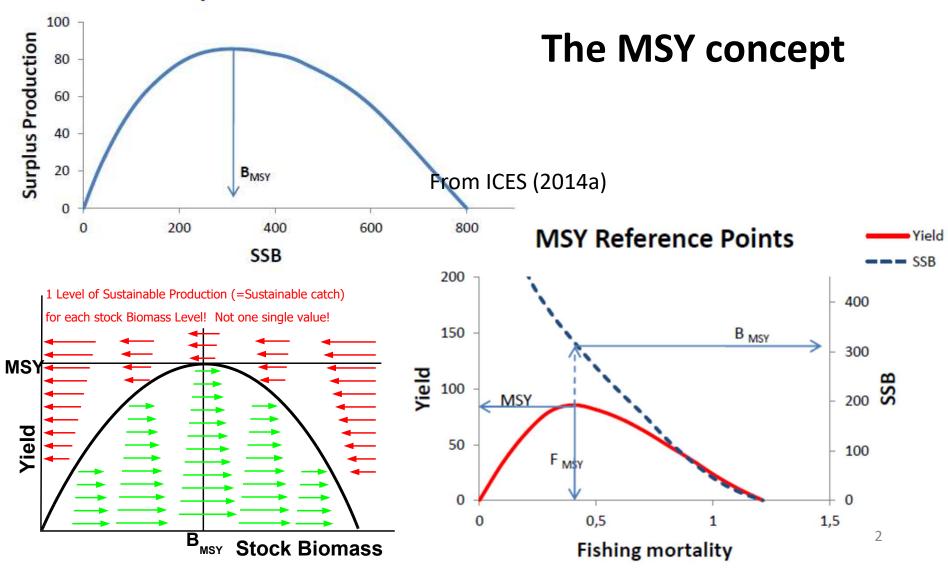
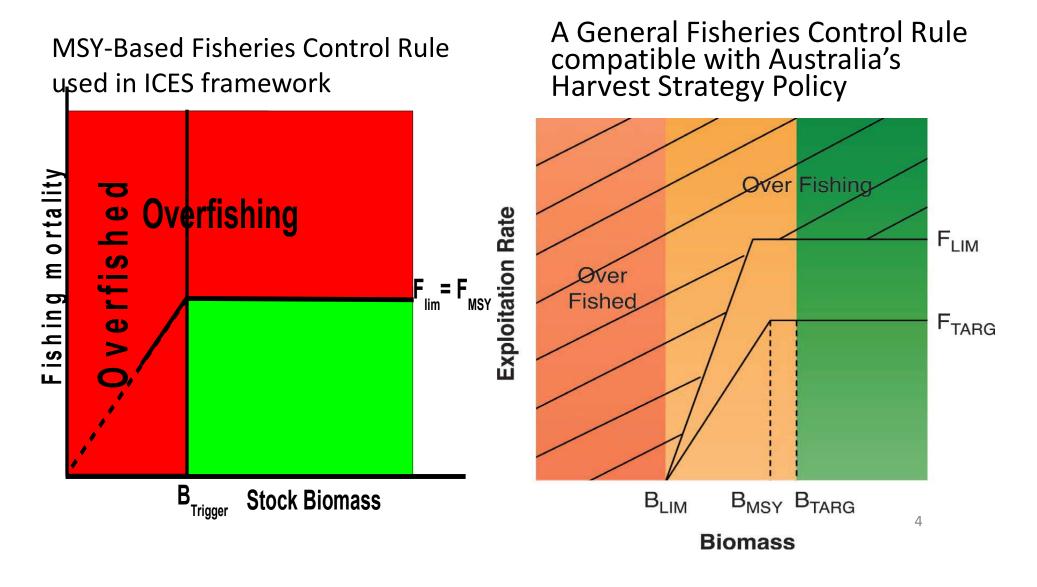
Empirical Harvest Rules

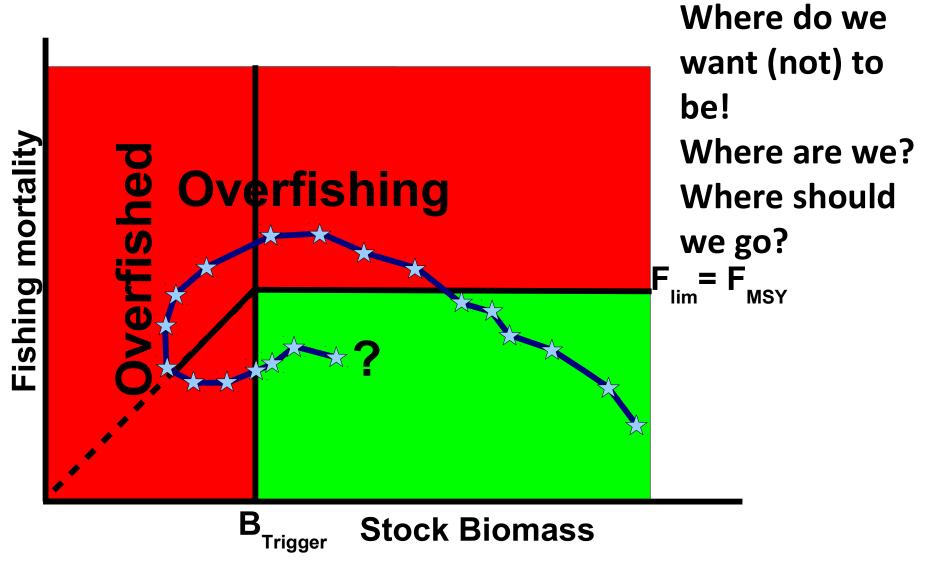

Their use in the development of advice for the SEAFO fisheries (2014)

Tom Nishida (ed.)
Fisheries Resources Institute
Shimizu, Shizuoka, Japan

SEAFO: South East Atlantic Fisheries Organisation

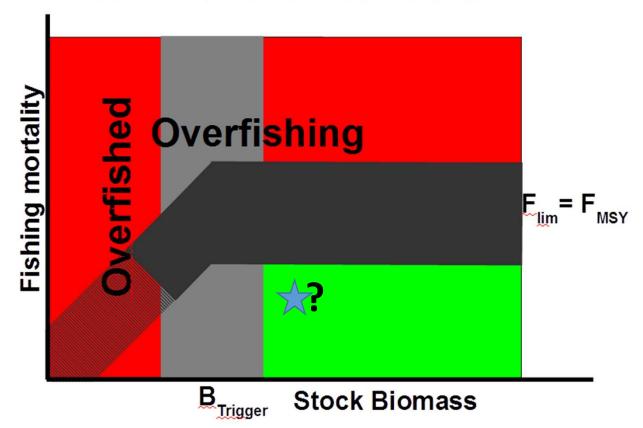
Reminder: Some Basic Ideas


Surplus Production


Purpose of Harvest Rules

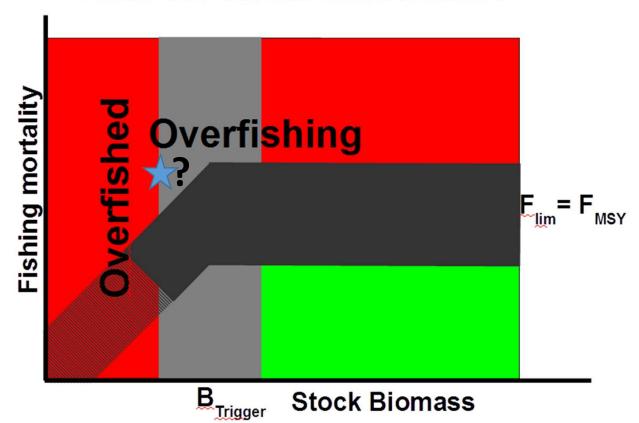
- Pre-agreed actions:
- IT this happens, THEN we do THAT
- Have a plan!
- Decisions on RULES must be taken BEFORE the need arises
 - Hot heads not good at taking decisions—Ad-hoc management feels good, but performs poorly

Managing Fisheries Sustainably: Fisheries Control Rules


Purpose of fish stock assessment:

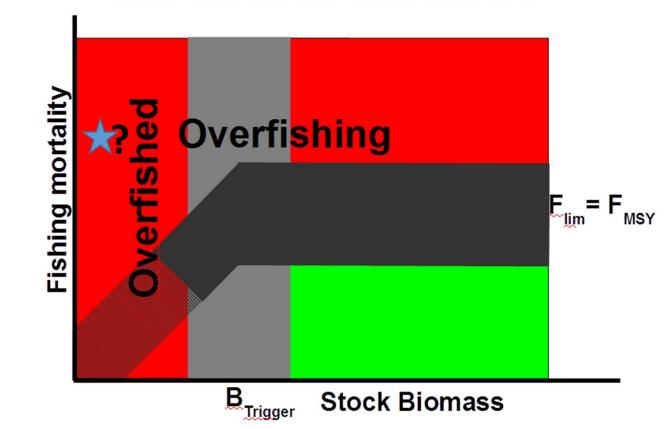
Problems in Data-Poor Stocks/Fisheries

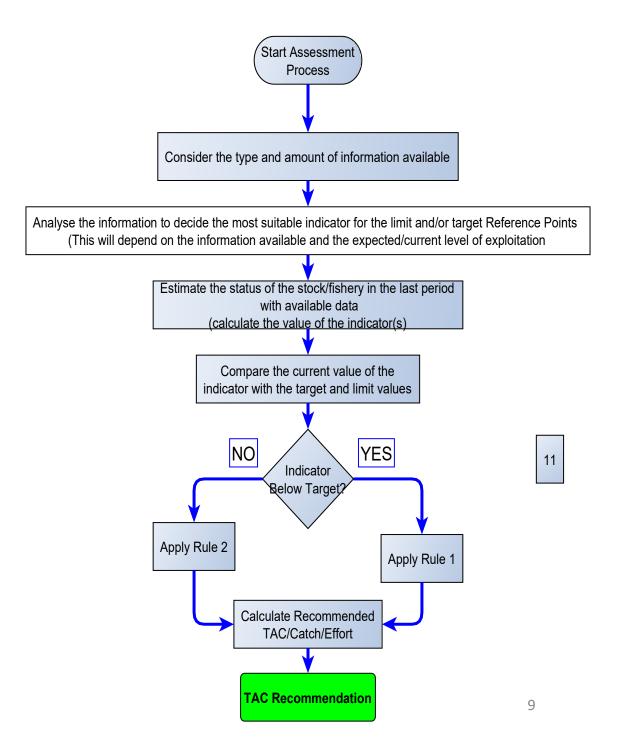
- Do not know where we are
- Do not know where we want to be....


Data-Poor Stocks and Fisheries

Problems in Data-Poor Stocks/Fisheries

- Do not know where we are
- Do not know where we want to be....


Data-Poor Stocks and Fisheries


Problems in Data-Poor Stocks/Fisheries

- Do not know where we are
- Do not know where we want to be....

Data-Poor Stocks and Fisheries

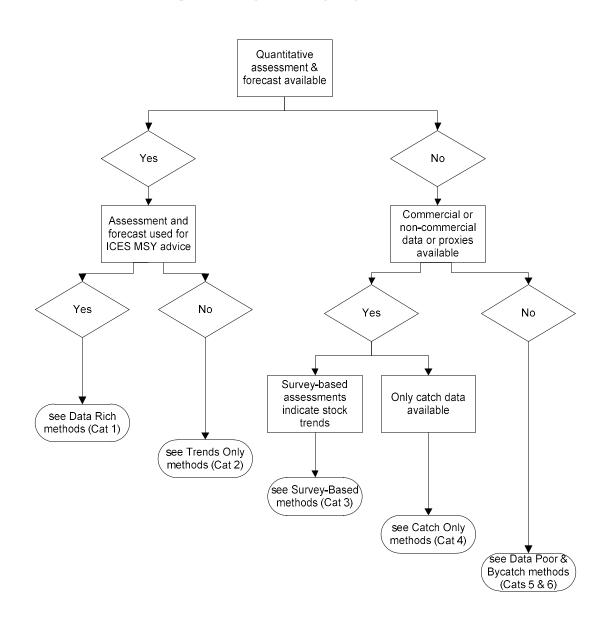
Fisheries Advisory Process (General)

Harvest control rules used for the determination of catch advice

• ICES: Simple approach (2010)

		Overfishing or
Trend of stock (or		Unknown Exploitation
indicator)	No Overfishing	Status
		Reduce catch from
	Reduce catch from	recent level at rate
	recent level at rate of	greater than the rate of
Decreasing stock trend	stock decrease	stock decrease
	Maintain catch at	Reduce catch from
Stable stock trend	recent level	recent level
	Increase catch from	
	recent level at rate of	Maintain catch at
Increasing stock trend	stock increase	recent level 10

-Alaska 6-tier system-


Data rich

- Tier 1: Reliable point estimates of B and Bmsy and reliable pdf of Fmsy
- Tier 2: **Reliable** point estimates of B, Bmsy, Fmsy, $F_{35\%}$ and $F_{40\%}$
- Tier 3: Reliable point estimates of B, B40%, F35% and F40%
- Tier 4: Reliable point estimates of B, F35% and F40%

Data poor

- Tier 5: Reliable point estimates of B and natural mortality rate M
- Tier 6: Reliable catch history from 1978–1995

ICES 6-Category Approach (2012)

Empirical Harvest Control Rules (1)

- Control rules (Trigger points and actions) are not based on stock assessment results
 - Simple indicators of stock or fishery status
- Empirical HCR need a more rigid and agreed plan
- The less reliable the indicator, the more you need a plan that is agreed by all stakeholders

Harvest rules

- ICES: Data-Rich Stocks

- If estimated stock biomass in the current year is less than Btrigger: *Method 1.1.2*:
 - Catch advice is based on the ICES MSY control rule, (F<FMSY as a linear function of biomass relative to Btrigger):

•
$$F_{MSY-H}$$
 (2013) = $F_{MSY} \left(\frac{B_{2013}}{B_{Trigger}} \right)$

- Ifa gradual transition is not appropriate because stock size is low (e.g. below Blim) and the outlook is for a further decline (e.g. as a result of low recruitment) unless fishing mortality is reduced more rapidly: *Method 1.1.3*
 - ICES may advise on a more rapid transition or application of F_{MSY-HCR} as soon as possible.
- For extremely low biomass: *Method 1.2*:
 - A recovery plan and possibly zero catch are advised

ICES Control Rules

- Category 2: Stocks with analytical assessments and forecasts that are only treated qualitatively
- Harvest Control Rule:
 - If estimated biomass is greater than $B_{trigger}$: Method 2.1.1
 - Calculate the recommended catch for next year $(C_{y+1 \text{ Calc}})$ using the same equations as in category 1
 - Apply the 20% Uncertainty Cap: $C_{y+1} = 0.8 \times C_{y+1 \text{ Calc}}$
 - If estimated biomass is less than Btrigger
 - Catch advice is based on the ICES MSY control rule, (F<FMSY as a linear function of biomass relative to Btrigger):
 - $F_{MSY-HCR}(2013) = F_{MSY}\left(\frac{B_{2013}}{B_{Trigger}}\right)$
 - Apply the 20% Uncertainty Cap: $C_{y+1} = 0.8 \times C_{y+1 \text{ Calc}}$

ICES Control Rules

- Category 3: Stocks for which survey-based assessments indicate trends
 - Harvest Control Rule:
- If a reliable abundance index is available, apply the abundance index-adjusted, status-quo catch (a harvest control rule). If, in addition, the current value of F (), with respect to an F_{MSY} proxy ($F_{MSY-proxy}$) is known, then
- The advice is based on a comparison of the two most recent index values with the three preceding values, combined with recent catch or landings data.
- 1 Determine catch advice from the survey- and F_{MSY} -transition adjusted status quo catch
 - where
 - and ω is 0.6 for 2013, 0.8 for 2014, and 1.0 for 2015 according to the 2010 ICES MSY approach for fisheries advice where a stepwise transition is used to reach F_{MSY} by 2015.
 - In cases where F_{SO} is close to $F_{MSY-proxy}$: go to F_{MSY} at once $F_{y+1} = F_{MSY-proxy}$. Note that this was not used in the 2012 advice, but it should be applied going forward.
- 2 Apply the 20% Uncertainty Cap to the catch advice (see above Methods; Definition of common terms and methods).
 - Apply the 20% Uncertainty Cap: $C_{y+1} = 0.8 \times C_{y+1 \text{ Calc}}$
 - If estimated biomass is less than Btrigger
 - Catch advice is based on the ICES MSY control rule, (F<FMSY as a linear function of biomass relative to Btrigger):
 - $F_{MSY-HCR}(2013) = F_{MSY} \left(\frac{B_{2013}}{B_{Trigger}} \right)$
 - Apply the 20% Uncertainty Cap: $C_{v+1} = 0.8 \times C_{v+1 \text{ Calc}}$

Empirical Harvest Control Rules (3)

- ICES Data-Limited Stocks (DLS) Approach:
- Category 4: Stocks for which reliable catch data are available

Assumptions

- Average catch has been sustainable if abundance has not changed
- Catch advice based on MSY is only appropriate to stocks near $\boldsymbol{B}_{\text{MSY}}$
- If the MSY estimate is much greater than recent catch
 - Stock size may be less than B_{MSY}
 - Catch advice should increase slowly toward DCAC.

Empirical Harvest Control Rules (4)

- Category 4: Stocks for which reliable catch data are available
 - Method 4.1:
 - A sufficient catch history is available, which need not be continuous, to determine a suitable exploitation rate
 - 1) Estimate MSY
 - DCAC model;
 - 2) If Recent Catch > MSY
 - Method 4.1.1:

Where the ω is 0.6 for 2013, 0.8 for 2014, and 1.0 for 2015 according to the 2010 ICES MSY approach for fisheries advice where a stepwise transition is used to Apply the 20% Uncertainty Cap to the catch advice (see above Methods; Definition of common terms and methods)

$$C_{y+1} = (1 - \omega)C_{SO} + \omega DCAC$$

Empirical Harvest Control Rules

- ICES Data-Limited Stocks (DLS) Approach -
- Category 5: Data-poor stocks (only landings data)
 - If there is no indication of where F is relative to proxies and no marked positive trends in stock indicators: *Method 5.2*:
 - 1) Calculate the recent catch $C_{y,1}$ as the average catch over the 2-3 last years, e.g. $C_{Y-1} = \frac{\sum_{y-4}^{y-1} C_i}{4}$
 - 2) Calculate the catch advice (C_{v+1}) as $C_{Y+1} = C_{Y-1}$.
 - 3) Apply the -20% Precautionary Buffer to the catch advice
 - $C_{Y+1} = 0.8 \times C_{Y-1}$
 - If catches have declined significantly over a period of time and this is considered to be representative of a substantial reduction in biomass: *Method 5.3*:
 - a recovery plan and possibly zero catch is advised

Greenland Halibut (NAFO)

NCEM Article 10 – Greenland Halibut

Harvest Control Rule (HCR) (model free)

Indicator: Slope of Abundance Index

$$TAC_{y+1} = \begin{cases} TAC_{y} \times (1 + \lambda_{u} \times slope) & if \quad slope \ge 0 \\ TAC_{y} \times (1 + \lambda_{d} \times slope) & if \quad slope < 0 \end{cases}$$

Slope: average slope of the Biomass Indicator (CPUE, Survey) in recent 5 years

- λ_u : TAC control coefficient if slope > 0 (Stock seems to be growing): λ_u =1
- λ_d :TAC control coefficient if slope < 0 (Stock seems to be decreasing): λ_d =2
- TAC generated by the HCR is constrained to \pm 5% of the TAC in the preceding year.

Empirical Harvest Control Rules

- Australian HCR for Spanner Crab:
- Basic elements:
 - There is a base TAC calculated from historical data
 - Maximum (Cap) TAC of 2000 tons
- Indicators used: Trends in the commercial CPUE and the survey CPUE (Difference to Base levels)
- Decision Rules:
 - If both indices increased more than 10% and are positive:

•
$$C_{Y+1} = C_{Y-1} \times 0.5 \times \frac{I_{Obs}}{I_{Base}}$$
 (Max is TACCap)

• If at least one of the indices decreased more than 10%:

•
$$C_{Y+1} = C_{Y-1} \times 1.0 \times \frac{I_{Obs}}{I_{Base}}$$

Empirical Harvest Control Rules (3) - Australia -

- Australian Western Deepwater Trawl Fishery
- Trigger levels for information requirement
 - Basis: Highest recorded catch (HRC)
 - Trigger 1 (catch > 0.5 HRC)
 - Exploratory analysis of catch and effort data
 - Trigger 2 (Catch > HRC)
 - Simple assessment of the fishery Standardised CPUE + Biological data
 - Trigger 3 (Catch > 2 * HRC)
 - Targeted fishing stops until full stock assessment demonstrates that any increased catch is sustainable.