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Project Background and Objectives
Based on simulation evaluations of candidate harvest control rules by Adam and Bentley (2013),
Bentley and Adam (2014a,b, 2015, 2016), reviewed and endorsed by the Working Party on
Tropical Tunas (WPTT), Working Party on Methods (WPM), and the Scientific Committee
(SC), the IOTC adopted Resolution 16/02 “On Harvest Control Rules for Skipjack in the IOTC
Area of Competence.” This described the harvest control rule (HCR) to be used for setting a
recommended catch for skipjack (SKJ) and stated that its first implementation will be based
upon the 2017 stock assessment agreed by the WPTT and then endorsed by SC. Implementation
of the HCR to give a recommended catch limit for 2018–2020 is described in IOTC (2017a). The
Resolution also requested a further review and possible modification of the HCR to be conducted
no later than 2021.

In 2018, the IOTC WPM noted that the SKJ HCR is not a fully specified Management Procedure
(MP), since the underlying data required and assessment methodology are not part of Resolution
16/02. Hence the WPM suggested that the review and potential revision required under Resolution
16/02 be conducted with the aim of determining a full MP for SKJ. This was noted by the SC in
2018.

An MP includes the assessment or estimation method on which the HCR is based, as well as the
data inputs and the HCR itself. To be fully specified therefore, a suitable assessment method is
required: one that is capable of forming the basis for implementation of the HCR but simple
enough to simulation test. A biomass dynamic model could fulfill these requirements. Developing
such a model provides the motivation and basis for the current work.



1 Introduction

Biomass dynamic models in fisheries have a long history of application. Because fisheries data
are generally collected over discrete timesteps, the models themselves are also usually written in
discrete form, with a production function g(xt), that combines the contributions of recruitment,
growth and natural mortality to the dynamics. Written in terms of the current depletion xt
relative to the biomass at unexploited equilibrium K :

xt+1 = xt + g(xt)− Ht (1)

where Ht = Ct/K is the harvest rate. This type of model was first applied within a fisheries
context by Schaefer (1954, 1957), who implemented a logistic production function:

g(xt) = r · xt · (1− xt) (2)

This has two estimable parameters, usually referred to as the intrinsic rate of population growth
r and the carrying capacity K .

The logistic model has a number of useful reference points associated with it that can be
obtained directly from parameter estimates. These correspond to a maximum sustainable yield
MSY = r · K/4 and the associated harvest rate HMSY = r/2. If we define the ratio φ = xMSY,
then the logistic model specifically assumes that φ = 0.5 (i.e. MSY is achieved at half the
carrying capacity). However this is usually inconsistent with predictions made by age-structured
fisheries models, which are based on a stock-recruitment function that often predicts φ < 0.5. It
is therefore desirable to implement a biomass dynamic model that has reference points consistent
with an age-structured analogue.

The logistic model was generalized by Pella and Tomlinson (1969) to allow φ 6= 0.5 by introducing
a shape parameter p:

g(xt) = (r/p) · xt ·
(
1− x p

t
)

(3)

This was subsequently re-paramaterised by Fletcher (1978) in terms of a shape parameter n and
m = MSY. However, depending on φ, both formulations of this generalized production function
are capable of predicting excessively high per capita growth at low biomass levels. For p ≤ 0,
corresponding to φ ≤ e−1 ≈ 0.37, the intrinsic growth rate becomes infinite. This is a strong
caveat against use of this model for fisheries in which we might assume that 0.2 < φ < 0.4.

For the generalized production function, there is no single parameter that predicts population
growth at low biomass levels. For the logistic model, in contrast, the intrinsic growth is defined
by the parameter r as the maximum rate of increase as the biomass (or depletion) converges on
zero:

r = lim
x→0

1
x

d x
d t (4)

This is useful because it allows a prior to be constructed for r using life-history theory (McAllister
et al., 2001) or meta-analysis.
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Figure 1: Production functions for different models assuming r = 0.1 and φ =
0.3, 0.4, 0.5

1.1 The hybrid model

It is preferable in fisheries modelling to use a model that allows for φ < 0.5 and has an ecologically
consistent parameter for the maximum intrinsic growth rate. One solution to this problem was
proposed by McAllister et al. (2000) in the form of a combined Fletcher-Schaefer hybrid model.
It has a discontinuous inflection point at xMSY with dynamics for values of x < xMSY governed by
the logistic (Schaefer) model, and dynamics at higher biomass levels governed by the generalized
(Fletcher) production model. The model can be written as:

g(xt) =

r · xt ·
(

1− xt
2 · φ

)
if x ≤ φ

γ ·m · (xt − x n
t ) if x > φ

(5)

φ =
(

1
n

)(1/(n−1))
(6a)

γ = n n/(n−1)

n − 1 (6b)

m = r · φ
2 (6c)

Reference points are: MSY = m · K , xMSY = φ and HMSY = r/2.

It is informative to compare these generalised and hybrid models at different φ values. Figures 1
and 2 show the production functions and per capita growth for 0 ≤ x ≤ 1, assuming r = 0.1
and φ = {0.3, 0.4, 0.5}. The Fletcher model notably exaggerates the productivity at low biomass
levels. This problem is resolved by the Fletcher-Schaefer hybrid. The Fletcher-Schaefer hybrid
model is therefore preferred here, and implemented in the bdm package.
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Figure 2: Growth rate per capita as a function of biomass assuming r = 0.1 and
φ = 0.3, 0.4, 0.5

1.2 The bdm package

The bdm package fits a state-space biomass dynamic model using Bayesian methods, specifically
the Hamiltonian MCMC implemented in the package rstan (R Core Team, 2020, Stan Develop-
ment Team, 2020). An advantage of this class of models is that they allow both process and
observation error to be represented simultaneously, which is important for effective precautionary
or risk based management (Harwood and Stokes, 2003). To a large extent, bdm is an external
wrapper for rstan, providing functionality relevant to the intended application. The package is
generalisable, meaning that any number of model formulations can be specified by the user. The
default implements the Fletcher-Schaefer hybrid model (Equation 5), with φ = 0.5 (i.e. n = 2)
specified as an input value, making it equivalent to the logistic model.

The model formulates the process equation to include a time-dependent error term (the process
error, εp) and a parallel observation process that relates an abundance index yit to the unobserved
depletion state with some degree of error (the observation error, εo), according to a catchability
scalar qi :

xt+1 = [xt + g(xt)− Ht ] · εpt (7a)

yit = [qi · xt ] · εoit (7b)

where i refers to a particular abundance index. The process and observation equations assume
log-Normal error distributions:

xt ∼ LN
(
log (x̄t)− σ2

p/2,σ2
p
)

(8)

yit ∼ LN
(
log (ȳt)− σ2

o/2,σ2
o
)

(9)

where x̄t and ȳt are the deterministic predictions, formulated such that:

E [xt ] = x̄t (10a)
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E [yit ] = ȳt (10b)

and with an initial condition of x̄t=0 = 1. Parameters to be estimated in the model are r , K and
the process error scale term σp. This requires integration across both the process and observation
error residuals, and qi for each index, which is treated as a nuisance parameter. The observation
error scale terms σo are fixed on input. The shape parameter φ is poorly estimated by this class
of model (Clark et al., 2010) and was therefore also fixed on input.

Prior distributions for the estimated parameters are:

r ∼ LN(µr ,σ2
r ) (11a)

log (K ) ∼ Unif orm(a, b) (11b)

σp ∼ Exponential(λ) (11c)

Including an exponential prior on σp places a double exponential constraint on log (x)t (Andrews
and Mallows, 1974), and therefore implements a form of adaptive shrinkage (Park and Casella,
2008). We used a fixed input value of λ = 10, which gives E [σp] = 0.1. The uniform prior
on log (K ) adds a penalty to the posterior proportional to 1/K , making it useful for preventing
excessively large values. Bounds of a = 1 and b = 12 were chosen based on preliminary fits
to the data. Finally an informative distribution on r is helpful due to the fact that r and K
are highly correlated within the model, and is often necessary for convergence. A log-Normal
distribution is recommended by McAllister et al. (2001), since it provides a good description of
priors for r constructed using Monte-Carlo sampling of life-history data.

The catchability q is estimated analytically from its maximum posterior density estimate assuming
an uninformative uniform prior (i.e. q ∼ U(., .)).

q̂i = exp
[

1
nt

∑
t
{log (yit)− log (xt)}+ σ2

o
2

]
(12)

If we assume that the biomass is exactly known for purposes of the estimation of q̂, then
E [log (xt)] = log (xt). Since E [log (yit)] = log (qi · xt) − σ2

o/2, then E [log (q̂i )] = E [log (qi )]
and E [q̂i ] = E [qi ] as required:

E [log (q̂i )] =
[

1
nt

∑
{E [log (yit)]− E [log (xt)]}+ σ2

o
2

]
=
[

1
nt

∑{
log (qi · xt)− σ2

o
2 − log (xt)

}
+ σ2

o
2

]
= log (qi ) (13)
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2 Indian Ocean Skipjack

2.1 Empirical Data

Catch and abundance data for the years 1950 to 2016, per quarter, were obtained directly from
the 2017 skipjack stock assessment (IOTC, 2017c). Three catch rate indices were available and
are plotted in Figure 3, with the catches shown in Figure 4. Catches were assumed to be known,
whereas abundance was assumed observed with a standard error of σo = 0.2 for all indices.

2.2 Prior for the intrinsic growth

Attempts to obtain an informative prior using life-history theory were unsuccessful (yielding
anomalously large values, r > 1). We therefore obtained a prior from fishbase.org, which
reports r = 0.57 with a 95% confidence interval of (0.37−0.85). Given that E [r ] = exp(µr +σ2

r /2),
assuming a log-Normal distribution this equates to values of µr ≈ −0.58 and σr ≈ 0.2. We used
the lhm package to construct a prior on this basis (Figure 5). Noting that it is a quarterly model,
this gives prior input values of µr = −1.97 and σr = 0.2 (Equation 11a). However throughout
this report, unless otherwise indicated, we refer to r as an annual value.

2.3 Model explorations

An initial (“Reference”) model fit was performed with φ = 0.4, consistent with the assumption
of BMSY/B0 = 0.4 used in in the stock assessment (IOTC, 2017c), and E [r ] = 0.6. Three
MCMC chains were run for 10000 iterations each, keeping every third sample. They converged
reasonably well (Figure 6) with strong updates to log (K ) and σp (Figures 7 and 8). Fits are
shown in Figure 9. Estimated reference points and status metrics are listed in Table 1. A kobe
phase plot is given in Figure 10.

The Reference model outputs are consistent with the stock being close to MSY. This is in accord
with outputs from the grid of Stock Synthesis III assessment model runs, which used SSB40%
as a proxy for the biomass at MSY, and which reports median values of SSB2016/SSB0 = 0.4,
an exploitation rate relative to the exploitable biomass of E2016/E40% = 0.93 and MSY = 510.1
thousand tonnes (IOTC, 2017b). The Reference model presented here estimates MSY = 438.04
thousand tonnes.

Table 1: Reference model outputs from fit of biomass dynamic model to quarterly
data on catch and abundance, assuming E [r ] = 0.6 and φ = 0.4. Biomass values
(written as xt · K) are given in units of 1000 tonnes.

Metric Median and 90% CI
∗r 0.13 (0.09–0.18)
log (K) 8.35 (8.01–8.91)
∗MSY 109.51 (90.31–171.22)
xMSY 0.4 (0.4–0.4)
xMSY · K 1692.12 (1209.43–2969.67)
x2016 · K 1761.84 (1095.96–3907.01)
x2016 0.42 (0.33–0.56)
x2016/xMSY 1.05 (0.82–1.41)
∗HMSY 0.07 (0.05–0.09)
∗H2016 0.07 (0.03–0.11)
∗H2016/HMSY 1.07 (0.53–1.57)
∗given as quarterly values
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Figure 5: Prior for the intrinsic growth

Alternative models were used to examine sensitivity of the outputs to different assumptions
regarding φ and E [r ], specifically all combinations of φ = {0.3, 0.4, 0.5} and E [r ] = {0.5, 0.6, 0.7}.
Prior updates are shown in Figure 11. Estimated dynamics are shown in Figures 12, 13 and 14.

We can consider sensitivity of the model predictions using either absolute values or values relative
to the MSY reference point. Considering depletion, the model predicts a similar level of depletion
in the current year irrespective of the E [r ] and φ input values assumed (Figure 12). However
the xMSY reference point is a function of φ (by definition), and therefore stock status relative
to xMSY is dependent on this input assumption. Smaller values of φ imply a more optimistic
depletion status. Concerning the biomass, large values of K are typically associated with low
values of r and vice versa (Figure 11). Higher input values for E [r ] will therefore lead to smaller
estimates of K and lowever overall biomass (Figure 13). However status relative to the reference
point xMSY ·K will be unchanged, since K cancels out. This can be seen in Table 2, since values
of x2016 · K and x2016 relative to their MSY reference points are identical.

Harvest rates over time (by quarter) are shown in Figure 14. The harvest rate at MSY is
HMSY = r/2 and is therefore dependent on the input assumption concerning E [r ], but independent
of φ. The estimate of K will also be sensitive to E [r ], and since Ht = Ct/K , larger values of E [r ],
leading to smaller values of K , predict a higher harvest rate. Both H2016 and HMSY therefore
share a positive correlation with E [r ]. We can see this from Table 2: assuming φ = 0.4 the
estimated quarterly harvest rate increases from H2016 = 0.06 when E [r ] = 0.5 to H2016 = 0.08
when E [r ] = 0.7; equivalent to annual rates of 20 – 30%. However for the same value of φ
status relative to the HMSY reference point is essentially unchanged. There is a caveat however,
in that surplus production is also dependent on φ (Figure 1), with smaller values of φ predicting
lower productivity at equivalent depletion levels. At smaller φ the model therefore requires a
lower harvest rate to generate the same depletion dynamics. This has a more noticeable effect on
the estimated harvest rate compared to the assumptions regarding E [r ]. In summary therefore,
we can conclude that relative estimates of the harvest rate are robust to input assumptions
concerning E [r ] but not φ.
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Figure 6: Trace plots following reference model fit.
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Table 2: Model estimates for the current biomass (in thousand tonnes), current
depletion (relative to K) and current harvest rate given alternative inputs values of
E [r ] and φ. Median and 90% CI are given. Relative values are proportional to the
associated MSY reference point.

Metric E [r ] φ Value Relative value
x2016 · K 0.5 0.3 2857.28 (1566.2–18691.69) 1.45 (1.04–2.20)

0.5 0.4 1948.49 (1218.48–4642.39) 1.05 (0.81–1.43)
0.5 0.5 1539.39 (1014.49–2721.84) 0.84 (0.68–1.07)
0.6 0.3 2349.79 (1345.57–9045.42) 1.42 (1.04–2.08)
0.6 0.4 1659.41 (1042.71–3739.22) 1.05 (0.81–1.42)
0.6 0.5 1329.90 (887.5–2321.81) 0.85 (0.68–1.08)
0.7 0.3 2058.54 (1196.01–5867.56) 1.41 (1.05–1.97)
0.7 0.4 1472.42 (924.27–2905.46) 1.05 (0.81–1.37)
0.7 0.5 1158.34 (786.03–1886.62) 0.85 (0.68–1.06)

x2016 0.5 0.3 0.43 (0.31–0.66) 1.45 (1.04–2.20)
0.5 0.4 0.42 (0.33–0.57) 1.05 (0.81–1.43)
0.5 0.5 0.42 (0.34–0.54) 0.84 (0.68–1.07)
0.6 0.3 0.43 (0.31–0.62) 1.42 (1.04–2.08)
0.6 0.4 0.42 (0.32–0.57) 1.05 (0.81–1.42)
0.6 0.5 0.43 (0.34–0.54) 0.85 (0.68–1.08)
0.7 0.3 0.42 (0.31–0.59) 1.41 (1.05–1.97)
0.7 0.4 0.42 (0.32–0.55) 1.05 (0.81–1.37)
0.7 0.5 0.42 (0.34–0.53) 0.85 (0.68–1.06)

∗H2016 0.5 0.3 0.04 (0.01–0.08) 0.73 (0.12–1.25)
0.5 0.4 0.06 (0.03–0.10) 1.08 (0.49–1.61)
0.5 0.5 0.08 (0.05–0.12) 1.38 (0.87–1.87)
0.6 0.3 0.05 (0.01–0.09) 0.75 (0.21–1.21)
0.6 0.4 0.07 (0.03–0.12) 1.08 (0.53–1.58)
0.6 0.5 0.09 (0.05–0.14) 1.35 (0.88–1.82)
0.7 0.3 0.06 (0.02–0.10) 0.74 (0.29–1.18)
0.7 0.4 0.08 (0.04–0.13) 1.06 (0.60–1.53)
0.7 0.5 0.11 (0.07–0.16) 1.34 (0.92–1.78)

∗quarterly values
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Figure 12: Comparative depletion dynamics for alternative input values of E [r ] and
φ. Median and 90% credibility intervals are shown, with the current depletion (dashed
red line) and depletion-based reference point xMSY (solid red line) also shown.
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Figure 13: Comparative biomass dynamics for alternative input values of E [r ] and φ,
with biomass given in units of 1000 tonnes and plotted on a log10-scale. Median and
90% credibility intervals are shown, with the current biomass (dashed red line) and
biomass at MSY reference point K · xMSY (solid red line) also shown.
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Figure 14: Comparative harvest rate dynamics for alternative input values of E [r ]
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Median and 90% credibility intervals are shown, with the current harvest rate (dashed
red line) and harvest rate at MSY reference point HMSY = r/2 (solid red line) also
shown.
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3 Summary and Conclusions

From fits of the Reference model it is possible to generate stock status estimates, relative to
MSY reference points (Figure 10), that are similar to those produced by the Stock Synthesis III
stock assessment (IOTC, 2017c). However explorations of alternative input parameters show
that these status estimates are sensitive to model assumptions. In particular, both the depletion
status xt/xMSY and harvest rate Ht/HMSY are noticeably dependent on the input value of φ
(Table 2). Fortunately however, they appear insensitive to input prior values of E [r ], which is a
useful result. Finally we are able to conclude that xt , the depletion relative to K , is robust to
the complete range of input assumptions explored (Figure 15), whereas the havest rate Ht , is
robust to input values concerning E [r ] but not φ (Figure 16). Estimation of the stock status is
therefore feasible, but dependent on choosing an appropriate assumption concerning shape of the
production function.
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Figure 16: Comparative posterior estimates of the current harvest rate H2016. The
full posterior distribution is shown with the median value also given.
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4 Model code

Reference code implemented for the current project is stored in https://github.com/cttedwards/
bdm and https://github.com/cttedwards/lhm.
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