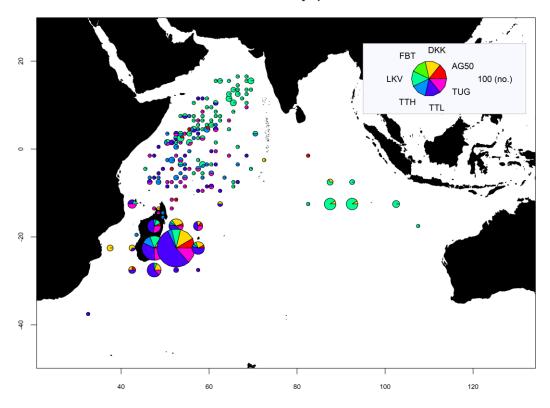


Fig. 32. Marine turtles interactions by species (ROS data, all gears and fleets, 2005-2019) for leatherback turtle (DKK), olive ridley turtle (LKV), hawksbill turtle (TTH), loggerhead turtle (TTL) and green turtle (TUG)

Marine turtles interactions by fate 2005 - 2019

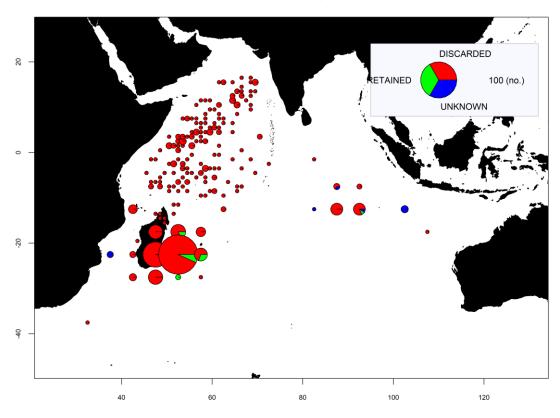


Fig. 33. Marine turtles interactions by fate (ROS data, all gears and fleets, 2005-2019)

Discarded marine turtles by condition 2005 - 2019

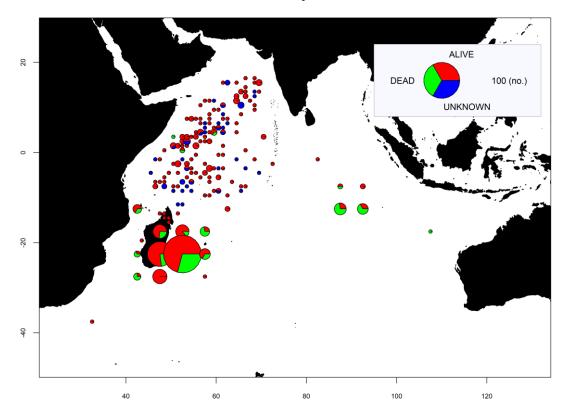


Fig. 34. Marine turtles interactions by condition at release (ROS data, all gears and fleets, 2005-2019)

Table 8a. Fate and condition for all marine turtles interactions by gears (ROS data, 2005-2019, all fleets and gears)

Gear	Fate	Condition	Interactions
LL	DISCARDED	ALIVE	169
LL	DISCARDED	DEAD	50
LL	RETAINED	UNKNOWN	18
LL	UNKNOWN	DEAD	6
LL	UNKNOWN	ALIVE	4
LL	RETAINED	ALIVE	1

Gear	Fate	Condition	Interactions
PS	DISCARDED	ALIVE	112
PS	DISCARDED	UNKNOWN	21
PS	DISCARDED	DEAD	2

Table 8b. Fate and condition for marine turtles interactions by species (ROS data, 2005-2019, all fleets and gears)

Species	Fate	Condition	Interactions
DKK	DISCARDED	ALIVE	31
DKK	DISCARDED	DEAD	8
DKK	UNKNOWN	ALIVE	3
DKK	DISCARDED	DEAD	2
DKK	UNKNOWN	DEAD	1
LKV	DISCARDED	ALIVE	62
LKV	DISCARDED	DEAD	22
LKV	DISCARDED	UNKNOWN	10
LKV	UNKNOWN	DEAD	5

Species	Fate	Condition	Interactions
TTH	DISCARDED	DEAD	7
TTH	DISCARDED	UNKNOWN	6
TTH	RETAINED	UNKNOWN	1
TTL	DISCARDED	ALIVE	108
TTL	RETAINED	UNKNOWN	14
TTL	DISCARDED	DEAD	10
TTL	RETAINED	ALIVE	1
TTL	DISCARDED	UNKNOWN	1
TUG	DISCARDED	ALIVE	45

$IOTC-2020-WPEB16-07_Rev3$

LKV	RETAINED	UNKNOWN	3
LKV	UNKNOWN	ALIVE	1
TTH	DISCARDED	ALIVE	35

TUG	DISCARDED	DEAD	11	
TUG	DISCARDED	UNKNOWN	4	

Summary of fisheries data available for marine mammals

Status of data on marine mammals' bycatch

Reporting of interactions between IOTC fisheries and marine mammals has been extremely limited to date, as highlighted in paper IOTC-2015-WPEB11-07. The current low level, lack of standardisation and ad hoc nature of data reporting are not conducive to supporting regional level analyses. Nevertheless, with the current development of the cetacean identification guides and publication in multiple languages, this is expected to improve considerably.

All information related to marine mammals' interactions — as extracted from the data currently incorporated in the ROS Regional Database — is summarized in **Fig. 35-Fig. 37.**

Marine mammals interactions by species 2005 - 2019

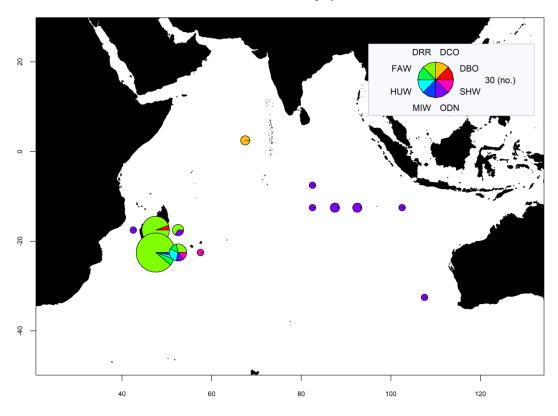


Fig. 35. Marine mammals interactions by species (ROS data, all gears and fleets, 2005-2019) for bottlenose dolphin (DBO), common dolphin (DCO), Risso's dolphin (DRR), false killer whale (FAW), humpback whale (HUW), Minke whale (MIW) and toothed whales nei (ODN)

Marine mammals interactions by fate 2005 - 2019

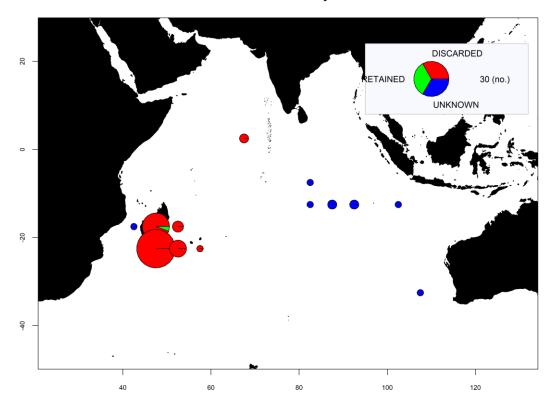


Fig. 36. Marine mammals interactions by fate (ROS data, all gears and fleets, 2005-2019)

Discarded marine mammals by condition 2005 - 2019

Fig. 37. Marine mammals interactions by condition at release (ROS data, all gears and fleets, 2005-2019)

Table 9a. Fate and condition for all marine mammals interactions by gears (ROS data, 2005-2019, all fleets and gears)

Gear	Fate	Condition	Interactions
LL	DISCARDED	ALIVE	63
LL	UNKNOWN	ALIVE	7
LL	DISCARDED	UNKNOWN	2
LL	UNKNOWN	DEAD	1
LL	UNKNOWN	UNKNOWN	1
LL	RETAINED	DEAD	1
LL	DISCARDED	DEAD	1

Table 9b. Fate and condition for marine mammals interactions by species (ROS data, 2005-2019, all fleets and gears)

Species	Fate	Condition	Interactions
DBO	RETAINED	DEAD	1
DCO	DISCARDED	UNKNOWN	2
DRR	DISCARDED	ALIVE	53
FAW	DISCARDED	ALIVE	3
HUW	DISCARDED	ALIVE	3
MIW	DISCARDED	DEAD	1
ODN	UNKNOWN	ALIVE	7
ODN	DISCARDED	ALIVE	2
ODN	UNKNOWN	DEAD	1
ODN	UNKNOWN	UNKNOWN	1
SHW	DISCARDED	ALIVE	2

Main issues identified concerning data on bycatch (non-IOTC) species available to the IOTC

General issues

There are a number of key issues with the data that are apparent from this summary. The main points are discussed below.

Sharks

Unreported catches

Although some fleets have been operating since 1950, there are many cases where historical catches have gone unreported as many countries were not collecting fishery statistics in years prior to 1970. It is therefore thought that important catches of sharks might have gone unrecorded in several countries. There are also a number of fleets which are still not reporting on their interactions with bycatch species, despite fleets using similar gears reporting high catch rates of bycatch.

Some fleets have also been noted to report catches by species only for those that have been specifically identified by the Commission and do not report catches of other species even in aggregate form. This creates problems for the estimation of total catches of all sharks and for attempts to apportion aggregate catches into species groups at a later date. The changing requirements for species-specific reporting also complicates the interpretation of these data.

Errors in reported catches

For the fleets that do report interactions, there are a number of issues with these estimates. The estimates are often based on retained catches rather than total catches, and so if discarding is high then this is a major source of error where discards are not reported. Errors are also introduced due to the processing of the retained catches that is undertaken. This creates problems for calculating total weight or numbers, as sometimes dressed weight might be recorded instead of live weights. For high levels of processing, such as finning where the carcasses are not retained, the estimation of total live weight is extremely difficult.

Poor resolution of data

Historically, shark catches have not been reported by species but simply as an aggregated total, however, the proportion of catches reported by species has increased substantially in recent years. Misidentification of shark species is also common. Processing creates further problems for species identification, requiring a high level of expertise and experience in order to be able to accurately identify specimens, if at all. The level of reporting by gear type is much higher and catches reported with no gear type allocated form a small proportion of the total.

The main consequence of this is that the estimation of total catches of sharks in the Indian Ocean is compromised by the paucity of the data available.

Catch-and-Effort data from gillnet fisheries

- **Driftnet fishery of Taiwan, China (1982–92)**: data not reported by IOTC standards (no species-specific catches).
- **Gillnet fisheries of Pakistan**: Revised nominal catch data have been provided from 1987 onward, with species-specific shark data available from 2018 only. However catch and effort data have not been provided;
- **Gillnet fisheries of I.R. Iran**: spatially disaggregated CE data is now available from 2007 onwards, although not fully reported by IOTC standards (does not include catches by shark species, which are instead available as nominal catches during the same period);
- Gillnet fisheries of Oman: data not reported by IOTC standards.

Catch-and-Effort data from longline fisheries

- Historical catches of sharks from major longline fisheries (Japan, Taiwan, China, Indonesia and Rep. of Korea):
 data not reported by IOTC standards for years before 2006 (no species-specific catches);
- Fresh-tuna longline fisheries (Malaysia): data not provided or not reported by IOTC standards. Indonesia has reported catch and effort data since 2018 but the level of coverage is very low with only minor reported catches of blue shark

• **Deep-freezing longline fisheries** (EU,Spain, India, Indonesia and Oman): data not provided or not reported by IOTC standards (for the periods during which these fisheries were known to be active).

Catch-and-Effort data from coastal fisheries

- Coastal fisheries of India, Madagascar and Yemen: data not provided;
- Coastal fisheries of Oman: data not reported by IOTC standards.
- Coastal fisheries of Indonesia: catch and effort data has been reported since 2018 for coastal fisheries but coverage is very low with minor reported catches of some shark species

Discard levels from surface and longline fisheries

- **Discard levels of sharks from major longline fisheries**: to date the EU (Spain, UK), Japan and Taiwan, China, have not provided estimates of total discards of sharks, by species, although all are now reporting discards in their observer data.
- **Discard levels of sharks for industrial purse seine fisheries**: I.R. Iran, Japan, and Thailand have not provided estimates of total quantities of discards of sharks, by species, for industrial purse seiners under their flag. EU, Spain and Seychelles are now reporting discards in their observer data and EU, Spain started reporting total discards for its PS fleet in 2018.

Size frequency data

- **Gillnet fisheries of I.R. Iran and Pakistan**: to date, I.R. Iran and Pakistan have **not** reported size frequency data for their driftnet fisheries.
- Longline fisheries of India, Malaysia, Oman: to date, these countries have not reported size frequency data for their longline fisheries. Madagascar reported size frequency data for blue shark and smooth hammerhead shark for 2018 in their longline fisheries.
- Coastal fisheries of India, Indonesia, Madagascar and Yemen: to date, these countries have not reported size frequency data for their coastal fisheries. Madagascar reported size frequency data for blue shark and smooth hammerhead shark for 2018 in their coastal fisheries. Fresh tuna longline fishery: Indonesia have provided size frequency data for sharks for the fresh longline fleet for 2018 based on observer data

Biological data

• The IOTC Secretariat has to use length-age keys, length-weight keys, ratios of fin-to-body weight, and processed weight-live weight keys for sharks from other oceans due to the limited amount of biological data available: this situation could be potentially addressed in the medium term to long term with the steady increase in scientific observer data submissions according to ROS standards and requirements.

Other bycatch species groups

The reporting of non-IOTC species other than sharks is extremely poor and where it does occur, this is often in the form of patchy information which is not submitted according to IOTC data reporting procedures, is non-standardized and often lacking in clarity. Formal submissions of data in an electronic and standardized format using the available IOTC templates, in combination with observer data reported in the context of the ROS programme, will considerably improve the quality of data obtained and the type of regional analyses that these data can be used for.

Incidental catches of seabirds

• Longline fisheries operating in areas with high densities of seabirds. Seychelles, Malaysia and Mauritius have not reported incidental catches of seabirds for longliners under their flag.

Incidental catches of marine turtles

- **Gillnet fisheries of Pakistan and Indonesia**: to date, there have been no **reported** incidental catches of marine turtles for these driftnet fisheries.
- Longline fisheries of Malaysia, Oman, India, Philippines and Seychelles: to date, these countries have not reported incidental catches of marine turtles for their longline fisheries.

• Purse seine fisheries of Japan, I.R. Iran and Thailand: to date these countries have not reported incidental catches of marine turtles for their purse seine fisheries, including incidental catches of marine turtles on Fish Aggregating Devices. Seychelles provided data on discards of marine turtles from their purse seine fleet for 2018.

While a number of CPCs have been mentioned specifically here, as they have important fisheries or have not provided any information, there are still many CPCs that are providing data that are not consistent with the IOTC minimum reporting standards: this includes not reporting bird bycatch data by species (as required by Resolution 12/06) and not providing an estimation of the total mortality of marine turtles incidentally caught in their fisheries (as required by Resolution 12/04).

Appendix I - Overview of minimum data reporting requirements

All bycatch

- IOTC Resolution 15/02: Mandatory statistical reporting requirements for IOTC Contracting Parties and Cooperating Non-Contracting Parties (CPCs) (came into force on 10 September2015)
 - Paragraph 2: Estimates of the total catch by species and gear, if possible quarterly, that shall be submitted annually as referred in paragraph 7 (separated, whenever possible, by retained catches in live weight and by discards in live weight or numbers) for all species under the IOTC mandate as well as the most commonly caught elasmobranch species according to records of catches and incidents as established in Resolution 15/01 on the recording of catch and effort data by fishing vessels in the IOTC area of competence (or any subsequent superseding Resolution).
 - Paragraph 3: Concerning cetaceans, seabirds and marine turtles' data should be provided as stated in Resolutions 13/04 on Conservation of Cetaceans, Resolution 12/06 on reduction the incidental bycatch of seabirds in longline fisheries and Resolution 12/04 on the conservation of marine turtles (or any subsequent superseding resolutions).
- IOTC Resolution 15/01: On the **recording of catch and effort by fishing vessels** in the IOTC area of competence (came into force on 10 September2015)
 - Paragraph 1: Each flag CPC shall ensure that all purse seine, longline, gillnet, pole and line, handline
 and trolling fishing vessels flying its flag and authorised to fish species managed by IOTC be subject to
 a data recording system.
 - Paragraph 10: The Flag State shall provide all the data for any given year to the IOTC Secretariat by June 30th of the following year on an aggregated basis. The confidentiality rules set out in Resolution 12/02 Data Confidentiality Policy and Procedures for fine—scale data shall apply.
 - Paragraph 11: Noting the difficulty in implementing a data recording system on fishing vessels from developing CPCs, the data recording systems for vessels less than 24 metres of developing CPCs operating inside the EEZ shall be implemented progressively from 1 July 2016.
- IOTC Resolution 11/04: On a regional observer scheme
 - Paragraph 2: In order to improve the collection of scientific data, at least 5 % of the number of operations/sets for each gear type by the fleet of each CPC while fishing in the IOTC Area of competence of 24 meters overall length and over, and under 24 meters if they fish outside their EEZs shall be covered by this observer scheme. For vessels under 24 meters if they fish outside their EEZ, the above-mentioned coverage should be achieved progressively by January 2013.
 - Paragraph 4: The number of the artisanal fishing vessels landings shall also be monitored at the landing place by field samplers. The indicative level of the coverage of the artisanal fishing vessels should progressively increase towards 5% of the total levels of vessel activity (i.e. total number of vessel trips or total number of vessels active).
 - Paragraph 11: The observer shall, within 30 days of completion of each trip, provide a report to the CPCs of the vessel. The CPCs shall send within 150 days at the latest each report, as far as continuous flow of report from observer placed on the longline fleet is ensured, which is recommended to be provided with 1°x1° format to the Executive Secretary, who shall make the report available to the Scientific Committee upon request. In a case where the vessel is fishing in the EEZ of a coastal State, the report shall equally be submitted to that coastal State.

Sharks

- IOTC Resolution 17/05: On the conservation of SHARKS caught in association with fisheries managed by IOTC
 - Paragraph 6:CPCs shall report data for catches of sharks no later than 30 June of the following year, in accordance with IOTC data reporting requirements and procedures in Resolution 15/02 mandatory statistical requirements for IOTC Members and Cooperating Non-Contracting Parties (CPC's) (or any subsequent superseding resolution), including all available historical data, estimates and life status of discards (dead or alive) and size frequencies.
- IOTC Resolution 12/09: On the conservation of **THRESHER SHARKS** (family *Alopiidae*) caught in association with fisheries in the IOTC Area of Competence
 - Paragraph 1: This measure shall apply to all fishing vessels on the IOTC Record of authorised Vessels.
 - Paragraph 4: CPCs shall encourage their fishers to record and report incidental catches as well as live releases. These data will be then kept at the IOTC Secretariat.

- Paragraph 8: The Contracting Parties, Co-operating non-Contracting Parties, especially those directing fishing activities for sharks, shall submit data for sharks, as required by IOTC data reporting procedures.
- IOTC Resolution 13/05: On the conservation of WHALE SHARKS (Rhincodon typus)
 - Paragraph 1: This measure shall apply to all fishing vessels flying the flag of a CPC and on the IOTC Record of Fishing Vessels or authorised to fish for tuna and tuna-like species managed by the IOTC on the high seas. The provisions of this measure do not apply to artisanal fisheries operating exclusively in their respective EEZ.
 - Paragraph 3: CPCs shall require that, in the event that a whale shark is unintentionally encircled in the purse seine net, the master of the vessel shall:
 - b) report the incident to the relevant authority of the flag State, with the following information:
 - i. the number of individuals;
 - ii. a short description of the interaction, including details of how and why the interaction occurred, if possible;
 - iii. the location of the encirclement;
 - iv. the steps taken to ensure safe release;
 - v. an assessment of the life status of the animal on release, including whether the whale shark was released alive but subsequently died.
 - Paragraph 4: CPCs using other gear types fishing for tuna and tuna-like species associated with a whale shark shall report all interactions with whale sharks to the relevant authority of the flag State and include all the information outlined in paragraph 3b(i–v).
 - Paragraph 7: CPCs shall report the information and data collected under paragraph 3(b) and paragraph 4 through logbooks, or when an observer is onboard through observer programs, and provide to the IOTC Secretariat by 30 June of the following year and according to the timelines specified in Resolution 10/02 (or any subsequent revision).
 - Paragraph 8: CPCs shall report, in accordance with Article X of the IOTC Agreement, any instances in which whale sharks have been encircled by the purse seine nets of their flagged vessels.
 - Paragraph 9: For CPCs having national and state legislation for protecting the species shall be exempt from reporting to IOTC, but are encouraged to provide data for the IOTC Scientific Committee consideration.
- IOTC Resolution 13/06: On a scientific and management framework on the conservation of **SHARK** species caught in association with IOTC managed fisheries
 - Paragraph 5: CPCs shall encourage their fishers to record incidental catches as well as live releases of **OCEANIC WHITETIP SHARKS**. These data shall be kept at the IOTC Secretariat.
 - Paragraph 8: The CPCs, especially those targeting sharks, shall submit data for sharks, as required by IOTC data reporting procedures.

Seabirds

- IOTC Resolution 12/06 On reducing the incidental bycatch of SEABIRDS in longline fisheries
 - Paragraph 1 (start): CPCs shall record data on seabird incidental bycatch by species, notably through scientific observers in accordance with Resolution 11/04 and report these annually.
 - Paragraph 2: CPCs that have not fully implemented the provisions of the IOTC Regional Observer Scheme outlined in paragraph 2 of Resolution 11/04 shall report seabird incidental bycatch through logbooks, including details of species, if possible.

Marine turtles

- IOTC Resolution 12/04 On the conservation of MARINE TURTLES
 - Paragraph 3: CPCs shall collect (including through logbooks and observer programs) and provide to the
 IOTC Secretariat no later than 30 June of the following year in accordance with Resolution 10/02 (or
 any subsequent revision), all data on their vessels' interactions with marine turtles. The data shall
 include the level of logbook or observer coverage and an estimation of total mortality of marine turtles
 incidentally caught in their fisheries.

Marine mammals

IOTC Resolution 13/04 On the conservation of CETACEANS

- Paragraph 1: This measure shall apply to all fishing vessels flying the flag of a CPC and on the IOTC Record of Fishing Vessels or authorised to fish tuna and tuna-like species managed by the IOTC on the high seas. The provisions of this measure do not apply to artisanal fisheries operating exclusively in their respective EEZ.
- Paragraph 3: CPCs shall require that, in the event that a cetacean is unintentionally encircled in a purse seine net, the master of the vessels shall:
- b) report the incident to the relevant authority of the flag State, with the following information:
 - i. the species (if known);
 - ii. the number of individuals;
 - iii. a short description of the interaction, including details of how and why the interaction occurred, if possible;
 - iv. the location of the encirclement;
 - v. the steps taken to ensure safe release;
 - vi. an assessment of the life status of the animal on release, including whether the cetacean was released alive but subsequently died.
- Paragraph 4: CPCs using other gear types fishing for tuna and tuna-like species associated with cetaceans shall report all interactions with cetaceans to the relevant authority of the flag State and include all the information outlined in paragraph 3b(i–vi).
- Paragraph 7: CPCs shall report the information and data collected under paragraph 3(b) and paragraph 4, through logbooks, or when an observer is onboard through observer programs, and provide to the IOTC Secretariat by 30 June of the following year and according to the timelines specified in Resolution 10/02 (or any subsequent revision).
- Paragraph 8: CPCs shall report, in accordance with Article X of the IOTC Agreement, any instances in which cetaceans have been encircled by the purse seine nets of their flagged vessels.
- Paragraph 9 (part): For CPCs having national and state legislation for protecting these species shall be exempt from reporting to IOTC, but are encouraged to provide data for the IOTC Scientific Committee consideration.

Mobulids

• IOTC Resolution 19/03 On the conservation of **MOBULID RAYS** caught in association with fisheries in the IOTC area of competence

- Paragraph 1: This Resolution shall apply to all fishing vessels flying the flag of a Contracting Party or Cooperating Non-Contracting Party (hereinafter referred to collectively as CPCs), and on the IOTC record of fishing vessels or authorized to fish for tuna and tuna like species managed by the IOTC.
- Paragraph 7: Notwithstanding paragraph 3, in the case of mobulid rays that are unintentionally caught by artisanal fishing¹⁰, the vessel should report the information on the accidental catch to the responsible governmental authorities, or other competent authority, at the point of landing. Mobulid rays unintentionally caught may only be used for purposes of local consumption. This derogation will expire in 1 January 2022.
- Paragraph 8: CPCs shall report the information and data collected on interactions (i.e. number of discards and releases) with mobulid rays by vessels through logbooks and/or through observer programs. The data shall be provided to the IOTC Secretariat by 30 June of the following year, and according to the timelines specified in Resolution 15/02 (or any subsequent revision).
- Paragraph 11: CPCs, unless clearly demonstrate that intentional and/or incidental catches of mobulids do not occur in their fisheries, shall develop, with the assistance from the IOTC Secretariat where required, sampling plans for the monitoring of the mobulid rays catches by the subsistence and artisanal fisheries. The sampling plans, including their scientific and operational rationale, shall be reported in the national scientific reports to the Scientific Committee, starting in 2020, which will provide its advice on their soundness by 2021 at the latest. The sampling plans, where required, will be implemented by the CPCs from 2022 onward taking into account the Scientific Committee advice.

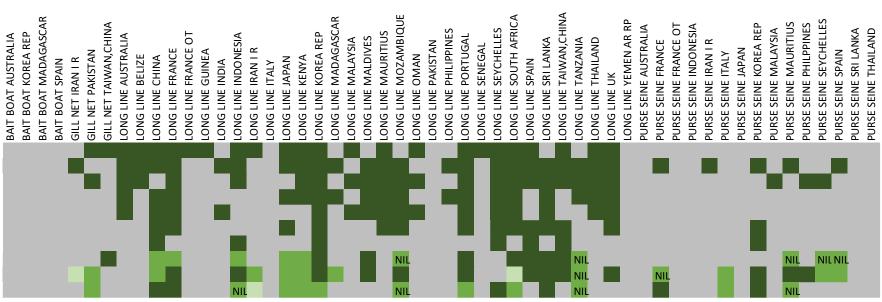
¹⁰ Artisanal fishing: fisheries other than longline or surface fisheries (i.e. purse seines, pole & line, gillnet fisheries, hand-line and trolling vessels), registered in the IOTC Record of Authorized Vessels (DEFINITION in footnote 1 of Res. 15/02).

Paragraph 14: Scientific observers shall be allowed to collect biological samples of mobulid rays caught in the
IOTC Area of Competence that are dead at haul-back, provided that the samples are a part of a research project
approved by the IOTC Scientific Committee. In order to obtain the approval, a detailed document outlining the
purpose of the work, number of samples intended to be collected and the spatio-temporal distribution of the
sampling effect must be included in the proposal. Annual progress of the work and a final report on completion
shall be presented to the SC.

Appendix II - Shark species that are known to occur in fisheries directed at IOTC species or sharks

Code	English Name	Source	French Name	Scientific Name
AML	Grey reef shark	IOTC	Requin dagsit	Carcharhinus amblyrhynchos
BLR	Blacktip reef shark	IOTC	Requin pointes noires	Carcharhinus melanopterus
BRO	Copper shark	IOTC	Requin cuivre	Carcharhinus brachyurus
ССВ	Spinner Shark	IOTC	Requin tisserand	Carcharhinus brevipinna
CCG	Galapagos shark	IOTC ³	Requin des Galapagos	Carcharhinus galapagensis
DOP	Shortnose spurdog	IOTC	Aiguillat nez court	Squalus megalops
DUS	Dusky shark	IOTC	Requin de sable	Carcharhinus obscurus
GAG	Tope shark	IOTC	Requin-hâ	Galeorhinus galeus
GAM	Mouse Catshark	IOTC	Chien islandais	Galeus murinus
NTC	Broadnose sevengill shark	IOTC	Platnez	Notorhynchus cepedianus
OXY	Angular rough shark	IOTC	Centrine commune	Oxynotus centrina
SBL	Bluntnose sixgill shark	IOTC	Requin griset	Hexanchus griseus
SCK	Kitefin shark	IOTC	Squale liche	Dalatias licha
SHBC	Banded catshark	IOTC	Holbiche des plages	Halaelurus lineatus
SHCW	Cow sharks	IOTC	Requins griset	Hexanchidae spp.
SMD	Smooth-hound	IOTC	Emissole lisse	Mustelus mustelus
SPZ	Smooth hammerhead	IOTC	Requin marteau commun	Sphyrna zygaena
SSQ	Velvet dogfish	IOTC	Squale grogneur velouté	Scymnodon squamulosus
SSU	Australian angelshark	IOTC	Ange de mer australien	Squatina australis
AGN	Angelsharks, sand devils nei	FAO	Ange de mer commun	Squatina squatina
CCD	Whitecheek shark	IOTC ¹	Requin joues blanches	Carcharhinus dussumieri
ССМ	Hardnose shark	IOTC ¹	Requin nez rude	Carcharhinus macloti

Code	English Name	Source	French Name	Scientific Name
CCQ	Spot-tail shark	IOTC ¹	Requin queue tachet	Carcharhinus sorrah
CEM	Smallfin gulper shark	FAO ²	Squale-chagrin cagaou	Centrophorus moluccensis
CLD	Sliteye shark	IOTC ³	Requin sagrin	Loxodon macrorhinus
CPU	Little gulper shark	FAO ²	Petit squale-chagrin	Centrophorus uyato
CYT	Ornate dogfish	FAO ²	Aiguillat élégant	Centroscyllium ornatum
MTM	Arabian smooth-hound	IOTC ³	Emissole d'Arabie	Mustelus mosis
ODH	Bigeye sand tiger shark	FAO ²	Requin noronhai	Odontaspis noronhai
ORI	Slender bambooshark	FAO ²	Requin-chabot élégant	Chiloscyllium indicum
ORR	Grey bambooshark	FAO ²	Requin-chabot gris	Chiloscyllium griseum
ORZ	Tawny nurse shark	FAO ²	Requin nourrice fauve	Nebrius ferrugineus
OSF	Zebra shark	FAO ²	Requin zèbre	Stegostoma fasciatum
PWS	Sawsharks nei	FAO	Requins scies nca	Pristiophorus spp
RHA	Milk shark	IOTC ³	Requin museau pointu	Rhizoprionodon acutus
SHL	Lanternsharks nei	FAO	Sagres nca	Etmopterus spp
SLA	Spadenose shark	IOTC ¹	Requin épée	Scoliodon laticaudus
RHN	Whale shark	IOTC ¹	Requin baleine	Rhincodon typus
PTH	Pelagic thresher	IOTC ¹	Renard pelagique	Alopias pelagicus
втн	Bigeye thresher	IOTC ¹	Renard a gros yeux	Alopias superciliosus
ALV	Thresher	IOTC ¹	Renard	Alopias vulpinus
SMA	Shortfin mako	IOTC ¹	Taupe bleue	Isurus oxyrinchus
LMA	Longfin mako	IOTC ¹	Petite taupe	Isurus paucus
PSK	Crocodile shark	IOTC ¹	Crocodile shark	Pseudocarcharias kamoharai
ALS	Silvertip shark	IOTC ¹	Requin pointe blanche	Carcharhinus albimarginatus


Code	English Name	Source	French Name	Scientific Name
FAL	Silky shark	IOTC ¹	Requin soyeux	Carcharhinus falciformis
ocs	Oceanic whitetip	IOTC ¹	Requin océanique	Carcharhinus longimanus
ССР	Sandbar shark	IOTC ¹	Requin gris	Carcharhinus plumbeus
TIG	Tiger shark	IOTC ¹	Requin tigre commun	Galeocerdo cuvier
BSH	Blue shark	IOTC ¹	Peau bleue	Prionace glauca
SPL	Scalloped hammerhead	IOTC ¹	Requin marteau halicorne	Sphyrna lewini
POR	Porbeagle	IOTC ¹	Requin-taupe commun	Lamna nasus
WSH	Great white shark	IOTC ¹	Grand requin blanc	Carcharodon carcharias
CWZ	Other requiem sharks	IOTC ¹	Requins Carcharhinus nca	Carcharhinus spp
SPN	Hammerhead sharks	IOTC ¹	Requins marteau nca	Sphyrna spp

Note that most of the catches of sharks are not available by species and when available by species they are not considered to be an unbiased sample of the catch in the Indian Ocean

- 1. IOTC-2007-WPEB-13 (Sharks of India)
- 2. FAO: Case studies of the management of elasmobranch fisheries
- 3. IOTC: Information collected in Yemen by the IOTC/OFCF Project

Appendix III - Datasets available for bycatch by fleet

Datasets provided by industrial fleets according to IOTC reporting requirements¹¹. Grey cells indicate which fleets have reported data for IOTC species, whereas green cells indicate which fleets have provided the bycatch data specified. Results are based on the nominal catch, catch—and-effort and size frequency data held within the databases at the IOTC Secretariat in August 2020 and other information on seabirds, marine turtles and marine mammals is taken from formally submitted discard reports (dark green), reported observer data (medium green) or information that has been summarised in documents such as national reports to the Scientific Committee or working party papers (pale green).

Historic data
NC Main spp
NC OTHER spp
CE Main spp
CE OTHER spp
SF Main spp
SF OTHER spp
Seabirds (≥2011)
Marine turtles (≥2010)
Marine mammals (≥2013)

data submitted as main IOTC datasets or via discard form (officially reported)
observer data
data not formally reported (WP meeting or NR etc)

¹¹ NB: before 2018, seabird discard reports for the Japan longline fleet and turtle discard reports for the Japan longline fleets were all submitted by South Africa as part of their joint venture agreement. Due to recent changes in the resolution, all joint venture data are aggregated as South Africa with no separate reports of discard information for Japan

Appendix IV - Availability of catch data for sharks by gear

Availability of catch data for the main shark species expressed as the proportion of fleets for which catch data on sharks are available out of the total number of fleets¹² for which data on IOTC species are available, by fishery, species of shark, and year, for the period 1950–2018.

- Shark species in bold are those identified as mandatory for reporting by each fleet, for which data shall be recorded in logbooks and reported to the IOTC Secretariat; reporting of catch data for other species can be done in aggregated form (i.e. all species combined as *sharks nei* or *mantas and rays nei*).
- **Hook and line** refers to fisheries using handline and/or trolling and **Other gears nei** to other unidentified fisheries operated in coastal waters.
- Catch rates of sharks on pole-and-line fisheries are thought to be nil or negligible.
- Average levels of reporting for 1950–2018 and 2010–2018 are shown in columns All and Last, respectively.

¹² Previously a fleet fishing in two areas were considered as two separate fleets, whereas here they are considered as one.

Appendix V - Estimation of catches at size for IOTC shark species

Equations used to convert from various length measurements to fork length and from fork length to round weight.

Species	FROM type measurement – TO type measurement	Equation	Parameters	n	FL range	IOTC reported data	
	Fork length – Round weight(kg) ^A	RND=a.L ^b	a= 0.0000031841 b= 3.1313	4,52 9	52-288		
Blue shark (BSH)	Precaudal length – Fork length ^B	FL=PCL+b	a= 0.9075 b= 0.3956	n/a	n/a	No. of samples: 46,440	
Prionace glauca	Total length – Fork length ^C	FL=a.TL+b	a= 0.8561 b= -4.5542	6,48 5	n/a	Min: 13 cm Max: 357 cm	
	Fork length (unconverted tape measure) – Fork length ^D	FL = a.FLUT+b	a= 0.98 b= -0.8	782	n/a		
	Fork length – Round weight ^A	RND=a.L ^b	a= 0.0000052432 b= 3.1407	2,08 1	65-338		
Shortfin mako (SMA)	Precaudal length – Fork length ^B	FL=a.PCL+b	a= 1.100 b= 0.766	n/a	n/a	No. of samples: 7,186	
Isurus oxyrinchus	Total length – Fork length ^C	FL=a.TL+b	a= 0.9047 b= 0.5963	1,11 4	n/a	Min: 52 cm Max: 323 cm	
	Fork length (unconverted tape measure) – Fork length	FL=a.TL+b	a= 0.968 b= -0.973	n/a	n/a		
Oceanic whitetip (OCS)	Fork length – Round weight ^c	RND= a.L ^b	a= 0.000018428 b= 2.9245	n/a	n/a	No. of samples: 82	
Carcharhinus Iongimanus	Total length – Fork length ^C	FL=a.TL+b	a= 0.8602 b= -7.2885	n/a	n/a	Min: 62 cm Max: 197 cm	
Porbeagle (POR)	Fork length – Round weight ^A	RND=a.L ^b	a= 0.000014823 b= 2.9641	15	106-227	No. of samples: 901	
Lamna nasus	Precaudal length – Fork length ^B	FL=a.PCL+b	a= 1.098 b= 1.99	n/a	n/a	Min: 50 cm Max: 233 cm	
Silky shark (FAL)	Fork length – Round weight ^A	RND=a.L ^b	a= 0.000015406 b= 2.9221	n/a	n/a	No. of samples: 2075	

Carcharhinus falciformis	Total length – Fork length ^c	FL=a.TL+b	a= 0.8113 b=1.0883	520	,	Min: 42 cm Max: 257 cm	
Bigeye thresher (BTH) Alopias superciliosus	Fork length – Round weight ^E	RND=a.L ^b	a= 0.00001413 b= 2.99565	185	110-256	No. of samples: 42 Min: 14 cm Max: 169cm	
Thresher (ALV) Alopias vulpinus	Fork length – Round weight ^A	RND=a.L ^b	a= 0.00018821 b= 2.5188	88	154-262	No. of samples: 1	
Crocodile shark (PSK)	Fork length – Round weight ^D	RND= a.L ^b	a= 0.00033532 b= 2.1156	n/a	n/a	No. of samples: 118 Min: 70 cm	
Pseudocarcharia s kamoharai	Total length – Fork length ^c	FL=a.TL+b	a=0.8083 b=7.1478	407	62-103	Max: 140 cm	
Scalloped hammerhead	Fork length – Round weight ^A	RND=a.L ^b	a=0.000000777 b=3.0669	390	79-423		
(SPL) Sphyrna lewini	Total length – Fork length ^C	FL=a.TL+b	a=0.7994 b=-1.0546	20	115-230	No. samples	
Smooth hammerhead (SPZ) Sphyrna zygaena	Total length – Fork length ^C	FL=a.TL+b	a=0.8039 b=-4.3490	70	114-262	No. of samples: 3	

A: Data from Western North Atlantic: Kohler, N.E., Casey, J.G and Truner, P.A. (1996). Length-length and length-weight relationships for 13 shark species from the Western North Atlantic. NOAA Technical Memorandum NMFS-NE-110, p83.

B: Inverse equation from north Pacific: Clarke, S., Yokawa, K., Matsunaga, H and Nakano, H (2011). Analysis of North Pacific Shark Data from Japanese Commercial Longline and Research/Training Vessel Records. WCPFC-SC7-2011/EB-WP-02.

- C: Data from Indian Ocean: Ariz J, A Delgado de Molina, M.L Ramos, J.C Santana (2007). Length-weight relationships, conversion factors and analyses of sex-ratio, by length-range, Observers onboard Spanish Longliners in South Western Indian Ocean during 2005. IOTC-2007-WPEB-04.
- D: Data from the Canadian Atlantic: Campana, S.E., Marks, L., Joyce, W. and Kohler, N. (2005). Catch, bycatch and indices of population status of Blue shark (<u>Prionace glauca</u>) in the Canadian Atlantic. Collect. Vol. Sci. Pap. ICCAT, 58(3): 891-934.
- E: Data from the Soviet Indian Ocean Taun Longline Research Programme: Romanov, E.V., Romanova, N.V. (2012). Size distribution and length-weight relationships for some large pelagic sharks in the Indian Ocean. Communication 2. Bigeye thresher shark, tiger shark, silvertip shark, sandbar shark, great hammerhead shark and scalloped hammeread shark. IOTC-2012-WPEB08-22.

Alternative equations

Blue shark:

- Campana, S.E., Marks, L., Joyce, W. and Kohler, N. (2005). Catch, bycatch and indices of population status of Blue shark (<u>Prionace glauca</u>) in the Canadian Atlantic. Collect. Vol. Sci. Pap. ICCAT, 58(3): 891-934.
- Romanov, E., 2012, Conversion factors from standard length to fork length for Blue shark, email correspondence to IOTC Secretariat, July 2013.

Shortfin Mako shark:

- ➤ Kohler, et al., 1996. Length-length and length-weight relationships for 13 shark species from the Western North Atlantic, NOAA Technical Memorandum NMFS-NE-110
- Romanov, E., 2012, Conversion factors from standard length to fork length for Shortfin Mako shark, email correspondence to IOTC Secretariat, July 2013.

Porbeagle shark:

➤ Kohler, et al., 1996. Length-length and length-weight relationships for 13 shark species from the Western North Atlantic, NOAA Technical Memorandum NMFS-NE-110

Silky shark:

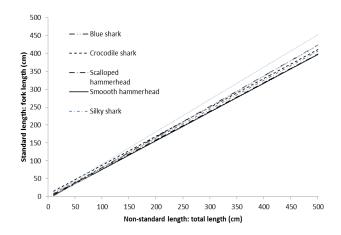
➤ Kohler, et al., 1996. Length-length and length-weight relationships for 13 shark species from the Western North Atlantic, NOAA Technical Memorandum NMFS-NE-110

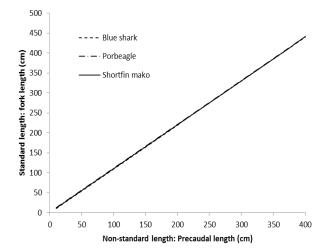
Bigeye Thresher shark:

➤ Kohler, et al., 1996. Length-length and length-weight relationships for 13 shark species from the Western North Atlantic, NOAA Technical Memorandum NMFS-NE-110

Scalloped hammerhead shark:

- ➤ Kohler, et al., 1996. Length-length and length-weight relationships for 13 shark species from the Western North Atlantic, NOAA Technical Memorandum NMFS-NE-110
- Romanov & Romanova, 2012. Size distribution and length-weight relationships for some large pelagic sharks in the Indian Ocean. Communication 2. Bigeye thresher shark, tiger shark, silvertip shark, sandbar shark, great hammerhead shark and scalloped hammerhead shark. IOTC-2012-WPEB08-22


 Table 10. Number and proportion of samples reported to the IOTC Secretariat by measurement type and shark species


Species	Fork length	Fork length *	Precaudal length	Total length	Other	No. samples
Blue shark	165,649	2,003	16,260	4,932	1,384	190,228
Shortfin mako	11,646	1,189	936	132	843	14,746
Silky shark	10,844	8	165	25	137	11,179
Sharks various nei	1	27	-	2,035	4,610	6,673
Mako sharks	4,892	-	-	18	-	4,910
Sharks mackerel and porbeagles nei	4,208	-	-	-	-	4,208
Porbeagle	890	-	2,228	18	-	3,136
Thresher sharks nei	2	169	-	926	-	1,097
Blacktip shark	-	20	-	380	-	400
Oceanic whitetip shark	293	-	19	33	-	345
Blacktip reef shark	2	-	-	333	-	335
Pelagic stingray	23	-	-	33	163	219
Bigeye thresher	98	32	66	1	-	197
Crocodile shark	133	-	-	24	-	157
Pelagic thresher shark	148	-	-	5	-	153
Smooth hammerhead	107	-	-	-	-	107
Dusky shark	56	-	-	-	-	56
Scalloped hammerhead	40	3	-	2	-	45
Longfin mako	19	-	-	17	1	37
Hammerhead sharks nei	26	-	-	1	-	27
Velvet dogfish	13	-	-	6	-	19
Whitetip reef shark	17	-	-	-	-	17
Silvertip shark	3	-	-	-	-	3
Spinetail mobula	-	-	-	1	1	2
Thresher Shark	2	-	-	-	-	2
Hardnose shark	2	-	-	-	-	2
Copper shark	2	-	-	-	-	2
Carcharhinus sharks nei	1	-	-	-	-	1
Giant Mantas	1	-	-	-	-	1
Rays and stingrays and mantas nei	-	-	-	-	1	1
Grey Reef Shark	1	-	-	-	-	1
Tiger shark	1	-	-	-	-	1
Mobula nei	-	-	-	-	1	1

^{*} Unconverted tape measure length

Species	Fork length	Fork length *	Precaudal length	Total length	Other	No. samples
Blue shark	87%	1%	9%	3%	1%	190,228
Shortfin mako	79%	8%	6%	1%	6%	14,746
Silky shark	97%	0%	1%	0%	1%	11,179
Sharks various nei	0%	0%	0%	30%	69%	6,673
Mako sharks	100%	0%	0%	0%	0%	4,910
Sharks mackerel and porbeagles nei	100%	0%	0%	0%	0%	4,208
Porbeagle	28%	0%	71%	1%	0%	3,136
Thresher sharks nei	0%	15%	0%	84%	0%	1,097
Blacktip shark	0%	5%	0%	95%	0%	400
Oceanic whitetip shark	85%	0%	6%	10%	0%	345
Blacktip reef shark	1%	0%	0%	99%	0%	335
Pelagic stingray	11%	0%	0%	15%	74%	219
Bigeye thresher	50%	16%	34%	1%	0%	197
Crocodile shark	85%	0%	0%	15%	0%	157
Pelagic thresher shark	97%	0%	0%	3%	0%	153
Smooth hammerhead	100%	0%	0%	0%	0%	107
Dusky shark	100%	0%	0%	0%	0%	56
Scalloped hammerhead	89%	7%	0%	4%	0%	45
Longfin mako	51%	0%	0%	46%	3%	37
Hammerhead sharks nei	96%	0%	0%	4%	0%	27
Velvet dogfish	68%	0%	0%	32%	0%	19
Whitetip reef shark	100%	0%	0%	0%	0%	17
Silvertip shark	100%	0%	0%	0%	0%	3
Spinetail mobula	0%	0%	0%	50%	50%	2
Thresher Shark	100%	0%	0%	0%	0%	2
Hardnose shark	100%	0%	0%	0%	0%	2
Copper shark	100%	0%	0%	0%	0%	2
Carcharhinus sharks nei	100%	0%	0%	0%	0%	1
Giant Mantas	100%	0%	0%	0%	0%	1
Rays and stingrays and mantas nei	0%	0%	0%	0%	100%	1
Grey Reef Shark	100%	0%	0%	0%	0%	1
Tiger shark	100%	0%	0%	0%	0%	1
Mobula nei	0%	0%	0%	0%	100%	1

^{*} Unconverted tape measure length

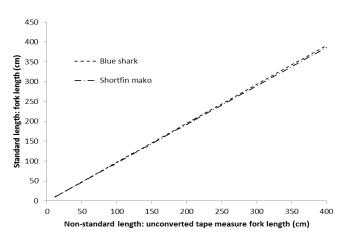


Fig. 38. Conversion equations from non-standard to standard length by shark species

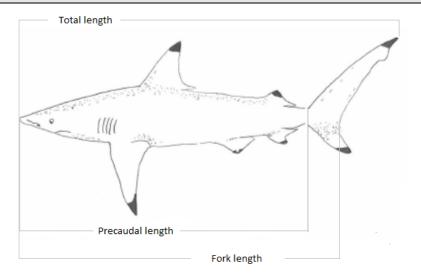


Fig. 39. Measurement types used for sharks