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Abstract 
The shortfin mako shark, Isurus oxyrinchus (SMA), is a highly migratory pelagic species found globally. It 

is particularly vulnerable as bycatch in longline fisheries, and has a vulnerable status according to the 

IUCN. SMA is considered a data-limited stock as there is incomplete catch information, limited information 

on the catch composition (size frequencies), and few abundance indices (e.g., standardised CPUE series). 

A preliminary stock assessment was performed by Brunel et al. in 2018 for the IOTC convention area using 

CMSY, a catch-only method, and a built-in Bayesian surplus production model (BSM), based on 

reconstructed catch data and standardised CPUEs from the EU longline fleet of Spain (2006-2016), and 

Portugal (2000-2016). This preliminary assessment found that SMA had been experiencing overfishing 

from the 1990s (F/Fmsy =2.57), but that the biomass of the stock was decreasing but not overfished 

(B2015/Bsmy close to 1).  Here, we perform preliminary assessments using updated catch and CPUE 

indices for SMA. Contrary to Brunel et al, we use nominal catch of SMA (1964-2018) and scaled CPUEs 

from Japan (1993-2018), Spain (2001-2018), Taiwan (2005-2018), and Portugal (2000-2018). Catch ratio 

between SMA catch and target species catch as used in Brunel et al. were not available at the time of the 

stock assessment. We develop a demographic analysis based on Leslie Matrices to determine a prior for 

r (resilience, or intrinsic growth rate). We run JABBA  (Winker et al. 2018) and CMSY, two surplus 

production models and compare these results to those of Brunel et al. 2018. We compare the outputs of 

CMSY to those of JABBA, providing background and advice in parameterising the model. We find that 

JABBA and CMSY give consistent results in terms of reference points, which indicate that SMA is 

experiencing overfishing (F/Fmsy well above 1) but is not overfished (most results indicate B/Bmsy > 1).  

As JABBA can take into account all CPUEs to inform the stock assessment, we define these model outputs 

as our best case scenario. The projections are run and provided for this model.  
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Introduction 
The shortfin mako shark (SMA), Isurus oxyrinchus, is a highly-migratory pelagic species found in the global 

ocean. It inhabits the epi-pelagic to meso-pelagic zone (Caillet 2009) and is particularly vulnerable as 

bycatch in longline fisheries targeting swordfish and tuna (Caillet 2009), and a less frequent bycatch in 

purse seine fisheries. They are targeted in several areas of the Indian Ocean using hook and line, and 

gillnets. Its distribution overlaps intensive pelagic fisheries, and worldwide, it is the second most abundant 

bycatch shark species after blue shark, Prionace glauca, (IUCN 2007). It is listed as having a “vulnerable” 

status by the IUCN due to the high incidence of catch and its slow reproduction time (18-21 years for 

females to reach maturity) (Mollet et al. 2000, Cailliet 2009).  

 

A preliminary stock assessment was performed by Brunel et al. 2018 in preparation for the full stock 

assessment of SMA planned for the 2020 WPEB. This preliminary assessment used the Catch at Maximum 

Sustainable Yield (CMSY) algorithm (version 2015, 

https://github.com/SISTA16/cmsy/tree/master/Legacy; Froese et al. 2016). To inform their models, they 

reconstructed catch of the SMA using a ratio factor of the catch data from the IOTC longline fisheries 

targeting both swordfish and tuna. They standardised CPUE indices provided by Spain and Portugal 

updated until 2016. They developed a demographic analysis based on Leslie matrices to derive an 

appropriate, r, (resilience or intrinsic growth rate). They explored a range of priors, and tested these using 

both the CMSY (catch-only) and the Bayesian state-space surplus production model (BSM) that is applied 

in the CMSY algorithm when abundance indices are available. Their outputs indicate that the SMA is 

experiencing overfishing, but that it is not overfished, with B/BMSY close to 1. They also note that the 

trend in biomass is decreasing. 

 

Here, we conduct an updated stock assessment of the shortfin mako. Contrary to Brunel et al, we use 

nominal catch of SMA (1964-2018) and scaled CPUEs from Japan (1993-2018), Spain (2001-2018), Taiwan 

(2005-2018), and Portugal (2000-2018). Catch ratios between SMA catch and target species catch as used 

in Brunel et al. were not available at the time of the stock assessment. We develop a demographic analysis 

based on Leslie Matrices to determine a prior for r (resilience, or intrinsic growth rate). We use JABBA 

(Winker et al. 2018), a widely-used surplus production model, as well as CMSY to directly compare with 

the results of Brunel et al. 2018.  

 

Both JABBA and CMSY are written in the R programming language and made available via Github (JABBA: 

github.com/jabbamodel/JABBA; CMSY: https://github.com/SISTA16/cmsy).  

 

 

1. Stock assessment methods 

1.1 CMSY 

CMSY is a data-limited Monte-Carlo method of assessing fisheries reference points and relative stock size 

using catch data. It is parameterised based on species’ life history characteristics (Froese et al. 2017). The 

https://www.iucn.org/sites/dev/files/import/downloads/ssg_pelagic_report_final.pdf
https://github.com/SISTA16/cmsy/tree/master/Legacy
https://github.com/jabbamodel/JABBA
https://github.com/SISTA16/cmsy
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Schaefer production model parameters are r (resilience or intrinsic growth rate) and K (maximum stock 

size or carrying capacity), whose different combinations will produce different time series of biomass. In 

CMSY, the Schaefer model is run many times to calculate annual biomasses for r-K pairs randomly drawn 

from the prior distributions. The model determines which r-K pairs are valid: e.g., those pairs that result 

in a biomass time series that do not (1) result in a stock collapse or (2) allow the stock to exceed carrying 

capacity. Also, those r-K pairs that result in a final relative biomass estimate between the values specified 

in the inputs (the final depletion range), are accepted and used to calculate MSY (rK/4) and biomass over 

time. The geometric means of the resulting density distributions of r, K and MSY are taken as the most 

probable values. These values are then used to determine reference points for management. 

 

When abundance indices are available, the CMSY algorithm runs an advanced Bayesian state-space 

implementation of the Schaefer surplus production model (BSM). The advantage of the BSM is that it is 

focused on informative priors and that it accepts short (minimum 3 years) and fragmented abundance 

data (Froese et al. 2015).  

 

We use the 2015 version of the CMSY, though a new version was released in December 2019. Both 

versions can be downloaded from github (https://github.com/SISTA16/cmsy). A detailed user guide is 

available (Froese et al. 2015), which we follow throughout.  

1.2 JABBA 

The Bayesian state-space surplus production model framework JABBA (Winker et al., 2018,  

github.com/jabbamodel/JABBA), is used for this stock assessment as it provides a user-friendly R to JAGS 

interface for fitting generalized Bayesian State-Space SPMs with the aim to generate reproducible stock 

status estimates and diagnostics. JABBA’s inbuilt options include: 

● Automatic fitting of multiple CPUE time series and associated standard errors; 

● Fox, Schaefer or Pella Tomlinson production function (optional as input Bmsy/K); 

● Kobe-type biplot plotting functions; 

● Forecasting for alternative TACs; 

● Residual and MCMC diagnostics; 

● Estimation or fixing of the process variance; 

● Optional estimation of additional observation variance for individual or grouped CPUE time series. 

 

In addition, JABBA provides extensive diagnostic procedures and associated plots (e.g. residual run tests) 

and a routine to conduct retrospective analysis. A full description of JABBA and codes are available on 

JABBA website. 

https://github.com/SISTA16/cmsy
https://www.fishbase.de/rfroese/Appendix_4.pdf
https://github.com/jabbamodel/JABBA
https://github.com/jabbamodel/JABBA
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2. Data requirements by method 

2.1 CMSY 

CMSY requires catch data and at least some biological information. ` 

 

The mandatory input fields for CMSY are  

● Stock - fish stock name; 

● yr - year of the catch 

● ct - catch in tonnes 

● bt - biomass estimates if available, e.g. CPUE, otherwise input “NA”; 

 

Other columns are identifiers that may be included, but are not necessary to run the model. CMSY requires 

that the catch time-series are at least 15 years from the start year to end year.  

 

CMSY only allows for one abundance index to be included in each run of the analysis. Therefore, if several 

abundance indices are available, they must all be input in the ‘bt’ column, reproducing the same ‘yr’ and 

‘ct’ information for each abundance index, but changing the ‘Stock’ name. Years with missing data should 

be filled with an 'NA' value. 

 

2.2 JABBA model specifications 

Data inputs required for JABBA are catch and abundance (e.g. CPUE time series) in .csv format. Standard 

errors (SE) for the time series can optionally be provided. These data are described in the data section 

below. Some biological information are required to define prior information on the intrinsic growth rate 

of the population r and the unfished equilibrium biomass K (see Setting priors by method). 

 

The catch file contains time series of year and catch by weight aggregated across fleets for the entire 

fishery. Missing values are not allowed.  

 

Multiple abundance indices from different sources can be included in a single file. This file must contain 

time series of year, which must match the years in the catch file. Missing or fragmented data are allowed. 

 

The optional SE file must contain time series of year as in the catch and abundance files, and the standard 

error estimates of the abundance indices on a log scale. This option allows the user to apply weighting to 

individual abundance indices by assigning different coefficients of variation (CV) to each time series. The 

CV for each year should approximate the standard error on the log scale so that data weights match 

expectations of how well the models fit the data.  
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The csv input files should be named by joining the file type (i.e. ‘catch’, ‘cpue’, ‘se’) with the assessment 

name (e.g. SMA_SA) : catchSMA_SA, cpueSMA_SA, seSMA_SA. These files must be saved in a folder of 

the same name as the assessment name, e.g. /SMA_SA. 

 

See the JABBA website for a full tutorial. 

 

 
3. SMA stock assessment data 

3.1 Biological information 

Biological information is vital for properly informing the priors of both CMSY and JABBA, and can be found 

from a review of the literature, including past stock assessments.   

 

SMA is a highly-migratory predator that preferentially inhabits open ocean areas globally, but is also 

present in coastal regions. Most biological information on the SMA comes from studies based in the 

western North Atlantic (Pratt and Casey 1983, Casey and Kohler 1992, Rosa et al. 2017), western and 

central Atlantic (Barreto et al. 2016), and the eastern (e.g. Klimley et al. 2002, Holts and Kohin 2003, and 

Sepulveda et al. 2004) and western Pacific (Bishop et al. 2006). Few biological data available from the 

Indian Ocean (e.g. south-western Indian Ocean Groeneveld et al. 2014) and no information is available 

about stock structure in the Indian Ocean, though it is noted that the SMA are distributed widely about 

the IOTC convention area (IOTC 2016). 

 

In these other sites, SMA have an age-at-maturity of 18 to 21 years for females (Bishop et al. 2006, 

Natanson et al. 2006) and 7-9 years for males (Bishop et al. 2006). Their longevity is estimated to be 

between 29-31 years (Bishop et al. 2006, Natanson et al. 2006).  

 

There is a large difference in size-at-maturity between the sexes. Over the different study sites, males 

have been found to mature between 195-215 cm (Pratt and Casey 1983, Stevens 1983, Cliff et al. 1990, 

Francis and Duffy 2005, Compagno 2001), and reach a maximum size of about 265 cm (Compagno 2001). 

Females, on the other hand, mature between 265-307 cm, with a maximum size of up to 400 cm and 570 

kg. In the south-western Indian Ocean, females were estimated to mature at about 250 cm FL or at 15 

years and 190 cm FL or 7 years for males (Groeneveld et al. 2014), and maximum sizes observed were 

311.3 cm FL (not aged) for females and 299 cm (17 years) for males. 

 

SMA are aplacental viviparous species whose developing embryos feed on the unfertilised eggs during 

gestation. Little is known about the reproductive pattern of this species, but it is believed that they gestate 

between 15-18 months, with a 3-year reproductive cycle (Mollet et al. 2000). Pupping and nursery 

grounds may be over shelf regions in the southwest Indian Ocean (Groeneveld et al. 2014). They produce 

between 4-25 pups, with 10-18 pups on average (Compagno 2001) with larger individuals producing more 

pups. They have a size-at-birth of between 60-70 cm.  

https://github.com/jabbamodel/JABBA/blob/master/Tutorial%20Vignette.Rmd
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3.2 Catch data 

Catch data are required by both CMSY and JABBA.  

 

Though SMA is a valuable target and bycatch species, catches are thought to be inadequately reported, 

and underestimated as landings are not thought to reflect the number of individuals finned and discarded 

at sea (IUCN 2007). Primary concern is that SMA are not sufficiently specified in the catch data (i.e. they 

are aggregated with other species). SMA is a mackerel shark, which may be listed in IOTC catch data as 

“Shortfin mako”, “Mackerel sharks”, “Mako sharks”, “Sharks mackerel and porbeagles nei”, “Sharks nei 

other than oceanic whitetip shark and blue shark”, and “Sharks various nei”. Mejuto et al. (2006) indicates 

that for the Spanish longline fleet, the label “Sharks various nei” (SKH) is primarily made up of blue shark 

and SMA.  

 

Some concern has been expressed that the SMA can be misidentified as a longfin mako shark (LMA, Isurus 

paucus), though Mejuto et al. (2006) notes that identification as SMA is normally reliable as these fish are 

easily identified and often reported by the fleet themselves in their voluntary reports to categorise their 

catch for the market.  

 

There is concern that the weight recorded for individuals refer to specimens that have already been 

processed, and do not reflect live weights (IOTC 2016). Mejuto et al. (2006) note that finning in the Spanish 

fleet, at least, declined rapidly in the mid-1980s, and thus the reporting of shark may be more 

representative of the actual catch after this period. 

 

Considering the caveats listed above, the previous preliminary stock assessment performed by Brunel et 

al. (2018) reconstructed the catch based on the idea that SMA are caught in the swordfish and tuna 

fisheries at a fixed ratio. They thus reconstructed the SMA catch as the sum of the ratio of the 1) SWO 

longline fishery and 2) tuna longline fisheries. This method was originally described by Murua et al. 2013, 

having been developed via the European project EUPOA-Sharks. The method used in Brunel et al. (2018) 

corresponds to that described in Coehlo and Rosa (2017), who also based their method on that of Murua 

et al. (2013), but added a year stratification. 

 

Here, we attempted to reconstruct the catch of SMA following the methods described in Coehlo and Rosa 

(2017). From the IOTC nominal catch, we extract SWO caught in the longline fishery targeting SWO (IOTC 

fishery code: ELL), which is used here as the SWO longline fishery. We then select the tuna species (BET, 

YFT, ALB) caught in the fresh (IOTC fishery code: FLL) and deep-freezing longline fisheries (IOTC fishery 

code: LL).  

 

https://www.iucn.org/sites/dev/files/import/downloads/ssg_pelagic_report_final.pdf
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Figure 2. Original time series of the tuna species (Thunnus alalunga, albacore, ALB; Thunnus obesus, bigeye, 

BET; Thunnus albacares, yellowfin, YFT) targeted in the IOTC LL and FLL fisheries and swordfish (Xiphias 

gladius, SWO) from the IOTC ELL fishery, and  from which the SMA catch was attempted to be reconstructed. 

Note that y-axes vary between plots. 

 

Our catch reconstruction examined the ratios as defined in the IOTC supporting information (IOTC 2016), 

looking at a minimum, maximum, and mean of the ratios defined in Table 1. We were not able to 

reproduce nor approximate previous reconstructed time series (i.e. Figure 3).  

 

Table 1. Estimated frequency of occurrence and bycatch mortality in the Indian Ocean pelagic fisheries 
(adapted from IOTC 2016 supporting info).  

Gears PS LL BB/TROL/HA
ND 

GILL UNCL 

SWO Tuna 

Frequency rare common  rare–common unknown unknown 

At-vessel 
mortality 

unknown 13 - 56% 0 - 31% unknown unknown unknown 
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Figure 3. The catch reconstruction as found by Brunel et al. 2018 (top panel, green line), and the catch 

reconstruction found in this study based on the same methods (bottom panel, red, green, and blue lines).  

 

 

Thus, though we note the caveats mentioned above in terms of SMA catch reporting, misidentification 

and multiple species aggregation, we decided to use the nominal catch data of SMA reported by CPCs to 

the IOTC (note that raised catches are not available for SMA; Figure 4). These catch data were downloaded 

from the IOTC WPEB16 website (https://iotc.org/meetings/16th-working-party-ecosystems-and-bycatch-

wpeb16).  

 

https://iotc.org/meetings/16th-working-party-ecosystems-and-bycatch-wpeb16
https://iotc.org/meetings/16th-working-party-ecosystems-and-bycatch-wpeb16
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Figure 4. The catch in tonnes of SMA as reported by the CPCs to the IOTC (black line) and as reported via the IOTC 

Regional Observer Scheme (blue line). Both datasets are publicly-available for download on the IOTC website.  

3.3 Abundance data 

Abundance indices, e.g., CPUE, are an optional data input of CMSY and a required input of JABBA. The 

CMSY is a ‘catch-only’ model, but the CMSY algorithm should additionally apply a Schaefer Bayesian 

surplus production model (BSM) when abundance indices are available.  

 

Four CPCs provided standardised CPUE indices, including Japan (Kai and Semba 2019), Taiwan,China (Tsai 

et al. 2019), EU,Spain (Ramos-Cartelle et al. 2020) and EU,Portugal (Coelho et al. 2020) with data updated 

to 2018. Both Spain and Portugal use a ratio factor in estimating their catch and calculating their CPUE as 

described above. Their standardised CPUEs have significantly higher absolute values than Japan and 

Taiwan (Figure 5). Thus, we have scaled all standardised CPUE indices to compare between the four 

different indices (Figure 6). No negative values are allowed for the CPUE indices in our methods, thus 

scaling was performed by dividing by the mean of each CPUE index (Figure 6; Table 2). The original CPUE 

indices and their confidence intervals as provided in the text of each of the CPC’s working party documents 

can be found in Appendix 1.  

 

CPUEs from EU,Spain, Taiwan,China and EU,Portugal show similar trends with increasing CPUE towards 

the end of the time series. Japan’s index shows an opposing trend with high CPUE at the beginning of the 

time series, which then declines (Figure 5, Figure 6). 

 

Here, we used the scaled CPUE indices as abundance indices for the models to facilitate comparison of 

model results. 
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Figure 5. The standardised CPUE as reported to the IOTC by Japan, EU,Spain, Taiwan,China, and EU,Portugal.  

 
Figure 6. The standardised CPUE indices as reported to the IOTC by Japan, EU,Spain, Taiwan,China and EU,Portugal 

that have been scaled by dividing by the mean of each index. 

 

Table 2. The CPUE indices used in this study were run in the models as both the standardised CPUEs given by Japan, 

EU,Portugal, EU,Spain and Taiwan,China, and with a scaling performed. The scaling was performed with the 'scale' 

function in the R base package, with centers 0.2607692 for Japan, 53.6043889 for EU,Spain, 0.1775957 for 

Taiwan,China, and 102.8 for EU,Portugal. 

Year Standardised Scaled 

Japan Spain Taiwan Portugal Japan Spain Taiwan Portugal 

1993 1.41    1.41    
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1994 1.52    1.52    

1995 1.58    1.58    

1996 3.07    3.07    

1997 2.24    2.24    

1998 1.27    1.27    

1999 3.34    3.34    

2000 0.92   113.4 0.92   1.10311284 

2001 1.43 48.059  76.5 1.43 0.8965497228  0.7441634241 

2002 0.6 53.018  43.1 0.6 0.9890608045  0.4192607004 

2003 0.28 53.119  108.3 0.28 0.9909449786  1.053501946 

2004 1.33 46.598  26.6 1.33 0.8692944918  0.2587548638 

2005 0.57 46.346 0.1574 64.7 0.57 0.8645933842 0.8862826484 0.6293774319 

2006 0.64 40.886 0.1652 114.4 0.64 0.7627360529 0.9302026272 1.112840467 

2007 0.45 42.769 0.09857 100.2 0.45 0.7978637736 0.5550246547 0.9747081712 

2008 0.38 40.017 0.19018 72.9 0.38 0.7465246938 1.070859175 0.7091439689 

2009 0.28 44.52 0.19636 75.9 0.28 0.8305290093 1.105657312 0.7383268482 

2010 0.5 55.253 0.18141 92.9 0.5 1.030755152 1.021477352 0.9036964981 

2011 0.5 58.132 0.2059 103.5 0.5 1.08446344 1.159374824 1.006809339 

2012 0.49 63.68 0.16283 151.3 0.49 1.187962428 0.9168577105 1.471789883 

2013 0.52 55.595 0.168 122 0.52 1.037135226 0.9459687734 1.186770428 

2014 0.68 63.566 0.14144 132.3 0.68 1.185835737 0.7964156149 1.286964981 

2015 0.5 55.745 0.13875 148.5 0.5 1.039933505 0.781268853 1.444552529 

2016 0.33 59.449 0.20355 127.7 0.33 1.109032324 1.146142523 1.242217899 

2017 0.39 72.388 0.24557 123.2 0.39 1.350411813 1.382747331 1.19844358 

2018 0.77 65.739 0.23118 155.8 0.77 1.226373462 1.301720601 1.515564202 

  

 

 

4. Setting priors by method 
 

Following the CMSY best practice guide (Froese et al. 2015), and based on our best knowledge of biological 

information, we define different priors for multiple runs of each of the methods. The results of these runs 

will be compared to establish the best case for the different methods. 
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4.1 CMSY 

A full list of the CMSY parameters are outlined in Table 3. When setting CMSY priors, the CMSY guidelines 

(Froese et al. 2015) recommend searching for the information in previous assessments if available (even 

if the assessment is derived from other ocean basins), FishBase, or by visualising the catch and CPUE data 

(see Table 1 for recommendations on where to find information for each prior).  

 

Table 3. The CMSY parameters and their description. The default values assigned by CMSY are identified and an 

example of values for Run 5 (see Table 6) using SMA data of this analysis are given. 

CMSY 
parameter 
name 

Description CMSY default values SMA 
example 
Run 5 

MinOfYear the start year of the catch report First year of  dataset 1964 

MaxOfYear the end year of the catch report Last year of dataset 2018 

r.low an optional parameter to specify the range of intrinsic growth rate for 
the species.  

 0.0081 

r.hi as above  0.0484 

startb.low the prior biomass range relative to the unexploited biomass (B/k) at 
the beginning of the catch time series (Table 5) 

0.2 0.4 

startb.hi as above 0.6 0.9 

intb.yr a year in the time series for an intermediate biomass level. Set it to NA 
to have it estimated by default rules. 

Automatically calculated at 10 
years prior to the end of the 
time series 

2000 

intb.low the estimated intermediate relative biomass range (see Table 5). Set it 
to NA to have it estimated from maximum or minimum catch, 
according to some simple rules (note: these may not be appropriate 
for your stock). 

0.2 0.1 

intb.hi as above 0.6 0.9 

endb.low the prior relative biomass (B/k) range at the end of the catch time 
series (see next section). Set to NA if you want to use the defaults 

0.01 0.2 

endb.hi as above 0.4 0.7 

q.start the start and end year for determining the catchability coefficient. Set 
to a recent period of at least 5 years where catch and abundance were 
relatively stable or had similar trends. If set to NA the default is last 5 
years (or last 10 years in slow growing species). 

5 years prior to the end of the 
catch time series 

2000 

q.end as above Last year of the catch time 
series 

2018 

StartYear Start year for catch time series First year auto-read from 
dataset 

1964 

EndYear End year for catch time series Penultimate year auto-read 
from dataset 

2018 

Blim optional; fisheries reference points from assessments, for comparison, 
not used in the analysis 

NA NA 

Bpa as above NA NA 

http://www.fishbase.org/
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BMSY as above NA NA 

B40 as above NA NA 

FMSY as above NA NA 

Flim as above NA NA 

FPA as above NA NA 

Fofl as above NA NA 

last_F as above NA NA 

MSY as above NA NA 

SSBMSY as above NA NA 

btype the type of information in the bt column of the catch file. Allowed 
values are “biomass” (when total biomass is reported), “CPUE” (when 
cpue or cpue index or SSB are reported) or “None” (if no abundance 
data are available) 

None None 

force.cmsy check if the management analysis should use the CMSY results rather 
than available BSM results. Useful when the abundance data are 
deemed unreliable. Default is FALSE or F. 

 TRUE 

 

4.1.1 Catch time series requirements 

For CMSY, it is important that the catch time series represents the full range of catch variability of the 

fishery, including high and low periods, and be at least 15 years long. While noting this, many species have 

catch time series that include years of poor data quality, e.g., before sampling was routine. CMSY 

guidelines note that CMSY should be run starting when the catch time series is considered reliable 

(StartYear). This reliability can be derived from expert opinion.  

 

In the case of the SMA, Brunel et al. 2018 use reconstructed catch data based on swordfish and and tuna 

catch time series beginning in 1971, as this is the year when many shark stock assessment models begin, 

and is before the expansion in the 1970s of oceanic fisheries in the Indian Ocean (Coehlo and Rosa, 2017). 

The nominal catch data of SMA from the IOTC begins in 1964 (Figure 4), and shows a wide variability in 

catch over its length, including high catch in the beginning of the dataset, which decreases in the 1970s 

and then increases again in the 1990s (Figure 4). The number of observations increases from 1986 

onwards as SMA begins to be reported by a variety of different fisheries and CPCs (Figure 4).  

 

For this study, we examine the effect of time series start year, including catch time series starting in 1964 

or 1971 (Table 6). 
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4.1.2 Resilience, or intrinsic growth rate, r 

The intrinsic growth rate, r, or the ‘resilience’ strongly influences the results of the model. This value, 

ranging from >0 to 1, represents the ability of the population to regenerate, and depends on the life 

history of the species. Species that grow quickly with fast growth and short generation times generally 

have higher values of r than species with slow growth and long generation times (Table 5 gives qualitative 

and quantitative ranges of r). 

 

Brunel et al. (2018) derived their range of r by developing a demographic analysis via a stochastic 

population dynamics model based on Leslie Matrices. They investigated uncertainty in the biological 

characteristics of SMA (see Biological information). They found that when assuming a reproductive cycle 

of 2 years (0.032 - 0.0484), r tended to be higher than compared to when they assumed a generation time 

of 3 years (0.0081 and 0.025). Thus, Brunel et al. 2018 tested a range of r between their lowest and highest 

estimates, i.e. 0.00081 to 0.0484. Our demographic analysis indicates an r of about 0.016. This falls into 

the range tested by Brunel et al. 2018. Both estimates correspond to the “Very low” range of the 

qualitative CMSY parameter and reflects what we know of SMA, that they are a slow-growing, late-

maturing species that produce relatively few offspring.  

 

Fishbase indicates that the r for SMA is 0.24 with 95% CI of 0.11 to 0.54,  corresponding to a “Low” to 

“Medium” range of r values (Table 5). Considering what we know of the biology of SMA and Brunel et al.’s 

analysis, the FishBase r estimate appears too high. 

 

As r is such an influential variable, we find it valuable to estimate ourselves, and have developed a 

demographic analysis based on Leslie Matrices, similar to Brunel et al (2018), with the r estimated as 0.031 

and CV = 0.2 (see details in Section 4.2.1). This value is consistent with the range tested by Brunel; thus 

we set the prior r range to between 0.0081 and 0.0484 (Table 6). 

 

Table 5. Quantitative ranges of qualitative categories of intrinsic growth rate, or resilience, r, and the depletion rate, 

or biomass relative to the unfished stock, B/k.  

Resilience / intrinsic growth rate prior r range 

High 0.6 – 1.5 

Medium 0.2 – 0.8 

Low 0.05 – 0.5 

Very low 0.015 – 0.1 

Depletion rate prior relative biomass (B/k) range 

Very strong depletion 0.01 – 0.2 

Strong depletion 0.01 – 0.4 

Medium depletion 0.2 – 0.6 

Low depletion 0.4 – 0.8 
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Nearly unexploited 0.75 – 1.0 

 

4.1.3 Depletion, biomass relative to unfished stock 

Depletion ranges between 0.01 and 1. Stocks that have never been fished can have a value of 1, though 

otherwise, the value must be <1. Likewise, stocks with reasonable catches must have a depletion rate of 

>0.01. Froese et al. 2015 note that the width of the relative biomass ranges should be at least 0.4, unless 

the stock is known to be strongly depleted, in which case they suggest ranges of e.g., 0.01-0.3 or 0.01-0.2. 

Table 5, summarised from the guidelines, gives the general range of depletion rate values of stocks under 

very strong depletion to nearly unexploited.  

4.1.3.1 Starting depletion range 

Brunel et al. (2018) estimate that SMA was lightly fished by 1971 when their assessment starts, and they 

used a starting depletion range (startb.low, startb.hi) of between 0.7 to 0.9, which Froese et al. 2015 

indicate to be in the ‘Nearly unexploited’ range (Table 5). We note that the full nominal catch time series 

(Figure 4) indicates more catch prior to 1971 than after 1971; thus we set a wider range of depletion, from 

0.4 to 0.9. 

4.1.3.2 Intermediate depletion range 

The guidelines note that the analysis is improved if the intermediate depletion range (intb.low, intb.hi, 

intb.yr) is set to the last year of either the highest or lowest biomass, with a correspondingly high or low 

biomass range. For example, if the last highest biomass was in 2004, then set int.yr to 2004, and the 

biomass range to e.g., 0.4 to 0.8. If an intermediate depletion range is not specified, the default set by the 

CMSY algorithm is 0.2 to 0.6 set 10 years before the final year of the time series. Brunel et al. 2018 found 

this range too restrictive, and thus set a wider range between 0.1 to 0.9 fifteen years prior to the end of 

their time series (i.e. 2000). 

 

Similarly, here, we set a wider range between 0.1 and 0.9 starting in 2000, as in Brunel et al. 2018. 

4.1.3.3 Ending depletion range 

The default ending depletion range is quite low (0.01 to 0.4). Brunel et al. (2018) gave a wide depletion 

rate range for the ending depletion (endb.low, endb.hi) for the last year in their analysis (2015) so as not 

to restrict the model, i.e. between 0.2 and 0.7. We follow their example for our analysis. 

 

4.1.4 Catchability 

The remaining parameters considered by the CMSY method involve estimates of catchability (q.start, 

q.end). The method determines catchability within a period of at least 5 years where catch was relatively 

stable or had similar trends. If no time period is set for this prior, the method will investigate the last 5 
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years of the dataset, or the last 10 years for a slow growing species. Based on the catch data (Figure 4), 

we note that catch is highly variable over the last 20 years. Furthermore, we note that a catchability that 

is representative of the full time series will have more stable results. Thus, we set the range of years over 

which to estimate the catchability between 2000 and 2018, which also includes the majority of the CPUE 

data (Table 2).  

 

4.1.5 Biomass type 

In CMSY, the user must specify the type of index, which can be “biomass”, “CPUE”, or “none” in the case 

where no abundance index is available. Here, we specify “CPUE” when testing the different CPUE indices 

and “none” when we test only catch data. 

 

A complete list of the prior values for each run are given in Table 6. 

 

Table 6. The priors that are tested using the CMSY method (n=10 runs). 

Run CPUE Start
Year 

End 
Year 

r.low r.hi stb.
low 

stb.
hi 

intb. 
yr 

intb.
low 

intb.
hi 

endb.
low 

endb
.hi 

q. 
start 

q. 
end 

btype force.
cmsy 

1 

SMAIOTC_scaled 
CPUE_JPN 1971 2018 0.0081 0.0484 0.4 0.9 2000 0.1 0.9 0.2 0.7 2000 2018 CPUE F 

2 

SMAIOTC_scaled 
CPUE_SPN 1971 2018 0.0081 0.0484 0.4 0.9 2000 0.1 0.9 0.2 0.7 2000 2018 CPUE F 

3 

SMAIOTC_scaled 
CPUE_TWN 1971 2018 0.0081 0.0484 0.4 0.9 2000 0.1 0.9 0.2 0.7 2000 2018 CPUE F 

4 

SMAIOTC_scaled 
CPUE_POR 1971 2018 0.0081 0.0484 0.4 0.9 2000 0.1 0.9 0.2 0.7 2000 2018 CPUE F 

5 SMAIOTC 1964 2018 0.0081 0.0484 0.4 0.9 2000 0.1 0.9 0.2 0.7 2000 2018 None T 

6 SMAIOTC 1971 2018 0.0081 0.0484 0.4 0.9 2000 0.1 0.9 0.2 0.7 2000 2018 None T 

7 

SMAIOTC_scaled 
CPUE_JPN 1964 2018 0.0081 0.0484 0.4 0.9 2000 0.1 0.9 0.2 0.7 2000 2018 CPUE F 

8 

SMAIOTC_scaled 
CPUE_SPN 1964 2018 0.0081 0.0484 0.4 0.9 2000 0.1 0.9 0.2 0.7 2000 2018 CPUE F 

9 

SMAIOTC_scaled 
CPUE_TWN 1964 2018 0.0081 0.0484 0.4 0.9 2000 0.1 0.9 0.2 0.7 2000 2018 CPUE F 

10 

SMAIOTC_scaled 
CPUE_POR 1964 2018 0.0081 0.0484 0.4 0.9 2000 0.1 0.9 0.2 0.7 2000 2018 CPUE F 
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4.2 JABBA 

JABBA offers the possibility to define prior information of the intrinsic growth rate of the population r and 

the unfished equilibrium biomass K. 

4.2.1 Prior on the intrinsic growth rate of the population r 

We used a Leslie population model to compute the population growth rate. We followed Mangel & 

Broziak (2010) and Simon et al. (2012) to estimate r from biological parameters. This classical approach 

has been widely used in ecology and is one of the demographic methods reviewed by Stobberup & Erzini 

(2006) to elucidate the prior of the population growth rate. The population is described by N(t) vector of 

length A describing the number of individuals in each age-class at time t, with terminal age A (number of 

age groups). A transition matrix T determines the contribution of each individual to the next age-group 

and to the new generation. The entries of the Leslie matrix are S(i) and F(i): i.e., the survival rate from age 

i to age i+1 and the fecundity at age i (i.e. the average number of age zero female individuals produced by 

an individual), respectively. In the matrix form, the model is written in the recurrence relationship (1): 

 

[𝑁𝑖]𝑡+1 = 𝑇. [𝑁𝑖]𝑡 (1) 

 

As T coefficients are all positive and constant over time, the composition of the population at t+n can be 

predicted by (2): 

 

[𝑁𝑖]𝑡+𝑛 = 𝑇ⁿ . [𝑁𝑖]  (2) 

 

As t tends to infinity, the system reaches equilibrium and the contribution of each age group in the total 

population becomes stable. The population growth rate, r, is r = ln(λ) with λ being the dominant eigenvalue 

of matrix T. In our Monte Carlo approach, r is computed for 10,000 Leslie population matrices resulting 

from 10,000 random realizations in the pdf parameters.  

 

The survival rate is estimated from S(i)= e-M(i) where M(i) is the natural mortality at age i. As natural 

mortality at age is very different between early life stages and older ages, we split the calculation of M in 

these two periods. 

4.2.1.1 Natural mortality for early life stages 

The in utero mortality is estimated from McGurk (1986) relationship: 

 

𝑀0 = ∑365
𝑡=1 𝑎𝑦𝑜𝑢𝑛𝑔. 𝑊𝑡,𝑌𝑜𝑢𝑛𝑔

byoung   (3) 

 

where ayoung and byoung are parameters estimated by McGurk (1986) with values of 0.00022 and -0.85 

respectively and Wt, Young is the dry weight of the animal in g at day t. We use a ratio of 0.15 to convert 

weight in dry weight as suggested in Kamler (1992). We sum over the first 365 days although pup age can 

be up to 18 months. The estimation of the mortality rate after age 1 with this method is very similar to 
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the one that will be described after. We therefore preferred to estimate the mortality after 1 year using 

the other methods. 

 

The weight of the young was derived from Mollet et al. (2000) weight-length relationship: 

 

awYoung*LYoung
bwYoung (4) 

 

where awYoung and bwYoung are parameters estimated by Mollet et al. (2000) with values of 8.198 and 3.117 

respectively and LYoung is the length of the pups in cm. 

 

The growth of pups in utero was defined as a Gompertz curve such as: 

 

LYoung = LinfYoung.e(-k1*exp(-k2*t)) (5) 

 

where LinfYoung is the theoretical maximum length of the pup size in utero in cm, k1 and k2 are two 

parameters of the Gompertz equation which defines the growth rate and inflexion time of the growth. 

 

4.2.1.2 Natural mortality for juveniles and adults 

Three methods are compared to estimate the natural mortality for juveniles and adults. 

Then et al. (2015) propose an age-independent natural mortality using the equation:  

 

M = 4.899.MaxAge-0.916 (6) 

 

Chen and Watanabe (1989) equation is described as: 

 

Mmat= ∑
𝐴𝑚𝑎𝑡
𝑡=1  k/(1-e(-k.(t - t0))  (7) 

 

Where k and t0 are the von Bertalanffy growth curve coefficients and, Amat is the age at maturity 

Madult = ∑
𝑀𝑎𝑥𝐴𝑔𝑒
𝑡=𝐴𝑚𝑎𝑡+1  k/[a0 + a1*((t-Amat) + a2*(t-Amat)2] (8) 

 

with  a0= 1-e[-k.(Amat - t0)], a1=k*e[-k*(Tmat-t0)], and a2 = -0.5*k2*exp[-k*(Amat-t0)] 

 

McGurk (1986) confirmed Peterson & Wroblewski (1984) equation: 

 

 M=∑365∗𝑀𝑎𝑥𝐴𝑔𝑒
𝑡=366 0.00526.Wt

-0.25 (9) 

 

where Wt is the dry weight (in gram) of the individual at age t (in day). The weight is calculated from the 

weight-length relationship:  

 

Wadult= aadult. Ladult 
badult (10) 
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And Ladult is calculated from the von Bertalanffy growth curve:  

 

Ladult  = Linf .(1-e-k.(t-t0)) (11) 

 

Where Linf, k and t0 are the three parameters of the von Bertalanffy model. 

4.2.1.3 Fecundity 

The fecundity of shortfin mako shark is estimated from Mollet et al. (2000) equation: 

 

LS = 0.810.Li
2.346  (12) 

 

where LS is the litter size, and Li is the length in cm at age i. We assume a sex ratio of 1:1 to derive the 

number of female offspring. 

 

4.2.1.4 Monte carlo simulation for r 

For the different biological parameters, we assume a distribution over the best estimates from the 

literature. When a range of values for a given parameter was available, a uniform distribution with 10,000 

sampling is chosen. In other cases, we multiply the best estimate value by a random number with a normal 

distribution with a mean of 1 and a standard deviation of 0.1. 

 

Table 7. Parameters used for estimating r. 

Parameter Best estimate or range Reference 

ayoung 0.00022 McGurk (1986)  

byoung -0.85 McGurk (1986)  

aWYoung 8.198 Mollet et al (2000) 

bWYoung 3.117 Mollet et al (2000) 

LinfYoung 73 cm Mollet et al (2000) 

Linf 350.3 Rosa et al. (2017) 

k 0.064 Rosa et al. (2017) 

t0 -3.09 years Rosa et al. (2017) 

MaxAge 29-32 years Natanson et al. (2006) 

Amat 18-21 years Mollet et al (2000) 

aadult 0.0000052432 IOTC conversion factor 

badult 3.1407 IOTC conversion factor 

https://www.iotc.org/sites/default/files/documents/2020/08/IOTC-2020-WPEB16-DATA11-Equations.pdf
https://www.iotc.org/sites/default/files/documents/2020/08/IOTC-2020-WPEB16-DATA11-Equations.pdf
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4.2.2 Prior estimates of unfished equilibrium biomass K 

 

For the unfished equilibrium biomass K, the default settings of the JABBA R package were applied, which 

is a vaguely informative lognormal prior with a large CV of 100% and a central value that corresponds to 

eight times the maximum total catch, which is consistent with parameterization procedures followed 

when using other platforms such as Catch-MSY (Martell and Froese, 2013) or SPiCt (Pedersen and Berg 

2017). All catchability parameters were formulated as uninformative uniform priors, while additional 

observation variances were estimated for each index by assuming inverse-gamma priors to enable model 

internal variance weighting. Here, the process error of log(By) in year y was estimated “freely” by the 

model using an uninformative inverse-gamma distribution with both scaling parameters setting at 0.001. 

 

4.2.3 Surplus biomass models  

 

Regarding the surplus biomass model, we used the four available options in JABBA: Fox, Schaefer, Pella-

Tomlinson model and the Pella-Tomlinson hockey-stick composite model. 

 

The 28 different scenarios are described in Table Scenarios: 

 

Table Scenarios: Combinations of model types and CPUE time series used that resulted in the 28 scenarios 

 

Scenario Model type CPUE used 

1 Schaefer JPN+TWN+EU.Spain+EU.Port 

2 Fox JPN+TWN+EU.Spain+EU.Port 

3 Pella-Tomlinson JPN+TWN+EU.Spain+EU.Port 

4 Pella-Tomlinson composite JPN+TWN+EU.Spain+EU.Port 

5 Schaefer JPN 

6 Fox JPN 

7 Pella-Tomlinson JPN 

8 Pella-Tomlinson composite JPN 

9 Schaefer TWN 

10 Fox TWN 
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11 Pella-Tomlinson TWN 

12 Pella-Tomlinson composite TWN 

13 Schaefer EU.Spain 

14 Fox EU.Spain 

15 Pella-Tomlinson EU.Spain 

16 Pella-Tomlinson composite EU.Spain 

17 Schaefer EU.Port 

18 Fox EU.Port 

19 Pella-Tomlinson EU.Port 

20 Pella-Tomlinson composite EU.Port 

21 Schaefer TWN+EU.Spain+EU.Port 

22 Fox TWN+EU.Spain+EU.Port 

23 Pella-Tomlinson TWN+EU.Spain+EU.Port 

24 Pella-Tomlinson composite TWN+EU.Spain+EU.Port 

25 Schaefer JPN+TWN+EU.Spain 

26 Fox JPN+TWN+EU.Spain 

27 Pella-Tomlinson JPN+TWN+EU.Spain 

28 Pella-Tomlinson composite JPN+TWN+EU.Spain 

 

 

5 Stock assessment results and discussion 

5.1 Prior on the intrinsic population growth rate 

The natural mortality-at-age estimated by the three different methods give similar results (Figure 7). 
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Figure 7: Estimates for the natural mortality at age for three different methods 

 

Ten thousand bootstraps of the different combinations of biological parameters gave a distribution for r 

for these three methods to estimate the natural mortality (Figure 8). 

 

 
Figure 8: Distribution of the estimate for r for the 10 000 bootstraps in the biological parameter distribution and 

three different methods to estimate the natural mortality. Note that the negative values have been excluded. 
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The values for r are very similar for the three methods with median values of 0.02367 using Then et al 

(2015), 0.03063 using Chen & Watanabe (1989), and 0.03194 using McGurk (1986). 

 

The prior value used for r with JABBA will be 0.031 with a CV of 0.2. 

5.2 CMSY and BSM 

5.2.1 Effect of the starting year of the catch time series 

When running CMSY (Run 5 and 6: catch-only, no CPUE index included, Table 6), setting the start year to 

1964 or 1971 had no effect on the r. The K increased slightly with the longer time series from 181.32 kt to 

186.10 kt (Figure 9). 

 

 
Figure 9. The r-K pairs found by CMSY when using the full catch time series from 1964 (left panel), and when using 

the catch time series from 1971 as in Brunel et al. 2018 (right panel). The dark grey points relate to the r-k pairs 

found by the CMSY model to be compatible with the catches and prior information. The blue cross indicates the 

most probable r-k pair and the approximate 95% confidence limits.  

 

Likewise, we find that the start year of the catch time series has minimal impact on the results of the 

different runs when including CPUE. The runs that include the Japan CPUE are different from the runs 

using other CPUE indices (e.g. in their K, Bmsy, Fmsy; Table 8), but the runs with the Japan CPUE examined 

across different start years have similar results. This lack of influence in start year is likely because the 

catch rate of the catch data prior to 1971 is lower than the current catch rate (Figure 6), and therefore 

has little impact on the estimates of K.  

 

 

Table 8. A summary of the results from CMSY (catch-only) and the BSM runs including CPUE indices from Japan (JPN), 

EU,Spain (SPN), Taiwan,China (TWN), EU,Portugal (POR).  

Run CPUE 
start. 
yr 

end. 
yr msy r k msy B Bmsy 

B. 
Bmsy F Fmsy 

F. 
Fmsy 
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1 JPN 1971 2018 1.010 0.017 243.305 1.010 65.326 121.653 0.537 0.026 0.008 3.122 

2 SPN 1971 2018 0.982 0.020 192.035 0.982 113.681 96.017 1.184 0.015 0.010 1.456 

3 TWN 1971 2018 0.916 0.020 183.117 0.916 101.952 91.559 1.114 0.017 0.010 1.660 

4 POR 1971 2018 0.948 0.020 189.958 0.948 105.912 94.979 1.115 0.016 0.010 1.602 

5 Catch-only 1964 2018 1.404 0.031 181.321 1.404 97.376 90.660 1.074 0.017 0.015 1.123 

6 Catch-only 1971 2018 1.441 0.031 186.101 1.441 100.169 93.050 1.077 0.017 0.015 1.092 

7 JPN 1964 2018 1.027 0.017 246.706 1.027 65.177 123.353 0.528 0.026 0.008 3.119 

8 SPN 1964 2018 0.973 0.021 185.325 0.973 115.672 92.663 1.248 0.015 0.011 1.393 

9 TWN 1964 2018 0.927 0.021 179.770 0.927 102.158 89.885 1.137 0.017 0.010 1.607 

10 POR 1964 2018 0.943 0.020 186.479 0.943 105.162 93.240 1.128 0.016 0.010 1.591 

 

 

Thus, our final model configuration includes a start year from 1964, so as to consider the full dataset 

available. 

5.2.2 Effect of the CPUE indices 

The CPUE index from Japan gives a lower r and a higher K than the other CPUE indices tested. The Japan 

CPUE shows much higher values in the early years of the index, descending in value in the more recent 

years (Figure 6). The opposite pattern is observed for the other three indices. Due to this early period of 

high CPUE, the initial biomass (K) is estimated at a higher level, which then impacts the estimation of both 

Bmsy and Fmsy. We find that the other three indices tested show similar results across their r, K, Bmsy 

and Fmsy (Table 8). 

 

Comparing between the results of the CMSY (catch-only) runs and those using the BSM (Table 8), we find 

that CMSY estimates a higher r (0.031) relative to the BSM results (0.017-0.021) (Figure 10, panel C). 

 

 
                                   

Japan  
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Spain  

Taiwan  

Portugal  

 

Figure 10. Output of the Bayesian Schaefer model using the CPUE indices from (top to bottom) Japan, EU,Spain, 

Taiwan,China and EU,Portugal. Panel C shows the r/K pairs found by CMSY catch-only and BSM when using the full 

catch time series with the dark grey points indicating possible r-k pairs found by CMSY that are compatible with the 

catch data and prior information. The blue cross indicates the most probable r-k pair and the 95% confidence interval 

as found by the CMSY (catch-only). The black dots are possible r-k pairs found by the BSM model, with a red cross 

indicating the most probable r-k pair and its 95% confidence limits. Panel D shows the estimated biomass relative to 

K (red), i.e., the CPUE data, scaled to the BSM estimate of Bmsy = 0.5 k, and in blue the biomass trajectory estimated 

by CMSY. Dotted blue lines indicate the 2.5th and 97.5th percentiles. Vertical blue lines indicate the prior biomass 

ranges. Horizontal dashed and dotted black lines indicates the 0.5 and 0.25 biomass, respectively. Panel E indicates 

the exploitation rate (catch/abundance) scaled to the r/2 estimated from the BSM (red) and from the CMSY (blue).  

The black horizontal dotted line indicates where F/Fmsy = 1.   

 

The Japan and Portugal BSMs indicate that biomass was low around 2000 (Figure 10). For the Japan BSM, 

it remains low until 2018, but the Portugal BSM shows that it increases by 2018. Spain and Taiwan BSMs 
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do not indicate the earlier decline, and they show increasing biomass by 2018. The CMSY (catch only) 

biomass estimate is in more agreement with the Japan BSM than the other BSMs, and indicates decreasing 

biomass from 2000 to 2018 (Figure 10, panel D). However, the B/Bmsy estimated by the CMSY (catch only) 

are more in line with the BSMs from Spain, Taiwan, and Portugal with B/Bmsy > 1, indicating that the stock 

is not overfished (Table 8). In contrast, the Japan BSM estimates that B/Bmsy = 0.53, indicating that the 

stock is overfished. 

 

All BSMs and the CMSY (catch-only) outputs indicate that the stock is undergoing overfishing (F/Fmsy > 1) 

(Table 8). The BSMs indicate that overfishing has been occurring almost entirely from the start of when 

abundance indices are available, and the CMSY indicate overfishing in the last 15 years. CMSY outputs 

indicate that exploitation rates begin relatively high and decline and stabilise in the 1970s and 1980s. They 

increased from the 1990s and reached overfishing levels by 2000. Exploitation appears to decline again 

near 2010, and then increase to overfishing again by the end of the time series (Figure 10, panel E). 

 

Examining the stock trajectories produced by the different runs, we find that all runs except for BSM Japan 

indicate that the stock is in the ‘orange’ (top-right quadrant of Figure 11). In contrast, BSM Japan indicates 

that the stock is in the ‘red’ (top-left quadrant of Figure 11). 

 

 
Figure 11. The trajectory of relative stock size (B/Bmsy) over relative exploitation (F/Fmsy) for CMSY catch only Run 

5 (top left), BSM Japan (top middle), BSM Spain (top right), BSM Taiwan (bottom left), and BSM Portugal (bottom 

right). These plots are similar to Kobe plots, but quadrants are not colored and must be inferred, i.e. red (top-left), 

orange (top-right), yellow (bottom-left), green (bottom-right).  
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5.3 JABBA 

Twenty-eight different runs have been performed resulting from a combination of  

- four different model types (Fox, Schaefer, Pella & Tomlinson, and Pella & Tomlinson hockey-stick 

composite model); and 

- the inclusion of a combination of the four different CPUE time series , i.e. a jackknife analysis. 

 

The comparison of the outputs of key values (K, BMSY, FMSY, MSY, r, B/BMSY, F/FMSY) shows two clear patterns: 

(i) the inclusion of the Japanese CPUE leads to more pessimistic stock status and (ii) the Schaefer model 

is,  as expected, the most conservative model (Figure 12). 

 

 

 
Figure 12. Values for different key outputs from stock assessment (K, BMSY, FMSY, MSY, r, B/BMSY, F/FMSY) resulting from 

the different combinations of model type used and CPUE time series included in the stock assessment. 

 

Depending on the value of the shape parameter m, the Pella & Tomlinson model converges towards a Fox 

model when m tends to 1 and a Schaefer model when m equals 2. The selection of Pella & Tomlinson 

model seems a reasonable option as the shape parameter gives more flexibility in the surplus production 

curve - the drawback being to overfit the data. A first run with all CPUE shows that the Japanese CPUE 

strongly deviates in the early period of the time series (Figures 13 and 14). In the different simulations, it 

shows that values from the Pella-Tomlinson models are within the range of values between the Fox and 

the Schaefer model  (Figure 12). 

 



IOTC-2020-WPEB16-17_Rev2 

The removal of the Japanese CPUE time series improved the quality of the fit to the CPUE (Figure 15). The 

comparison of the two runs (with or without the Japanese CPUE) indicate the stock status is more 

pessimistic with the Japanese CPUE than without it (Figure 16).  

 

We find the comparison of the Mohn’s rho between the retrospective pattern of these two runs show 

that the run without the Japanese CPUE is more stable (Table 9). Some values for rho for the run with the 

Japanese CPUE are outside the acceptable range of -0.15 and 0.20 (Hurtado-Ferro et al. 2014; Carvalho et 

al. 2017). This may be because of the conflicting trends between the Japanese CPUE (overall decreasing 

abundance) compared to the other CPUE indices (overall increasing abundance), which the model has 

difficulty in handling (Figure 6).  

 

However, when comparing the hindcasting cross-validation results for these two runs, we find that the 

run with all CPUEs shows that the Japanese CPUE has a low mean absolute scaled error (MASE), indicating 

a good ability to predict future values abundance while the MASE are higher for the other CPUE (Figure 

17). This may be due to its long time series. 

 

The different figures and tables for these two runs are available in Appendix 2. 

 

 

 

 
Figure 13: Time-series of observed (circle) with error 95% CIs (error bars) and predicted (solid line) CPUE of Indian 

Ocean shortfin mako for the Bayesian state-space surplus production model JABBA. The dark shaded grey areas 

show 95% credibility intervals of the expected mean CPUE and the light shaded grey areas denote the 95% posterior 

predictive distribution intervals. 
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Figure 14: JABBA residual diagnostic plots of CPUE indices including all the available time series, i.e boxplots 

indicating the median and quantiles of all residuals available for any given year, and solid black lines indicate a loess 

smoother through all residuals. 

 

 
Figure 15: JABBA residual diagnostic plots of CPUE indices including all the available time series but the Japanese 

CPUE, i.e boxplots indicating the median and quantiles of all residuals available for any given year, and solid black 

lines indicate a loess smoother through all residuals. 
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Figure 16: Comparison of the main stock assessment outputs between the run with all CPUE included (run 3, red 

line) and the run without the Japanese CPUE (run 23, green line). 

 

 

Table 9: Comparison of the Mohn’s rho calculated from the retrospective analyses for the run with or without the 

Japanese CPUE.  

Model runs B F BMSY FMSY B/B0 MSY 

Run 3 (all CPUEs) -0.2547 0.3567 -0.1564 0.3497 -0.1564 -0.1140 

Run 23 (without Japanese CPUE) -0.0452 0.0529 0.0131 0.0499 0.01310 -0.0804 
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Figure 17: Hindcasting cross-validation results (HCxval) for the run with all CPUE include showing one-year-ahead 

forecasts of CPUE values (2010-2018), performed with 5 hindcast model runs relative to the expected CPUE. The 

CPUE observations, used for cross-validation, are highlighted as colored solid circles with associated light-grey 

shaded 95% confidence interval. The model reference year refers to the end points of each one-year-ahead forecast 

and the corresponding observation (i.e. year of peel + 1). 

 

A summary of posterior quantiles for parameters and management quantities of interest for the two runs 

of the JABBA model are presented in Table 10 with the comparison for the 2 runs. Depending on the 

selected run by the WPEB group, the executive summary will be provided with related data and figures. 

 

Table 10: Summary of posterior quantiles presented in the form of marginal posterior medians and associated the 

95% credibility intervals of parameters for the JABBA Model with all CPUEs included or without the Japanese CPUE. 

Run Parameter 
Estimated 

Median LCI (2.5%) UCI (97.5%) 

All CPUE K 66879 33711 181988 

Without JPN CPUE K 69361 37145 140777 

All CPUE r 0.03368 0.02270 0.05048 

Without JPN CPUE r 0.03328 0.02220 0.04975 

All CPUE FMSY 0.1167 0.03277 0.2007 
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Without JPN CPUE FMSY 0.1162 0.03242 0.2000 

All CPUE BMSY 13375 669 26081 

Without JPN CPUE BMSY 13871 693 27049 

All CPUE F/FMSY 2.2665 1.0673 2.2665 

Without JPN CPUE F/FMSY 1.3295 0.5610 3.0001 

All CPUE B/BMSY 0.99155 0.4074 1.8776 

Without JPN CPUE B/BMSY 1.669 0.7282 2.8134 

All CPUE MSY 385 19 750 

Without JPN CPUE MSY 393 20 767 

 

5.4 Comparison between methods 

We find high consistency between the CMSY catch-only and BSM runs with CPUE indices in their estimates 

of r, K, Fmsy, Bmsy, F/Fmsy, B/Bmsy and MSY (Table 8). The exception is the BSM Japan, which gives more 

pessimistic outcomes. 

 

Similarly, JABBA results indicate that the Japan CPUE significantly alters the results of the model, with 

more pessimistic results when it is included. We find that the Japanese CPUE has a conflicting trend to the 

other CPUEs, leading to less stable model diagnostics when it is included. However, retrospective analyses 

indicate the Japanese CPUE index itself appears more stable than the others, with a good ability to predict.  

 

Our methods show similar results to the Brunel et al (2018) preliminary stock assessments. Their models 

indicated overfishing from the mid 1990s (F/Fmsy = 2.57). In terms of F/Fmsy, the CMSY runs are lower in 

magnitude than Brunel et al.’s (i.e. between 1.1 to 1.25, though BSM Japan F/Fmsy = 3.1), but they also 

all indicate overfishing. Both JABBA runs indicate overfishing as well, with the run without JPN CPUE lower 

in magnitude (1.33) than the all CPUE run (2.27). 

 

Brunel et al (2018) show decreasing biomass, which is not overfished (B/Bmsy close to 1). Likewise, CMSY 

runs indicate B/Bmsy close to 1, except for the BSM Japan, which indicates that the stock is overfished 

(B/Bmsy=0.54). JABBA runs show a decrease in biomass from the mid-1960s to the late 2000s and an 

upward trend afterward. For the run with all CPUEs included, the stock has equal chances to be overfished 

or not overfished. For the run without the Japanese CPUE, the stock is not overfished in 92% of bootstraps. 

 

Thus, we note that both CMSY and JABBA give results that are generally consistent with the past 

assessment (i.e. Brunel et al. 2018), but we also note that the inclusion of the Japanese CPUE significantly 
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alters the results. We therefore suggest that the group decide on the best case scenario as either the 

JABBA All CPUE run or the JABBA run without Japanese CPUE. 
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Appendix 1. Catch per unit effort (CPUE) as provided by Japan, EU,Spain, 

EU,Portugal, and Taiwan,China. 

A1.1 CPUE Japan 
Taken from Table 5 of IOTC-2019-WPEB15-21. 

Year Nominal 

CPUE 

Standar

dised 

CPUE 

Scaled 

standard

ised 

CPUE 

Estimate

d catch 

weight 

(tons) 

Estimate

d catch 

number 

Total 

landings 

(number) 

Total 

landing 

(number) 

for 

filtered 

data 

Total 

number 

of hooks 

(one 

millions) 

Coefficie

nt of 

variation

s 

Lower 

value 

(scaled 

CPUE) 

95% CI 

Upper 

value 

(scaled 

CPUE) 

95% CI 

1993 0.63 0.37 1.41 487 12356 4322 2849 39.6 0.095 1.19 1.73 

1994 0.64 0.4 1.52 1768 31516 7136 4175 72.2 0.079 1.33 1.81 

1995 0.31 0.41 1.58 1965 36330 5623 2731 87.7 0.107 1.29 1.95 

1996 1.16 0.8 3.07 5217 100623 13487 10557 104.7 0.044 2.84 3.38 

1997 0.61 0.58 2.24 3593 93034 11555 7629 118.5 0.065 1.98 2.55 

1998 0.19 0.33 1.27 2358 38990 4691 1768 111.5 0.086 1.11 1.56 

1999 0.51 0.87 3.34 5082 76290 6180 2871 98.1 0.097 2.87 4.12 

2000 0.32 0.24 0.92 983 15546 5697 2306 95.3 0.085 0.81 1.13 

2001 0.17 0.37 1.43 1260 23279 4232 1569 104.7 0.113 1.18 1.84 

2002 0.1 0.16 0.6 893 13431 3100 590 95.6 0.139 0.49 0.81 

2003 0.05 0.07 0.28 333 4811 1725 169 72.3 0.137 0.22 0.38 

2004 0.34 0.35 1.33 1702 31647 5598 2336 91.9 0.059 1.19 1.49 

2005 0.15 0.15 0.57 1150 20675 4985 1271 104.7 0.068 0.51 0.67 

2006 0.13 0.17 0.64 1203 20292 3720 1221 107.2 0.081 0.55 0.75 

2007 0.1 0.12 0.45 647 11109 2808 806 98.1 0.104 0.37 0.55 

2008 0.14 0.1 0.38 403 7466 5357 3897 82.4 0.084 0.33 0.46 

2009 0.12 0.07 0.28 229 4062 4707 3495 66.1 0.055 0.26 0.32 

2010 0.17 0.13 0.5 328 5352 4473 3550 40.2 0.06 0.44 0.56 

2011 0.2 0.13 0.5 184 3712 4876 4143 32.1 0.074 0.44 0.59 

2012 0.15 0.13 0.49 256 4576 3648 2926 34.1 0.054 0.44 0.55 

2013 0.17 0.13 0.52 261 4233 3002 2327 32 0.091 0.43 0.61 

2014 0.14 0.18 0.68 379 6178 2531 1918 33 0.105 0.56 0.84 
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2015 0.14 0.13 0.5 250 3894 2255 1619 29.9 0.122 0.39 0.63 

2016 0.12 0.09 0.33 161 2607 1816 957 27.7 0.255 0.19 0.52 

2017 0.1 0.1 0.39 189 2706 1646 1020 24.2 0.113 0.31 0.49 

2018 0.14 0.2 0.77 285 4256 1682 1033 22.5 0.134 0.57 0.96 

A1.2 CPUE (weight) EU,Spain 
Caption and table taken from  Table 3 of IOTC-2020-WPEB16-16: Estimated parameters (lsmean), standard 

error (stderr), standardized CPUE in weight (CPUEw) of shortfin mako and upper and lower 95% confidence 

limits for the Spanish longline fleet in the Indian Ocean during the period analyzed 2001-2018. 

 

YEAR LSMEAN STDERR UCPUEw CPUEw LCPUEw 

2001 3.8684 0.0898 57.307 48.059 40.304 

2002 3.9686 0.064 60.105 53.018 46.766 

2003 3.9707 0.06 59.75 53.119 47.223 

2004 3.8396 0.0622 52.64 46.598 41.249 

2005 3.8337 0.07 53.165 46.346 40.401 

2006 3.7091 0.0584 45.845 40.886 36.464 

2007 3.7532 0.0718 49.231 42.769 37.154 

2008 3.6864 0.0756 46.407 40.017 34.506 

2009 3.7931 0.0757 51.64 44.52 38.382 

2010 4.0073 0.0961 66.698 55.253 45.772 

2011 4.0589 0.088 69.071 58.132 48.926 

2012 4.1508 0.0789 74.333 63.68 54.554 

2013 4.0154 0.0731 64.158 55.595 48.175 

2014 4.1495 0.0722 73.227 63.566 55.181 

2015 4.0166 0.0913 66.664 55.745 46.614 

2016 4.0804 0.097 71.897 59.449 49.156 

2017 4.277 0.101 88.231 72.388 59.391 

2018 4.1799 0.1075 81.154 65.739 53.253 
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A1.3 CPUE EU,Portugal 
Caption and table taken from Table 3 of IOTC-2020-WPEB16-15: Standardized SMA CPUE index (kg/1000 

hooks) for the Portuguese pelagic longline fleet in the Indian Ocean between 2000 and 2018, for use as a 

relative biomass index indicator. The table includes the standardized CPUE index value, the 95% confidence 

intervals (CI) and the coefficient of variation (CV, %). 

 

 

Year Stdz CPUE (Kg/1000 hks) Upper CI (95%) Lower CI (95%) CV (%) 

2000 113.4 132 97.5 28.2 

2001 76.5 85.9 68 32.9 

2002 43.1 49.3 37.8 37.8 

2003 108.3 121.3 96.6 30.5 

2004 26.6 32.4 21.8 42.6 

2005 64.7 82.7 50.6 32.9 

2006 114.4 123.4 106 36.2 

2007 100.2 109.1 92 34.6 

2008 72.9 88.1 60.4 32.7 

2009 75.9 86.5 66.5 32.4 

2010 92.9 105.4 81.9 30.2 

2011 103.5 115.3 92.9 30.5 

2012 151.3 168.5 135.9 27.4 

2013 122 132.2 112.6 32.6 

2014 132.3 144.4 121.3 28.7 

2015 148.5 160.4 137.5 31.2 

2016 127.7 137.9 118.3 32.7 

2017 123.2 133.3 113.9 33 

2018 155.8 170.2 142.6 28.6 
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A1.4 CPUE Taiwan,China 
Caption and table taken from Table 3: IOTC-2019-WPEB15-22: Estimated nominal and standardized CPUE 

values for shortfin mako shark of the Taiwanese tuna longline fishery in the Indian Ocean. 

 

Year Nominal Standardised Lower CI Upper CI 

2005 0.04718 0.1574 0.06075 0.25405 

2006 0.04911 0.1652 0.04038 0.29002 

2007 0.02899 0.09857 0.00573 0.19142 

2008 0.06137 0.19018 0.00197 0.3784 

2009 0.06186 0.19636 0.00665 0.38608 

2010 0.05684 0.18141 0.03184 0.33098 

2011 0.06973 0.2059 -0.03042 0.44221 

2012 0.05712 0.16283 0.03641 0.28925 

2013 0.05021 0.168 0.04172 0.29429 

2014 0.04306 0.14144 0.03612 0.24675 

2015 0.04359 0.13875 0.04895 0.22855 

2016 0.06404 0.20355 0.05633 0.35076 

2017 0.07968 0.24557 0.06255 0.4286 

2018 0.07302 0.23118 0.06372 0.39865 
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Appendix 2: Outputs from the Run 3 (Pella & Tomlinson with all CPUEs) 

 
Figure A3.1: Available catch times series in metric tons (t) for Indian Ocean shortfin mako.  

 

 
Figure A3.2: Prior and posterior distributions for the JABBA model with all CPUEs. PPRM: Posterior to Prior Ratio of 

Means; PPRV: Posterior to Prior Ratio of Variances. 
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Figure A3.3: Runs tests to quantitatively evaluate the randomness of the time series of CPUE residuals by fleet for 

the model with all CPUEs included. Green panels indicate no evidence of lack of randomness of time series residuals 

(p>0.05) while red panels indicate the opposite. The inner shaded area shows three standard errors from the overall 

mean and red circles identify a specific year with residuals greater than this threshold value (3x sigma rule).  

 

 
Figure A3.4: Process error deviates (median: solid line) with shaded grey area indicating 95% credibility intervals. 
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Figure A3.5: Time series of the biomass, fishing mortality, B/BMSY, and F/FMSY for the model with all CPUEs 

included. 

 

 
Figure A3.6: Retrospective analysis performed on the run with all CPUEs, by removing one year at a time sequentially 

(n=5) and predicting the trends in biomass and fishing mortality (upper panels), biomass relative to BMSY (B/BMSY) 

and fishing mortality relative to FMSY (F/FMSY) (middle panels) and biomass relative to K (B/K) and surplus 

production curve (bottom panels) for each scenario from the model fits.  
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Figure A3.7: Kobe phase plot showing estimated trajectories (1963-2018) of B/BMSY and F/FMSY for the JABBA 

model for the Indian Ocean shortfin mako with all CPUEs. Different grey shaded areas denote the 50%, 80%, and 

95% credibility interval for the terminal assessment year. The probability of terminal year points falling within each 

quadrant is indicated in the figure legend.  

 

 

 
Figure A3.8: Prior and posterior distributions for the JABBA model without the Japanese CPUE time series. PPRM: 

Posterior to Prior Ratio of Means; PPRV: Posterior to Prior Ratio of Variances. 

 



IOTC-2020-WPEB16-17_Rev2 

 
Figure A3.9: Runs tests to quantitatively evaluate the randomness of the time series of CPUE residuals by fleet for 

the model without the Japanese CPUE time series. Green panels indicate no evidence of lack of randomness of time 

series residuals (p>0.05) while red panels indicate the opposite. The inner shaded area shows three standard errors 

from the overall mean and red circles identify a specific year with residuals greater than this threshold value (3x 

sigma rule).  

 

 
Figure A3.10: Process error deviates (median: solid line) with shaded grey area indicating 95% credibility intervals 

for the model without the Japanese CPUE time series. 
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Figure A3.11: Time series of the biomass, fishing mortality, B/BMSY, and F/FMSY for the model  without the Japanese 

CPUE time series 

 

 
Figure A3.12: Retrospective analysis performed on the run  without the Japanese CPUE time series, by removing one 

year at a time sequentially (n=5) and predicting the trends in biomass and fishing mortality (upper panels), biomass 

relative to BMSY (B/BMSY) and fishing mortality relative to FMSY (F/FMSY) (middle panels) and biomass relative to 

K (B/K) and surplus production curve (bottom panels) for each scenario from the model fits.  
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Figure A3.13: Kobe phase plot showing estimated trajectories (1963-2018) of B/BMSY and F/FMSY for the JABBA 

model for the Indian Ocean shortfin mako without the Japanese CPUE time series. Different grey shaded areas 

denote the 50%, 80%, and 95% credibility interval for the terminal assessment year. The probability of terminal year 

points falling within each quadrant is indicated in the figure legend.  

 


