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1  | INTRODUC TION

Tuna species were one of the four most valuable fishing classes (to-
gether to lobsters, shrimps, and cephalopods) in 2014 (FAO, 2016), 
and they are considered an important contributor to global food se-
curity (Báez, Pascual-Alayón, Ramos, & Abascal, 2018). During 2014, 
the total catches of tuna and tuna-like species reached a new record, 
with almost 7.7 million tonnes caught and delivered to market (FAO, 
2016). The yellowfin tuna (Thunnus albacares) (YFT) is among the 
eight marine species with the highest catches globally (FAO, 2016). 
The Spanish purse seine freezer fleet operating in the Indian Ocean 
is of the fleets with most YFT catches globally. It consists of a total 

of 15 fishing boats supported by 6 non-fishing vessels, mainly man-
aging the floating objects stock (deployment, detection, tuna school 
estimation, etc.). During 2014, the Spanish purse seiners from Indian 
Ocean caught 3.95% of the yellowfin tuna tonnes landed worldwide 
(data deducted from Báez et al., 2017).

The “Instituto Español de Oceanografía” (IEO) in Spain is respon-
sible for producing scientific estimates of catch, effort, and other 
biological data for the Spanish purse seine fleet. Since 1990, the 
annual catch by species from Spanish purse seine freezer fleet op-
erating in the Indian Ocean has been reported to the Indian Ocean 
Tuna Commission (IOTC) (see Báez et al., 2018 for the latest available 
report).

Received: 8 August 2019  |  Revised: 21 May 2020  |  Accepted: 31 July 2020

DOI: 10.1111/fog.12496  

O R I G I N A L  A R T I C L E

Climatic oscillations effect on the yellowfin tuna (Thunnus 
albacares) Spanish captures in the Indian Ocean

José Carlos Báez1,2  |   Ivone A. Czerwinski3,4  |   María Lourdes Ramos5

1Centro Oceanográfico de Málaga, Instituto 
Español de Oceanografía, Fuengirola, Spain
2Facultad Ciencias de la Salud, Universidad 
Autónoma de Chile, Providencia, Chile
3Departamento de Biología, Facultad de 
Ciencias del Mar y Ambientales, Universidad 
de Cádiz, Cádiz, Spain
4Centro Oceanográfico de Cádiz, Instituto 
Español de Oceanografía, Cádiz, Spain
5Centro Oceanográfico de Canarias, 
Instituto Español de Oceanografía, Santa 
Cruz de Tenerife, Spain

Correspondence
José Carlos Báez, Instituto Español de 
Oceanografía, Centro Oceanográfico de 
Málaga, Puerto Pesquero de Fuengirola s/n, 
29640 Fuengirola, Spain.
Email: granbaez_29@hotmail.com

Funding information
IEO project, Grant/Award Number: 
INDTROP6; European Maritime and 
Fisheries Fund (EMFF), within the National 
Program of collection

Abstract
The yellowfin tuna (Thunnus albacares) (YFT) is among the eight marine species with 
the highest catches globally. The Spanish purse seine freezer fleet operating in the 
Indian Ocean is one of the most important YFT fishing fleets in the world. The South 
Oscillation Index (SOI), Pacific Decadal Oscillation (PDO), and Indian Ocean Dipole 
(IOD) are interrelated, and have combined effects in the Indian Ocean. Moreover, 
Madden–Julian Oscillation (MJO) is the dominant component of intraseasonal vari-
ability in the tropical Indian and Pacific oceans where the sea surface is warm. The 
main aim of present study is to understand the effect of these four climatic oscilla-
tions on Spanish purse seine YFT catches in the Indian Ocean. The ultimate goal is 
to estimate the specific time lag of the effect of each climatic oscillation on the YFT 
catches for management purposes. To estimate this, we adjusted different General 
Additive Models between the response variable (corrected YFT catches per unit of 
effort per year), compared to a combination of SOI, PDO, IOD, and MJO lagged up 
to 8 years. Our results suggest that there is a lagged effect modulated mainly by 
PDO-SOI, which could be related to a good recruitment, larval survival, or improved 
spawning. Thus, negative PDO phase (or positive SOI phase) lagged between 3 and 
6 years could favor future stock abundance, while positive PDO phase (or negative 
SOI phase) lagged 3 or 6 years could negatively affect future stock abundance.
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Currently, the YFT stock is subject to a wider plan for the re-
construction of the Indian Ocean tuna stock (described in the 
IOTC, 2016). In this context, understanding the natural variability of 
the stock and analyzing the response of the stock to climatic oscilla-
tions become necessary.

Many authors have suggested that climatic teleconnections (i.e., 
climatic oscillations with a seesaw effect, which generate an effect 
in one area, and show the opposite effect in distant areas) explain 
ecological processes better than single climate variables, since the 
climatic oscillations affect multiple weather variables simultaneously 
and their ecosystem responses (Bastos et al., 2016). Thus, climatic 
oscillations could explain fisheries fluctuations via both the cap-
turability and changes in the local abundance (for example Chavez, 
Ryan, Lluch-Cota, & Ñiquen, 2003; Mantua & Hare, 2002; Rubio, 
Macías, Camiñas, Fernández, & Báez, 2016).

Atmosphere–ocean variability patterns are explained by tele-
connections at both global and regional scales. At global scale, the 
El-Niño/Southern-Oscillation (ENSO) drives the climatic variability 
in the adjacent tropical Indian Ocean, although its effect could be bi-
directional (Banu et al., 2015; Wieners, Dijkstra, & De Ruijter, 2017). 
The ENSO generates irregular fluctuations of the Sea Surface 
Temperature (SST), with a cold phase (La Niña) and a warm phase (El 
Niño), while the Southern Oscillation Index (SOI) shows the atmo-
spheric oscillation coupled with ENSO. Thus, the SOI is considered 
a proxy of the ENSO, modulating the development and intensity of 
El Niño or La Niña events in the Pacific Ocean (Yan et al., 2011). The 
SOI is calculated using the pressure differences between the Tahiti 
and Darwin stations.

The Pacific Decadal Oscillation (PDO) is the result of a combi-
nation of different physical processes, including atmosphere–ocean 
interactions, which drive the SST North Pacific anomaly patterns (it 
is possible to see a revision in Newman et al., 2016). PDO-ENSO 
combinations could affect dry–wet patterns in remote areas in the 
Pacific Ocean (Wang, Huang, He, & Guan, 2014). Moreover, recent 
studies reveal that the subsurface cooling trend in the South Indian 
Ocean is mainly driven by remote PDO forcing, which could be re-
lated to other oceanographic phenomena in the Indian Ocean (Zhou, 
Alves, Marsland, Bi, & Hirst, 2017). At regional level, the Indian 
Ocean Dipole (IOD) is a coupled ocean–atmosphere phenomenon in 
the Indian Ocean. The IOD is considered a dipole, that is, a coupled 
ocean and atmosphere phenomenon instead of an atmospheric os-
cillation. The IOD is the leading driver of inter-annual variability of 
sea surface temperature (SST), typically during boreal summer and 
autumn, based on the empirical orthogonal function (EOF) analysis 
of SST anomalies. The IOD significantly affects the climate of the 
Indian Ocean-rim countries such as those along eastern Africa, India, 
and Indonesia (Lim & Hendon, 2017). Recent studies reveal that 
both ENSO and IOD drive the tuna fisheries yield from Indian Ocean 
(Kumar, Pillai, & Manjusha, 2014; Marsac & Demarcq, 2016).

The Madden–Julian Oscillation (MJO) is not a teleconnection 
(i.e., the MJO does not show the seesaw response), but is the dom-
inant driver of the intraseasonal variability in the tropical Indian 
and Pacific oceans where the sea surface is warm (Zhang, 2005). 

Unlike a typical teleconnection (such as the SOI or PDO), the MJO 
is a traveling pattern related to the coupling eastward propagation 
of general atmospheric circulation, generating convection wind in 
tropical areas and atmospheric variability. Both Kelvin and Rossby 
wave structures have been considered dynamically essential to the 
MJO (Zhang, 2005). This overall circulation pattern manifests itself 
most clearly as anomalous rainfall. The MJO is estimated using an 
EOF that combines cloud amount and winds at upper and lower lev-
els of the atmosphere, and this function depends on the longitude 
(Wheeler & Hendon, 2004). For this reason, as longitude 80ºE rep-
resents the limit of Western and Eastern Indian Ocean according to 
the IOTC, the MJO 80ºE (hereafter MJO80E) was considered in this 
study.

From a stock management point of view, it could be important to 
know in advance the macroecological processes that could be cou-
pled to the dynamics of YFT populations, and consequentially adopt 
pre-emptive fisheries management rules, to minimize these effects. 
In this sense, the main aim of the present study is to investigate the 
possible lagged effect of the four atmospheric climatic oscillations 
(PDO, SOI, IOD, and MJO) on Spanish purse seine YFT catch in the 
Indian Ocean.

2  | MATERIAL AND METHODS

2.1 | Fishery data

The Spanish purse seine fishery in the Indian Ocean is an industrial 
fishery that targets a mixture of tuna species, mainly skipjack tuna 
(Katsuwonus pelamis) (SKJ), yellowfin tuna (Thunnus albacares) (YFT), 
and bigeye tuna (Thunnus obesus) (BET). In this context, it is very dif-
ficult to determine the real catch composition by species. This is a 
problem that has been known for many years (i.e., Fonteneau, 1976; 
Pallares et al., 1983; Pianet et al., 2000). Consequently, a correction 
procedure, based on a multi-species sampling system in port, was 
designed for the landings registered in the logbook by species. This 
methodology has been used since 1984 in the major unloading ports 
of the EU of the Indian Ocean (Pianet et al., 2000) and is conducted 
annually by the Spanish fleet. Sampling operations are conducted 
during the unloading of the purse seiners at fishing ports to estimate 
the size and species composition of the catch. The species composi-
tion rates found are applied to geographic strata (5°x5° areas), and 
these values are weighted by the total catch. We used the annual 
corrected YFT catch in this study (for a more details and data de-
scription see Báez, Pascual-Alayón, et al., 2018).

Industrial purse seine vessels use high-tech devices to target 
tunas, such as FADS, which can be attached with satellite buoys 
equipped with echosounders to provide information to skippers 
about the fish schools under the FADs. Moreover, the purse sein-
ers are also supported by non-fishing vessels that mainly deploy 
FADs, and perform detection of tuna schools. These technologies 
have changed over time making it difficult to weight the fishing ef-
fort of the fleet by year. However, the time spent in fishing-related 
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activities (i.e., searching, installing FADs, or fishing operations such 
as setting, hauling, and removing catches from the fishing gear) by 
the fleet per boat and year, expressed as the number fishing days, is a 
good proxy to the fishing effort. Thus, we defined the yellowfin tuna 
(YFT) Catches per Unit Effort (CPUE) as the Spanish freezer fleet's 
corrected annual catch per fishing days (f.day) from 1990 to 2018.

2.2 | Climatic indices

The atmospheric climatic oscillation indices evaluated were as fol-
lows: PDO, SOI, IOD, and MJO. Climatic indices values were provided 
by the NOAA (National Oceanic and Atmospheric Administration) 
website, with the exception of the PDO. We used the classic estima-
tion proposed by Mantua, Hare, Zhang, Wallace, and Francis (1997) 
for the PDO index, available at http://resea rch.jisao.washi ngton.
edu/pdo/PDO.latest.txt (last accessed on 14/02/2020). The SOI val-
ues are available at https://www.ncdc.noaa.gov/telec onnec tions/ 
enso/indic ators/ soi/ (last accessed 14/02/2020).

Multiple climatic indices could have a combined effect on the 
ocean (Báez, Gimeno, Gómez-Gesteira, Ferri-Yáñez, & Real, 2013). In 
this sense, Wang et al. (2014) found a combined effect of PDO and SOI 
on the air pressure and dry–wet variations of the overlying atmosphere 
on Indian Ocean. For this reason, we used the combination of the dif-
ferent climatic indices and lags in our explanatory models.

In the case of IOD, we used the fluctuation in the SST anomalies 
between the western equatorial Indian Ocean (50E-70E and 10S-
10N) and the southeastern equatorial Indian Ocean (90E-110E and 
10S-0N), which is called Dipole Mode Index, available at the website: 
https://www.esrl.noaa.gov/psd/gcos_wgsp/Times eries/ DMI/ (last 
access 14/02/2020).

The MJO80E is available at the website: https://www.cpc.ncep.
noaa.gov/produ cts/preci p/CWlin k/daily_mjo_index/ proj_norm_
order.ascii (last accessed on 14/02/2020).

Taking into account that the environmental variables may have 
a delayed effect on the CPUE, the aforementioned climatic indices 
(i.e., the SOI, IOD, PDO, and MJO80E) were lagged up to 8 years, as 
their values from the previous years are known, generating 9 vari-
ables of each of the four climatic oscillations, giving a total of 36 
explanatory variables. We used a maximum lag of 8 years because 
the oldest YFT individual recorded in the Indian Ocean was ~9 years 
old (Rohit, Syda, & Rammohan, 2012). On the other hand, the climate 
index could have a cumulative effect on different cohorts. Báez, 
Ortiz De Urbina, Real, and Macías (2011) showed that NAO had a 
delayed and accumulated effect throughout the life of T. alalunga, 
which manifested in changes to local abundance.

2.3 | Data exploration

To begin with, YFT CPUE and the aforementioned climatic indices 
time series were analyzed for identifying multiple changepoints 
within the mean and variance of the time series using the changepoint 

R package (Killick, Haynes, & Eckley, 2016). The binary segmentation 
(Edwards & Cavalli-Sforza, 1965) was the change point detection 
method chosen when applying the “cpt.meanvar” function, as it is 
the most widely used multiple changepoint search method (Killick 
& Eckley, 2014). A specific explanation of the method can be found 
in Killick, Fearnhead, and Eckley (2012). The non-parametric Mann–
Kendall test (Kendall, 1955; Mann, 1945) was also applied to the en-
vironmental data to detect time series trends.

Moreover, in a first step to identify the explanatory variables 
with effect on the response variable YFT CPUE, we estimated 
Pearson's correlation coefficient with the climatic indices lagged 
up to 8 years. This analysis is similar to cross-correlations but 
without the handicap of losing data in each delay, since we know 
the values before 1990 for all climatic indices. The explanatory 
variables with an absolute correlation value with YFT greater than 
0.1 were selected as variables with potential non-linear effects 
on YFT, and explored in a similar way to the one described in the 
protocol of Zuur, Ieno, and Elphick (2010). Secondly, a Pearson's 
correlation analysis was used to test for collinearity between ex-
planatory variables in all possible pair combinations, to choose 
which explanatory variables were to be included together in mod-
els with two independent variables (Zuur et al., 2010), using a cor-
relation value of 0.6 as a threshold (Lezama-Ochoa et al., 2017; 
Wood, 2006).

2.4 | GAM models

Generalized additive models (GAM) are non-parametric generaliza-
tion of multiple linear regressions which are less restrictive in as-
sumptions of the underlying statistical data distribution (Hastie and 
Tibshirani., 1990). In these models, the linear predictors are related 
to the response variables via a link function that extends the use 
of the regression models beyond non-Gussian response variables. 
GAM uses data-driven functions, such as splines and local regression 
which have superior performance relative to the polynomial func-
tions used in linear models (Diankha and Thiaw, 2016). They allow 
depicting complex non-linear relations between species and their 
environment (Zwolinski, Emmett, & Demer, 2011).

The GAM semi-parametric smooth functions (s) were used to 
fit the interactions between the climatic indices and YFT. There 
were adjusted twenty models with a single explanatory variable, 
and 183 models with two explanatory variables. In order to avoid 
collinearity, only pairs of variables with correlation less than 0.6 in 
absolute value were included together in the models. The Akaike 
information criterion (AIC) and a graphical validation of model re-
siduals were used to select the best models (Zuur, Ieno, Walker, 
Saveliev, & Smith, 2009). Concurvity was also tested for models 
with two covariables, and an autocorrelation analysis of the resid-
uals was performed.

The data exploration and statistical analyses were carried out 
with R (version 3.5.0), and GAM models were fitted using the mgcv 
library (version 1.8; Wood, 2011) in R.

http://research.jisao.washington.edu/pdo/PDO.latest.txt
http://research.jisao.washington.edu/pdo/PDO.latest.txt
https://www.ncdc.noaa.gov/teleconnections/enso/indicators/soi/
https://www.ncdc.noaa.gov/teleconnections/enso/indicators/soi/
https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/DMI/
https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_mjo_index/proj_norm_order.ascii
https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_mjo_index/proj_norm_order.ascii
https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_mjo_index/proj_norm_order.ascii
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3  | RESULTS

3.1 | Data exploration

The estimated yellowfin tuna CPUE time series reached the maxi-
mum value in 2003 of 18 t/ f.day, the minimum in 2007 of 6 t/ f.day 
with a mean of 12 t/ f.day for the entire time series (Figure 1). To 
describe the time series evolution, four main periods of YFT CPUE 
were identified in the changepoint analysis: the first and longest pe-
riod, between 1990 and 2002 with a mean of 9.97 t/ f.day and the 
lowest variance (1.92), the second between 2003 and 2005 with the 
highest mean of 16 t/ f.day and the highest variance (3.67) as well, 
the third period between 2006 and 2009 with a mean of 9.5 t/ f.day 
and a high variance (3.51) and finally the period between 2010 and 
2018 with a mean of 14.3 t/ f.day a lower variance (2.15).

South Oscillation Index annual mean (Figure 2) index varies be-
tween –0.9 (1987) and 1.4 (2011) with a total mean of 0.1. The time 
series shows two main periods estimated with the changepoint anal-
ysis with different means but similar variance. The first one, from 
1980 to 1998, shows a negative mean value of −0.19 with a variance 
value of 0.315. During this 19 year period, negative extreme val-
ues of the time series are recorded in 1982 and 1987 and 13 years 
(68%) were in negative phase. The second period, from 1999 to 2018 
(20 years), shows a positive mean value of 0.25 and a variance of 
0.284, with only 7 years (35%) in a negative phase, with extreme 
positive values of the time series recorded in 2008 and 2011. The 
difference between the SOI periods suggests a slight positive trend 
in the time series, but the Mann–Kendall trend test does not confirm 
its significance (p = .08).

The PDO annual mean index (Figure 3) varies between –1.3 (in 
2008) and 1.8 (in 1987) with a total mean of 0.2. The PDO time se-
ries shows five periods in the changepoint analysis. The first period 
coincides with the first SOI period from 1980 to 1998 but with a 
positive mean value of 0.65 and a variance value of 0.4. Only 4 of the 
19 years (21%) were in negative phase. The second period, starting 
in 1999 and ending in 2001, shows all years in negative phase, with 
a mean value of −0.74 and a variance of 0.05. The third period, from 

2002 to 2007, has only one year in negative phase (17%), and has a 
mean value of 0.32 and a variance value of 0.12. The fourth and the 
longest negative period, from 2008 to 2013, with all years in nega-
tive phase, shows the minimum value of the time series, with a mean 
value of −0.84 and a variance value of 0.14. Finally, the last and most 
positive period from 2014 to 2018 has a mean value of 0.75 with a 
high variance value of 0.75. Although the time series ends in a pos-
itive period, there is an overall negative trend, corroborated by the 
Mann–Kendall trend test with a p-value of .029.

Looking at the temporal coincidence of the first period of the 
SOI and PDO indices, the correlation between these two indices in 
the two SOI periods was analyzed separately. It should be noted that 
from 1980 to 1998, there was no significant correlation between SPI 
and PDO (r = −0.28, p = .24); however, from 1999 to 2018, the cor-
relation between these two indices was strongly negative and highly 
significant (r = −0.80, p < .001).

Indian Ocean Dipole annual mean index (Figure 4) varies be-
tween –0.3 (1992) and 0.7 (1997) with a mean of 0.2. Only 5 years 
(15%) of the time series are in negative phase. The changepoint anal-
ysis reveals three main periods, each one with a mean value higher 
than the previous one, revealing a positive long-term trend with a 

F I G U R E  1   Yellofing tuna annual CPUE from Spanish purse seine 
freezer fleet operating in the Indian Ocean. The red line defines 
the mean and the blue dotted line shows the variance in periods 
identified by the chaingepoint analysis
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F I G U R E  2   South Oscillation Index (SOI) annual mean indices 
time series. The red line defines the mean and the blue dotted 
line shows the variance in periods identified by the chaingepoint 
analysis
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variance decrease considerably in the last two periods. The first one, 
from 1980 to 1997, has a mean value of 0.10, the second one, from 
1998 to 2004, has a mean value of 0.16, and the last one, from 2005 
to 2018, has a mean value of 0.28.

MJO80E annual mean index (Figure 5) varies between –0.6 
(1988) and 0.8 (2015) with a mean of –0.1. The index shows frequent 
fluctuations between the negative and the positive phases, although 
negative phase years amount to 60% of the time series with periods 
lasting up to 4 years and positive ones up to 3 years. The change 
point analysis shows no changes in mean and variance along the time 
series, and the Mann–Kendall trend test shows no significant trend 
in this time series.

The changepoint analysis reveals a stable period in SOI, PDO, 
and IOD from 1980 to 1997–1998, when there is a shift in the three 
time series means. After this shift, the PDO index shows more vari-
ability than SOI and IOD, shifting from negative to positive means 
three more times.

The analysis of correlations of the YFT time series with the time 
series of the non-lagged and lagged climatic indices (lagged up to 
8 years) (Table 1) shows significant correlations with SOI lagged 4 
and 5 years, and insignificant although higher than 0.1 in absolute 
value correlations lagged 3, 6, and 7 years. The correlations of the 

YFT with the PDO are negative, being significant in lags 4 and 5, 
and greater than 0.1 in lags 3, 6, and 8. The IOD climate index, how-
ever, shows only one significant correlation with the 6-year lag and 
correlations greater than 0.1 in almost all other lags except 1 and 
4 years. MJO80E does not show any significant linear correlation, 
although it does exceed 0.1 in lags 2, 4, 5, and 7.

The time series of climatic indices show significant and greater 
than 0.6 absolute value linear correlations between the SOI and the 
PDO (−0.69), between SOI and MJO80E (0.80), and between the 
PDO and MJO80E (0.63), which is interpreted as collinearity among 
these pairs of variables (Figure 6). Seven of the 190 different pairs 
of explanatory variables tested (including all climatic indices lagged 
up to 8 years) were found to be collinear (Table 2), all of them with 
combinations of the PDO or MJO80E and SOI indices with the same 
time lag as was expected from the plain indices correlation analysis 
(Figure 6). These seven collinear pairs of variables were not included 
in the GAM models to avoid collinearity.

3.2 | GAM models

The best-performing GAM models were obtained using the Gaussian 
error structure and the identity link function.

The single independent variable model with best fit and AIC val-
ues was constructed with the PDO lagged 5 years (PDO5) with an 
adjusted R-squared value of 0.35 (Table 3, Mod.008). According to 
this model, the effect of the PDO lagged five years on yellowfin tuna 
CPUE is negative and almost linear as suggested the Pearson's cor-
relation index value (−0.61) (Figure 7).

Models with two independent variables with the best AIC values 
included the PDO index lagged four or six years (Table 3). The model 
with the lowest AIC value (Mod.131) was fitted with the PDO lagged 
6 years (PDO6) and the SOI lagged 3 years (SOI3) with an adjusted 
R-squared value of 0.689, explaining 83% of the deviance. According 
to this model, the single partial effect of PDO6 on YFT is negative 
when PDO6 has values from −1 to −0.5 (with the maximum value of 
YFT for PDO6=−1), for PDO6 values between −0.5 and 0, the partial 
effect becomes positive and returns to be negative for PDO values 
between 0 and 1 (with the lowest value of YFT for PDO6 = 1). From 
the PDO6 value of 1 onwards, the partial effect on YFT is positive. 
In this same model, the partial single effect of SOI3 is less clear, with 
the lowest effect on YFT reached at the highest value of SOI3 (1.4), 
and two other minima produced at values close to 0.7 and −0.25. 
The highest effect of YFT is reached at values close to 1, with a sec-
ond maximum at values between 0 and 0.5 (Figure 8).

The second lowest AIC value (Mod.113) was obtained by com-
bining the PDO lagged 6 years and the IOD lagged 3 years, with an 
adjusted R-squared value of 0.64% and 78% of deviance explained. 
In this model, the partial effect of PDO6 is similar to that obtained 
in the previous model (Mod. 131), although much more pronounced, 
with maximum effects at values close to −1, 0, and 1.5 and minimum 
effects at values close to −0.5 and 1. On the other hand, the par-
tial effect of the 3-year lagged IOD index (IOD3) on YFT shows a 

F I G U R E  4   Indian Ocean Dipole (IOD) annual mean indices 
time series. The red line defines the mean and the blue dotted 
line shows the variance in periods identified by the chaingepoint 
analysis
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maximum at values close to 0.3 and minimum at values close to −0.1 
and above 0.6 (Figure 9).

The third lowest value of AIC (Mod.085) was found in an ad-
ditive combination of the PDO and the MJO80E lagged both four 
years (MJO80E4 and PDO4), with an adjusted R-squared value of 
0.635% and the 78.8% of the deviance explained. Partial single 
effects of these climatic indices on yellowfin tuna CPUE are differ-
ent. The four years lagged PDO partial effect on YFT is negative 

and almost linear from a value close to −0.5 to 1. However, the 
four years lagged MJO80E partial effect reaches its minimum in 
values close to 0 and shows two maxima in values close to −0.4 
and 0.4 (Figure 10).

Residuals of the three best bivariate models were found 
to be normally distributed and with no autocorrelation (see 
Shapiro–Wilk test results and residuals autocorrelation plots in ad-
ditional material).

TA B L E  1   Pearson's correlation coefficients for each lag of the 
climatic indices with the yellowfin tuna CPUE time series

Lag SOI PDO IOD MJO80E

0 0.095 0.058 0.107 0.099

−1 0.052 −0.070 0.074 0.056

−2 0.040 −0.068 0.250 0.221

−3 0.287 −0.251 0.158 0.068

−4 0.518** −0.548** 0.078 −0.220

−5 0.457* −0.612*** 0.241 −0.314

−6 0.227 −0.311 0.509** −0.029

−7 0.284 −0.007 0.167 −0.139

−8 0.039 0.155 0.056 −0.028

Note: Correlation coefficients with absolute values greater than 0.1 in 
bold.
Signif. Codes: 0.001 “***” 0.01 “**” 0.05 “*”.

F I G U R E  6   Correlation Matrix Chart of yellowfin tuna CPUE and climatic indices. Bivariate scatterplots, with a fitted line (lower panel), 
single variable histograms and Kernel density (diagonal), Pearson correlation coeficient and Signif.Codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 
0.1 “ ” 1 (upper panel)

TA B L E  2   Pearson's correlation coefficients for pairs of 
explanatory variables found to be collinear

Pairs of explanatory variables

Pearson's 
correlation 
coefficient

PDO3 SOI3 −0.686

PDO4 SOI4 −0.650

MJO80E4 SOI4 −0.838

PDO5 SOI5 −0.646

MJO80E5 SOI5 −0.847

PDO6 SOI6 −0.631

MJO80E7 SOI7 −0.854

Note: These pairs of explanatory variables were not included in GAM 
models.
Signif. Codes: 0.001 “***” 0.01 “**” 0.05 “*” (see results for all tested 
pairs in complementary material).
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The combined additive effect of climatic indices on yellowfin 
tuna CPUE shows similar patterns for each of the selected models 
(Figure 11). The model with SOI3 and PDO6 (Mod.131) predicted the 
highest values for yellowfin tuna CPUE for SOI3 = 1 (positive phase) 
and PDO6<−1 (negative phase). However, the model constructed 
with PDO6 and IOD3 (Mod.113) expects highest CPUE values for 

IOD3 values between 0.2 and 0.4 combined with either extreme val-
ues of PDO6 or PDO6 = 0. On the other hand, the model with both 
climatic indices lagged four years (Mod.085) shows the highest ex-
pected CPUE values for PDO4 between −1 and −0.5 and MJO80E4 
close to either −0.4 or 0.4.

4  | DISCUSSION

The time series of SOI, PDO, and IOD show stability in their mean 
and variances until a shift in the years 1998–1999. From there, PDO 
and IOD show periods of different phases with greater frequency. 
It is worthy of note that the YFT time series has a similar behavior, 
although with a few years of lag, showing some stability until 2002 
and more frequent period changes since then.

GAM results suggest that climatic indices and combinations of 
them could be key in yellowfin tuna CPUE long-term forecasting. 
Considering the independent effects of each of the analyzed indexes, 
linear effects can be seen in the results of the correlation analysis 
with YFT (Table 1), in which it is observed that both PDO and SOI 
have their maximum correlations with YFT with 4 and 5 years of lag, 

Model Covariates
Degrees of 
freedom AIC

Deviance 
explained

R2 
adjusted

Mod.008 PDO5 3,000 136.5 0.374 0.351

Mod.131 PDO6, SOI3 15,101 122.1 0.834 0.689

Mod.113 IOD3, PDO6 12,779 125.7 0.780 0.643

Mod.085 MJO80E4, PDO4 13,679 126.6 0.787 0.635

TA B L E  3   Significant covariates, 
degrees of freedom goodness of fit 
(Akaike Information Criterion AIC), model 
performance with deviance explained in 
percentage and regression coefficient 
R-sq. adjusted are shown for GAM 
selected models

F I G U R E  7   Generalized additive model (GAM) derived effect 
of the climatic index PDO lagged 5 years on yellowfin tuna 
CPUE (Model 008). Shaded area indicates 95% of the confidence 
intervals. The relative density of data points is shown in rugs plot 
along the x-axis

F I G U R E  8   Generalized additive model 
(GAM) derived partial single effect of the 
6 years lagged PDO and 3 years lagged 
SOI climatic indices on yellowfin tuna 
CPUE (Model 131). Shaded area indicates 
95% of the confidence intervals. The 
relative density of data points is shown in 
rugs plot along the x-axis

F I G U R E  9   Generalized additive model 
(GAM) derived partial single effect of the 
3 years lagged IDO and the 6 years lagged 
PDO climatic indices on yellowfin tuna 
CPUE (Model 113). Shaded area indicates 
95% of the confidence intervals. The 
relative density of data points is shown in 
rugs plot along the x-axis
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and IOD with a lag of 6 years. GAMs with a single explanatory vari-
able obtained better results with PDO delayed 4 and 5 years (see ad-
ditional material), confirming the linear effect of this variable. These 
results also indicate that 4 or 5 years after a negative phase of PDO 

we would expect high YFT values, whereas after a positive phase of 
PDO, it would be expected otherwise. In GAMs with only SOI, the 
best result is obtained with SOI4, and in models with only IOD, the 
best result is obtained with IOD6, both indices with the same lag 

F I G U R E  1 0   Generalized additive 
model (GAM) derived partial single effect 
of the climatic indices PDO and MJO80E 
lagged four years on yellowfin tuna CPUE 
(Model 085). Shaded area indicates 95% 
of the confidence intervals. The relative 
density of data points is shown in rugs 
plot along the x-axis

F I G U R E  11   Generalized additive model (GAM) derived additive effect of the climatic indices on yellowfin tuna CPUE (t/f.day) following 
the three selected models (contour lines indicate the estimated CPUE values; the lighter shades of gray correspond to higher CPUE values)
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in which linear correlations with YFT are significant. This changes 
when the possible combined effects between different indices are 
taken into account using GAMs with two explanatory variables. The 
best models are obtained with lags of the indices that do not have a 
significant linear correlation with YFT, suggesting that the combined 
effects are non-linear.

The PDO index turned out to be a significant variable in the 
models with better AIC values indicating that it is the most rel-
evant index to forecast YFT. Taking into account the correlation 
between PDO and SOI, it would be expected that both variables 
were equally significant in the models; however, the correlation 
between PDO and SOI has changed over time, and this is likely 
to affect the fit with YFT. Even so, the model with the lowest AIC 
(Mod.131) includes both indices with different lags (SOI3 and 
PDO6), which may indicate that the climatic effect that each of 
them represents has its effect at different times in the life and 
fishing history of this species. According to the results of the two 
models with the best AIC value (Mod.131 and Mod.113), PDO 
would have a partial effect with a delay of 6 years and there would 
be a partial effect of other indices such as SOI or IOD with a delay 
of 3 years. In both models, the YFT maximums are given with the 
same PDO6 values (PDO6 <−1, PDO6 = 0 and PDO > 1.5). The 
two models agree that the second index with partial effect on YFT 
would have 3 years lagged effect. In the third model with the best 
AIC value (mod.85), we found an intermediate delay in the ex-
pected effects located in four years for PDO and MJO80E. Taking 
into account the results of these three models and models with a 
single explanatory variable, we could deduce that a close estimate 
of YFT could be obtained from PDO values delayed between 4 
and 6 years, combined with a second index delayed between 3 and 
4 years. This gives us a time range between 3 and 6 years in which 
climatic variations would have an effect in the future on yellowfin 
tuna catches.

According to Ménard, Marsac, Bellier, and Cazelles (2007), the 
IOD could be the most important climatic oscillation affecting tuna 
catch. We observed that the PDO could be more important than 
the IOD to explain YFT catch variability in the Indian Ocean. Lagged 
PDO could explain an important portion of the observed variability 
of the data.

Faillettaz, Beaugrand, Goberville, and Kirby (2019) found 
long-time lagged effect to up 16 years with Atlantic Multidecadal 
Oscillation (AMO) and North Atlantic Oscillation (NAO) for the 
Atlantic bluefin tuna (T. thynnus). Here, we have not used such large 
lags, because we have restricted ourselves to a single generation. In 
addition, fishing mortality is much higher in the case of the YFT for 
the Indian Ocean, than for bluefin tuna (417,000 t on average be-
tween 2014 and 2018), so the high fishing mortality would prevent 
detection of the effects on multiple generations.

The effect of climatic oscillation is related to the phase (positive 
or negative sign) of the indices. In this sense, PDO and SOI (at the 
same time strongly related to ENSO) are strongly negatively cor-
related. Thus, we expect that the negative PDO phase or positive SOI 
phase has a similar effect on YFT catch as the positive PDO phase 

or negative SOI phase. Moreover, an extreme signal from climatic 
oscillation could intensify the effect (Vicente-Serrano et al., 2011). 
In relation to this, we observed that the 2 years with the highest 
CPUE of the series (years 2003; 2004) correspond to highly negative 
values of the PDO4 and positive extreme phases of SOI4. The mean 
CPUE during negative PDO4 phases was 13.3 t/f.day versus 10.3 t/f.
day during positive phases.

In a general context, the ENSO/SOI could affect directly the 
catchability of YFT (therefore PDO too), by modifying the sea sur-
face temperature and therefore the thermocline. In a recent arti-
cle, Yang et al. (2019) showed that the ENSO events impact on the 
thermocline variability in the Southern Tropical Indian Ocean. In 
this sense, according to a report of the IATTC (2015), the effect of 
the ENSO on the catchability of BET is acknowledged from eastern 
Pacific Ocean, as it can alter the depth of the thermocline. Likewise, 
Rubio et al. (2016) highlighted the effects of the NAO, another im-
portant atmospheric oscillation in the catchability of YFT from the 
Atlantic Ocean. However, this cannot explain the multi-year lag in 
its effect.

Many studies have analyzed the effect of climatic oscilla-
tions on tropical tunas, and they have identified effects on their 
abundance (Kumar et al., 2014; Lima & Naya, 2011), reproductive 
condition (Kanaji, Tanabe, Watanabe, Oshima, & Okazaki, 2012; 
Kim, 2015), recruitment to the fisheries (Lehodey, Chai, & 
Hampton, 2003; Mejuto, 2003; IATTC 2016), and distribution 
(Faillettaz et al., 2019). Báez et al. (2011) conclude that the at-
mospheric oscillations North Atlantic Oscillation (NAO) could 
affect the physical condition of albacore (T. alalunga) from the 
Mediterranean Sea. Moreover, NAO has a cumulative effect 
throughout its biological cycle, affecting the number of spawn 
sessions that albacores can perform throughout their lives, which 
could be extended to other tuna species. Taking this evidence into 
account, a possible explanation for observed delay between PDO-
SOI and YFT catch could be related to with a cumulative effect 
on YFT physical condition and spawns intensity. However, there 
are no studies on YFT physical condition and spawns intensity in 
relation to climatic oscillations from Indian Ocean.

In relation to recruitment of the YFT to the fishery, there are 
no direct measurements of YFT recruitment to the population. 
Langley, Briand, Kirby, and Murtugudde (2009) used estimates of 
recruitment strength, available in assessment models, to deter-
mine the relevance of the oceanic variability in tuna's recruitment 
at different spatio-temporal ENSO scales of the Western-Central 
Pacific Ocean. Langley et al. (2009) and Torres-Faurrieta, Dreyfus, 
and Rivas (2016) concluding that the YFT recruitment in the 
Pacific Ocean is driven by the variability in the spatial extent of 
the warm pool, which tends to occur during El Niño conditions 
(i.e., negative SOI). These findings appear to be in opposition to 
our results, but recent oceanography studies show that during the 
El Niño (i.e., negative SOI), cold SST anomalies appear and inten-
sify in the east of tropical Indian Ocean (Hu, Wu, & Wu, 2018). 
Thereby, our results are in consistency with previous findings from 
Pacific Ocean, confirming that the PDO-SOI must have an effect 
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on the recruitment. According to Faillettaz et al. (2019), the AMO 
and NAO drive the distribution of bluefin tuna from North Atlantic 
Ocean affecting its distribution and local abundance. Thus, a sim-
ilar way lagged PDO could affect the distribution and local abun-
dance of YFT from Indian Ocean. This explanation seems less 
plausible, since the purse seine fleet performed an intense search 
together with its supply vessels, so a change in the distribution of 
the YFT schools would be followed by a displacement of the fleet 
in its search, and this has not happened. Finally, we concluded that 
a multi-year lag effect on the recruitment and/or a cumulative ef-
fect on YFT physical condition and spawns intensity could be the 
explanation of our findings. However, we do not know which of 
the two hypotheses is the correct explanation, or if there is a com-
bination of both.

Robison et al. (2009) suggested that climate variability could affect 
the local Seychelles economy, due to its dependence on tuna fishing 
activity. Our study demonstrating a lag between the effect of climatic 
oscillations and its effect on the fishery could be used to help inform 
management in such contexts. There are some studies in the area on 
the effect of climate oscillations on tropical tuna catches (Robison 
et al., 2009; Ménard et al., 2007; Marsac & Demarcq, 2016; Erauskin-
Extramiana et al., 2019); however, the effect of PDO has been poorly 
tested. For example, Erauskin-Extramiana et al. (2019) do not consid-
ered that the PDO affect the YFT stock from Indian Ocean. However, 
these authors found negative correlation between PDO and changes 
in the distribution of YFT stock from Eastern Pacific Ocean.

The present study demonstrates the importance of the effect of 
the PDO and highlights the teleconnection between the Pacific and 
the Indian Ocean.

Currently, the planet is experiencing rapid global warming, and 
one effect is to more frequently achieve extreme values for climatic 
indices (Vicente-Serrano et al., 2011). In this paper, we show that 
the extreme values of the indices could increase/decrease catches 
of tropical tunas.
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